Articles | Volume 10, issue 4
https://doi.org/10.5194/essd-10-1959-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-1959-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland
Lynn Montgomery
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Science, University of Colorado, Boulder, CO, USA
Lora Koenig
National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA
Patrick Alexander
Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY, USA
Related authors
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022, https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Short summary
The ice on Greenland has been melting more rapidly over the last few years. Most of this melt comes from the exposure of ice when the overlying snow melts. This ice is darker than snow and absorbs more sunlight, leading to more melt. It remains challenging to accurately simulate the brightness of the ice. We show that the color of ice simulated by Modèle Atmosphérique Régional (MAR) is too bright. We then show that this means that MAR may underestimate how fast the Greenland ice is melting.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Shujie Wang, Marco Tedesco, Patrick Alexander, Min Xu, and Xavier Fettweis
The Cryosphere, 14, 2687–2713, https://doi.org/10.5194/tc-14-2687-2020, https://doi.org/10.5194/tc-14-2687-2020, 2020
Short summary
Short summary
Glacial algal blooms play a significant role in darkening the Greenland Ice Sheet during summertime. The dark pigments generated by glacial algae could substantially reduce the bare ice albedo and thereby enhance surface melt. We used satellite data to map the spatial distribution of glacial algae and characterized the seasonal growth pattern and interannual trends of glacial algae in southwestern Greenland. Our study is important for bridging microbial activities with ice sheet mass balance.
Sophie Nowicki, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Patrick Alexander, Xylar S. Asay-Davis, Alice Barthel, Thomas J. Bracegirdle, Richard Cullather, Denis Felikson, Xavier Fettweis, Jonathan M. Gregory, Tore Hattermann, Nicolas C. Jourdain, Peter Kuipers Munneke, Eric Larour, Christopher M. Little, Mathieu Morlighem, Isabel Nias, Andrew Shepherd, Erika Simon, Donald Slater, Robin S. Smith, Fiammetta Straneo, Luke D. Trusel, Michiel R. van den Broeke, and Roderik van de Wal
The Cryosphere, 14, 2331–2368, https://doi.org/10.5194/tc-14-2331-2020, https://doi.org/10.5194/tc-14-2331-2020, 2020
Short summary
Short summary
This paper describes the experimental protocol for ice sheet models taking part in the Ice Sheet Model Intercomparion Project for CMIP6 (ISMIP6) and presents an overview of the atmospheric and oceanic datasets to be used for the simulations. The ISMIP6 framework allows for exploring the uncertainty in 21st century sea level change from the Greenland and Antarctic ice sheets.
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Short summary
The perennial snow, or firn, on the Greenland ice sheet each summer stores part of the meltwater formed at the surface, buffering the ice sheet’s contribution to sea level. We gathered observations of firn air content, indicative of the space available in the firn to retain meltwater, and find that this air content remained stable in cold regions of the firn over the last 65 years but recently decreased significantly in western Greenland.
Lora S. Koenig, Alvaro Ivanoff, Patrick M. Alexander, Joseph A. MacGregor, Xavier Fettweis, Ben Panzer, John D. Paden, Richard R. Forster, Indrani Das, Joesph R. McConnell, Marco Tedesco, Carl Leuschen, and Prasad Gogineni
The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016, https://doi.org/10.5194/tc-10-1739-2016, 2016
Short summary
Short summary
Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor surface mass balance in order to improve sea-level rise predictions. Here, we quantify the net annual accumulation over the Greenland Ice Sheet, which comprises the largest component of surface mass balance, at a higher spatial resolution than currently available using high-resolution, airborne-radar data.
Patrick M. Alexander, Marco Tedesco, Nicole-Jeanne Schlegel, Scott B. Luthcke, Xavier Fettweis, and Eric Larour
The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, https://doi.org/10.5194/tc-10-1259-2016, 2016
Short summary
Short summary
We compared satellite-derived estimates of spatial and seasonal variations in Greenland Ice Sheet mass with a set of model simulations, revealing an agreement between models and satellite estimates for the ice-sheet-wide seasonal fluctuations in mass, but disagreement at finer spatial scales. The model simulations underestimate low-elevation mass loss. Improving the ability of models to capture variations and trends in Greenland Ice Sheet mass is important for estimating future sea level rise.
Marco Tedesco, Sarah Doherty, Xavier Fettweis, Patrick Alexander, Jeyavinoth Jeyaratnam, and Julienne Stroeve
The Cryosphere, 10, 477–496, https://doi.org/10.5194/tc-10-477-2016, https://doi.org/10.5194/tc-10-477-2016, 2016
Short summary
Short summary
Summer surface albedo over Greenland decreased at a rate of 0.02 per decade between 1996 and 2012. The decrease is due to snow grain growth, the expansion of bare ice areas, and trends in light-absorbing impurities on snow and ice surfaces. Neither aerosol models nor in situ observations indicate increasing trends in impurities in the atmosphere over Greenland. Albedo projections through to the end of the century under different warming scenarios consistently point to continued darkening.
M. Navari, S. A. Margulis, S. M. Bateni, M. Tedesco, P. Alexander, and X. Fettweis
The Cryosphere, 10, 103–120, https://doi.org/10.5194/tc-10-103-2016, https://doi.org/10.5194/tc-10-103-2016, 2016
Short summary
Short summary
An ensemble batch smoother was used to assess the feasibility of generating a reanalysis estimate of the Greenland ice sheet (GrIS) surface mass fluxes (SMF) via integrating measured ice surface temperatures with a regional climate model estimate. The results showed that assimilation of IST were able to overcome uncertainties in meteorological forcings that drive the GrIS surface processes. We showed that the proposed methodology is able to generate posterior reanalysis estimates of the SMF.
L. S. Koenig, D. J. Lampkin, L. N. Montgomery, S. L. Hamilton, J. B. Turrin, C. A. Joseph, S. E. Moutsafa, B. Panzer, K. A. Casey, J. D. Paden, C. Leuschen, and P. Gogineni
The Cryosphere, 9, 1333–1342, https://doi.org/10.5194/tc-9-1333-2015, https://doi.org/10.5194/tc-9-1333-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet is storing meltwater through the winter season just below its surface in buried supraglacial lakes. Airborne radar from Operation IceBridge between 2009 and 2012 was used to detect buried lakes, distributed extensively around the margin of the ice sheet. The volume of retained water in the buried lakes is likely insignificant compared to the total mass loss from the ice sheet but has important implications for ice temperatures.
S. E. Moustafa, A. K. Rennermalm, L. C. Smith, M. A. Miller, J. R. Mioduszewski, L. S. Koenig, M. G. Hom, and C. A. Shuman
The Cryosphere, 9, 905–923, https://doi.org/10.5194/tc-9-905-2015, https://doi.org/10.5194/tc-9-905-2015, 2015
P. M. Alexander, M. Tedesco, X. Fettweis, R. S. W. van de Wal, C. J. P. P. Smeets, and M. R. van den Broeke
The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, https://doi.org/10.5194/tc-8-2293-2014, 2014
L. Brucker, E. P. Dinnat, and L. S. Koenig
The Cryosphere, 8, 905–913, https://doi.org/10.5194/tc-8-905-2014, https://doi.org/10.5194/tc-8-905-2014, 2014
M. Tedesco, X. Fettweis, T. Mote, J. Wahr, P. Alexander, J. E. Box, and B. Wouters
The Cryosphere, 7, 615–630, https://doi.org/10.5194/tc-7-615-2013, https://doi.org/10.5194/tc-7-615-2013, 2013
Related subject area
Glaciology
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
Glaciological and meteorological monitoring at LTER sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Spatial and temporal variability of environmental proxies from the top 120 m of two ice cores in Dronning Maud Land (East Antarctica)
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, NE Greenland, May 2008 through May 2022
Inventory of glaciers and perennial snowfields of the conterminous USA
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Antarctic Ice Sheet paleo-constraint database
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
A new global dataset of mountain glacier centerlines and lengths
Elevation change of the Antarctic Ice Sheet: 1985 to 2020
2000 years of annual ice core data from Law Dome, East Antarctica
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard)
A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers
The Greenland Firn Compaction Verification and Reconnaissance (FirnCover) dataset, 2013–2019
Black carbon and organic carbon dataset over the Third Pole
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet
Greenland ice sheet mass balance from 1840 through next week
Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data
GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland
A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations
Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns
Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017
Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data
Greenland ice velocity maps from the PROMICE project
The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet
Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya, India
Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies
Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017
More dynamic than expected: an updated survey of surging glaciers in the Pamir
Worldwide version-controlled database of glacier thickness observations
Greenland liquid water discharge from 1958 through 2019
Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-523, https://doi.org/10.5194/essd-2023-523, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-444, https://doi.org/10.5194/essd-2023-444, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been condicting ecosystem monitoring in Greenland since 1995. In 2008 the Glaciological monitoring subprogram GlacioBasis was initiated at the Zackenberg site in NE Greenland with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022 the weather stations were replaced with a more standardized set up and the data from 2008 to 2022 is reprocessed and quality checked to provide the first 15 years of the continued monitoring.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023, https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Short summary
We established a new inventory of surging glaciers across High Mountain Asia based on glacier elevation changes and morphological changes during 1970s–2020. A total of 890 surging and 336 probably or possibly surging glaciers were identified. Compared to the most recent inventory, this one incorporates 253 previously unidentified surging glaciers. Our results demonstrate a more widespread surge behavior in HMA and find that surging glaciers are prone to have steeper slopes than non-surging ones.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Johan Nilsson, Alex S. Gardner, and Fernando S. Paolo
Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022, https://doi.org/10.5194/essd-14-3573-2022, 2022
Short summary
Short summary
The longest observational record available to study the mass balance of the Earth’s ice sheets comes from satellite altimeters. This record consists of multiple satellite missions with different measurements and quality, and it must be cross-calibrated and integrated into a consistent record for scientific use. Here, we present a novel approach for generating such a record providing a seamless record of elevation change for the Antarctic Ice Sheet that spans the period 1985 to 2020.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Dariusz Ignatiuk, Małgorzata Błaszczyk, Tomasz Budzik, Mariusz Grabiec, Jacek A. Jania, Marta Kondracka, Michał Laska, Łukasz Małarzewski, and Łukasz Stachnik
Earth Syst. Sci. Data, 14, 2487–2500, https://doi.org/10.5194/essd-14-2487-2022, https://doi.org/10.5194/essd-14-2487-2022, 2022
Short summary
Short summary
This paper presents details of the glaciological and meteorological dataset (2009–2020) from the Werenskioldbreen (Svalbard). These high-quality and long-term observational data already have been used to assess hydrological models and glaciological studies. The objective of releasing these data is to improve their usage for calibration and validation of the remote sensing products and models, as well as to increase data reuse.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Diarmuid Corr, Amber Leeson, Malcolm McMillan, Ce Zhang, and Thomas Barnes
Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022, https://doi.org/10.5194/essd-14-209-2022, 2022
Short summary
Short summary
We identify 119 km2 of meltwater area over West Antarctica in January 2017. In combination with Stokes et al., 2019, this forms the first continent-wide assessment helping to quantify the mass balance of Antarctica and its contribution to global sea level rise. We apply thresholds for meltwater classification to satellite images, mapping the extent and manually post-processing to remove false positives. Our study provides a high-fidelity dataset to train and validate machine learning methods.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Short summary
A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2, and the average calving rate was measured as 770.3 Gt yr-1. Iceberg calving is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. This annual iceberg calving dataset provides consistent and precise calving observations with the longest time coverage.
Gunnar Johnson, Heejun Chang, and Andrew Fountain
Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, https://doi.org/10.5194/essd-13-3979-2021, 2021
Short summary
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Yetang Wang, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Shugui Hou, and Cunde Xiao
Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021, https://doi.org/10.5194/essd-13-3057-2021, 2021
Short summary
Short summary
Accurate observation of surface mass balance (SMB) under climate change is essential for the reliable present and future assessment of Antarctic contribution to global sea level. This study presents a new quality-controlled dataset of Antarctic SMB observations at different temporal resolutions and is the first ice-sheet-scale compilation of multiple types of measurements. The dataset can be widely applied to climate model validation, remote sensing retrievals, and data assimilation.
Arindam Chowdhury, Milap Chand Sharma, Sunil Kumar De, and Manasi Debnath
Earth Syst. Sci. Data, 13, 2923–2944, https://doi.org/10.5194/essd-13-2923-2021, https://doi.org/10.5194/essd-13-2923-2021, 2021
Short summary
Short summary
This is an integrated watershed-based study of glacier change across the Chhombo Chhu Watershed in the Sikkim Himalaya, 1975–2018. This glacier analysis comprised 74 glaciers with a total area of 44.8 ± 1.5 km2 including 64 debris-free glaciers with an area of 28.4 ± 1.1 km2 (63.4 % of total glacier area) in 2018. Mean glacier area of the watershed stands at 0.61 km2, with dominance of small-sized glaciers. Our mapping revealed that there has been a glacier area recession of 17.9 ± 1.7 km2.
Dhiraj Pradhananga, John W. Pomeroy, Caroline Aubry-Wake, D. Scott Munro, Joseph Shea, Michael N. Demuth, Nammy Hang Kirat, Brian Menounos, and Kriti Mukherjee
Earth Syst. Sci. Data, 13, 2875–2894, https://doi.org/10.5194/essd-13-2875-2021, https://doi.org/10.5194/essd-13-2875-2021, 2021
Short summary
Short summary
This paper presents hydrological, meteorological, glaciological and geospatial data of Peyto Glacier Basin in the Canadian Rockies. They include high-resolution DEMs derived from air photos and lidar surveys and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xin Wang, Xiaoyu Guo, Chengde Yang, Qionghuan Liu, Junfeng Wei, Yong Zhang, Shiyin Liu, Yanlin Zhang, Zongli Jiang, and Zhiguang Tang
Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, https://doi.org/10.5194/essd-12-2169-2020, 2020
Short summary
Short summary
The theoretical and methodological bases for all processing steps including glacial lake definition and classification and lake boundary delineation are discussed based on satellite remote sensing data and GIS techniques. The relative area errors of each lake in 2018 varied 1 %–79 % with average relative area errors of ±13.2 %. In high-mountain Asia, 30 121 glacial lakes with a total area of 2080.12 ± 2.28 km2 were catalogued in 2018 with a 15.2 % average rate of increase in area in 1990–2018.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020, https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary
Short summary
We present a dataset of annual glacier mass changes for all the 661 glaciers in the French Alps for the 1967–2015 period, reconstructed using deep learning (i.e. artificial intelligence). We estimate an average annual mass loss of –0.69 ± 0.21 m w.e., the highest being in the Chablais, Ubaye and Champsaur massifs and the lowest in the Mont Blanc, Oisans and Haute Tarentaise ranges. This dataset can be of interest to hydrology and ecology studies on glacierized catchments in the French Alps.
Cited articles
Albert, M. R.: Snow and Firn Permeability: Characteristics of Snow Megadunes
and their Potential Effects on Ice Core Interpretation, U.S. Antarctic
Program Data Center (USAP-DC), via National Snow and Ice Data Center (NSIDC),
https://doi.org/10.7265/N5639MPD, 2007.
Albert, M. R. and Shultz, E. F.: Snow and firn properties and air–snow
transport processes at Summit, Greenland, Atmos. Environ., 36, 2789–2797,
https://doi.org/10.1016/S1352-2310(02)00119-X, 2002.
Alley, R. B.: Concerning the Deposition and Diagenesis of Strata in Polar
Firn, J. Glaciol., 34, 283–290, https://doi.org/10.3189/S0022143000007024, 1988.
Alley, R. B.: GISP2 Stratigraphy, PANGAEA, https://doi.org/10.1594/PANGAEA.56103, 1999.
Alley, R. B., Saltzman, E. S., Cuffey, K. M., and Fitzpatrick, J. J.:
Summertime formation of Depth Hoar in central Greenland, Geophys. Res. Lett.,
17, 2393–2396, https://doi.org/10.1029/GL017i013p02393, 1990.
Anschütz, H. and Oerter, H.: Accumulation rate of firn core
DML67C04_02 (FB0402), PANGAEA, https://doi.org/10.1594/PANGAEA.609883, 2007a.
Anschütz, H. and Oerter, H.: Accumulation rate of firn core
DML68C04_03 (FB0403), PANGAEA, https://doi.org/10.1594/PANGAEA.609904, 2007b.
Anschütz, H. and Oerter, H.: Accumulation rate of firn core
DML71C05_01 (FB0501), PANGAEA, https://doi.org/10.1594/PANGAEA.609905, 2007c.
Anschütz, H. and Oerter, H.: Accumulation rate of firn core
DML72C05_02 (FB0502), PANGAEA, https://doi.org/10.1594/PANGAEA.609906, 2007d.
Anschütz, H. and Oerter, H.: Accumulation rate of firn core
DML73C05_03 (FB0503), PANGAEA, https://doi.org/10.1594/PANGAEA.609907, 2007e.
Anschütz, H. and Oerter, H.: Accumulation rate of firn core
DML74C05_04 (FB0504), PANGAEA, https://doi.org/10.1594/PANGAEA.609908, 2007f.
Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow
accumulation mapped using polarization of 4.3-cm wavelength microwave
emission, J.. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006.
Baker, I.: NEEM Firn Core 2009S2 Density and Permeability, Arctic Data
Center, https://doi.org/10.18739/A2Q88G, 2016.
Bales, R. C., McConnell, J. R., Mosley-Thompson, E., and Csatho, B.:
Accumulation over the Greenland ice sheet from historical and recent records,
J. Geophys. Res., 106, 33813–33825, https://doi.org/10.1029/2001JD900153, 2001.
Banta, J. R., McConnell, J. R., Frey, M. M., Bales, R. C., and Taylor, K.:
Spatial and temporal variability in snow accumulation at the West Antarctic
Ice Sheet Divide over recent centuries, J. Geophys. Res., 113, D23102,
https://doi.org/10.1029/2008JD010235, 2008.
Bellaire, S., Proksch, M., Schneebeli, M., Niwano, M., and Steffen, K.:
Measured and Modeled Snow Cover Properties across the Greenland Ice Sheet,
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55, 2017.
Benson, C.: Greenland Snow Pit and Core Stratigraphy (Analog and Digital
Formats), National Snow and Ice Data Center, Boulder, Colorado USA, 2013.
Benson, C. S.: Greenland Snow it and Core Stratigraphy, Carl S. Benson
Collection, Coll. 2010011, Roger G. Barry Archives and Resource Center,
National Snow Data Center, Colorado USA, 2017.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
13, PANGAEA, https://doi.org/10.1594/PANGAEA.55510, 1999a.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
15, PANGAEA, https://doi.org/10.1594/PANGAEA.55511, 1999b.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
31, PANGAEA, https://doi.org/10.1594/PANGAEA.55512, 1999c.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
37, PANGAEA, https://doi.org/10.1594/PANGAEA.55513, 1999d.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
51, PANGAEA, https://doi.org/10.1594/PANGAEA.55514, 1999e.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
57, PANGAEA, https://doi.org/10.1594/PANGAEA.55515, 1999f.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
73, PANGAEA, https://doi.org/10.1594/PANGAEA.55516, 1999g.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
44, PANGAEA, https://doi.org/10.1594/PANGAEA.59995, 2001a.
Bolzan, J. F. and Strobel, M.: Oxygen isotope data from snowpit at GISP2 Site
571, PANGAEA, https://doi.org/10.1594/PANGAEA.59996, 2001b.
Burgener, L., Rupper, S., Koenig, L., Forster, R., Christensen, W. F.,
Williams, J., Koutnik, M., Miège, C., Steig, E. J., Tingey, D., Keeler,
D., and Riley, L.: An observed negative trend in West Antarctic accumulation
rates from 1975 to 2010: Evidence from new observed and simulated records,
J. Geophys. Res.-Atmos., 118, 4205–4216, https://doi.org/10.1002/jgrd.50362, 2013.
Burgess, E. W., Forster, R. R., Box, J. E., Mosley-Thompson, E., Bromwich, D.
H., Bales, R. C., and Smith, L. C.: A spatially calibrated model of annual
accumulation rate on the Greenland Ice Sheet (1958–2007), J. Geophys. Res.,
115, F02004, https://doi.org/10.1029/2009JF001293, 2010.
Chellman, N.: Core Atmospheric and Snow Measurements at Summit Greenland
Environmental Observatory: Snow Pit, Arctic Data Center,
https://doi.org/10.18739/A2888F, 2016.
Conger, S. M. and McClung, D. M.: Comparison of density cutters for snow
profile observations, J. Glaciol., 55, 163–169,
https://doi.org/10.3189/002214309788609038, 2009.
Conway, H.: Roosevelt Island Ice Core Density and Beta Count Data, U.S.
Antarctic Program Data Center, https://doi.org/10.7265/N55718ZW, 2003.
Cooper, M. G., Smith, L. C., Rennermalm, A. K., Pitcher, L., Ryan, J. C.,
Yang, K., and Cooley, S. W.: Direct measurements of ice density down to 1m
depth in the Greenland Ice Sheet ablation zone during July 2016 from shallow
ice cores, In supplement to: Cooper, MG et al. (accepted): Near surface
meltwater storage in low-density bare ice of the Greenland ice sheet ablation
zone. The Cryosphere Discussions, 1–25, https://doi.org/10.5194/tc-2017-107,
https://doi.org/10.1594/PANGAEA.886747, 2018.
Courville, Z. R., Albert, M. R., Fahnestock, M. A., Cathles, L. M., and
Shuman, C. A.: Impacts of an accumulation hiatus on the physical properties
of firn at a low-accumulation polar site, J. Geophys. Res., 112, F02030,
https://doi.org/10.1029/2005JF000429, 2007.
Dibb, J. E. and Fahnestock, M.: Snow accumulation, surface height change, and
firn densification at Summit, Greenland: Insights from 2 years of in situ
observation, J. Geophys. Res., 109, D24113, https://doi.org/10.1029/2003JD004300, 2004.
Dibb, J. E., Whitlow, S. I., and Arsenault, M.: Seasonal variations in the
soluble ion content of snow at Summit. Greenland: Constraints from three
years of daily surface snow samples, Atmos. Environ., 41,
5007–5019, https://doi.org/10.1016/j.atmosenv.2006.12.010, 2007.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014.
Fausto, R. S., Box, J. E., Vandecrux, B., van As, D., Steffen, K., MacFerrin,
M. J., Machguth, H., Colgan, W., Koenig, L. S., McGrath, D., Charalampidis,
C., and Braithwaite, R. J.: A Snow Density Dataset for Improving Surface
Boundary Conditions in Greenland Ice Sheet Firn Modeling, Front. Earth Sci.,
6, 51, https://doi.org/10.3389/feart.2018.00051, 2018.
Favier, V., Agosta, C., Parouty, S., Durand, G., Delaygue, G., Gallée,
H., Drouet, A.-S., Trouvilliez, A., and Krinner, G.: An updated and quality
controlled surface mass balance dataset for Antarctica, The Cryosphere, 7,
583–597, https://doi.org/10.5194/tc-7-583-2013, 2013.
Fernandoy, F., Meyer, H., Oerter, H., Wilhelms, F., Graf, W. and Schwander,
J.: Annual means of d18O, density, and accumulation rates of firn core
DML641C02_01, In supplement to: Fernandoy, F et al. (2010): Temporal and
Spatial variation of stable-isotope ratios and accumulation rates in the
hinterland of Neumayer station, East Antarctica, J. Glaciol., 56, 673–687,
https://doi.org/10.3189/002214310793146296, https://doi.org/10.1594/PANGAEA.753157, 2010a.
Fernandoy, F., Meyer, H., Oerter, H., Wilhelms, F., Graf, W., and Schwander,
J.: Annual means of d18O, density, and accumulation rates of firn core
DML651C02_03, In supplement to: Fernandoy, F et al. (2010): Temporal and
Spatial variation of stable-isotope ratios and accumulation rates in the
hinterland of Neumayer station, East Antarctica, J. Glaciol., 56, 673–687,
https://doi.org/10.3189/002214310793146296, https://doi.org/10.1594/PANGAEA.753158, 2010b.
Fernandoy, F., Meyer, H., Oerter, H., Wilhelms, F., Graf, W., and Schwander,
J.: Annual means of d18O, deuterium, density, and accumulation rates of firn
core NM02C02_02, In supplement to: Fernandoy, F et al. (2010): Temporal
and Spatial variation of stable-isotope ratios and accumulation rates in the
hinterland of Neumayer station, East Antarctica, J. Glaciol., 56, 673–687,
https://doi.org/10.3189/002214310793146296, https://doi.org/10.1594/PANGAEA.753159, 2010c.
Ferris, D. G., Cole-Dai, J., Reyes, A. R., and Budner, D. M.: South Pole ice
core record of explosive volcanic eruptions in the first and second millennia
A.D. and evidence of a large eruption in the tropics around 535 A.D.,
J. Geophys. Res., 116, D17308, https://doi.org/10.1029/2011JD015916, 2011.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T.
M., van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice
sheet surface mass balance contribution to future sea level rise using the
regional atmospheric climate model MAR, The Cryosphere, 7, 469–489,
https://doi.org/10.5194/tc-7-469-2013, 2013.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van
As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015
Greenland ice sheet surface mass balance using the regional climate MAR
model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017.
Gardner, J., Richter-Menge, J., Farrell, S., and Brozena, J.: Coincident
multiscale estimates of Arctic sea ice thickness, Eos T. Am.
Geophys. Un., 93, 57–58, https://doi.org/10.1029/2012EO060001,
2012.
Gerland, S. and Wilhelms, F.: Continuous density log of icecore
BER11C95_25, Supplement to: Gerland, Sebastian; Oerter, Hans; Kipfstuhl,
Sepp; Wilhelms, Frank; Miller, Heinz (1999): Continuous density log of a 181
metre long ice core from the summit of Berkner Island, Antarctica, Ann.
Glaciol., 29, 215–219, https://doi.org/10.3189/172756499781821427,
https://doi.org/10.1594/PANGAEA.227732, 1999.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit BER01S90_01, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548700, 2006a.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit BER01S90_01, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548700, 2006b.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit BER02S90_02, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548701, 2006c.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit BER02S90_02, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548701, 2006d.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI11S90_235, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548664, 2006e.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI12S90_236, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548665, 2006f.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI12S90_236, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548665, 2006g.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI13S90_335, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548666, 2006h.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI15S90_131, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548667, 2006i.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI16S90_230, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548668, 2006j.
Graf, W. and Oerter, H.: Annual means of density, d18O, and accumulation
rates of snow pit FRI17S90_231, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548669, 2006k.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, and
accumulation rates of firn core FRI21C90_HWF, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548652, 2006l.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, and
accumulation rates of snow pit FRI18S90_330, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548670, 2006m.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI10C90_136, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548641, 2006n.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI12C90_236, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548643, 2006o.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI14C90_336, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548645, 2006p.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI16C90_230, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548647, 2006q.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI18C90_330, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548649, 2006r.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI19C90_05, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548650, 2006s.
Graf, W. and Oerter, H.: Annual means of density, d18O, deuterium, tritium,
and accumulation rates of firn core FRI20C90_06, In supplement to: Graf,
Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans;
Minikin, Andreas; Wagenbach, Dietmar (1994): Snow-accumulation rates and
isotopic content (2H, 3H) of near-surface firn from the Filchner-Ronne Ice
Shelf, Antarctica, Ann. Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548651, 2006t.
Graf, W. and Oerter, H.: Annual means of density, deuterium, and accumulation
rates of firn core FRI09C90_90, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548640, 2006u.
Graf, W. and Oerter, H.: Annual means of density, deuterium, and accumulation
rates of firn core FRI11C90_235, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548642, 2006v.
Graf, W. and Oerter, H.: Annual means of density, deuterium, and accumulation
rates of firn core FRI13C90_335, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548644, 2006w.
Graf, W. and Oerter, H.: Annual means of density, deuterium, and accumulation
rates of firn core FRI15C90_131, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548646, 2006x.
Graf, W. and Oerter, H.: Annual means of density, deuterium, and accumulation
rates of firn core FRI17C90_231, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548648, 2006y.
Graf, W. and Oerter, H.: Density and d18O of firn core FRI02C92_246, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548623, 2006z.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI10S90_136, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548655, 2006aa.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI11S90_235, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548656, 2006ab.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI12S90_236, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548657, 2006ac.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI13S90_335, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548658, 2006ad.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI15S90_131, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548659, 2006ae.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI16S90_230, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548660, 2006af.
Graf, W. and Oerter, H.: Density and d18O of snow pit FRI17S90_231, In
supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar; Kipfstuhl,
Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548661, 2006ag.
Graf, W. and Oerter, H.: Density and deuterium of firn core FRI09C90_90,
In supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar;
Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548624, 2006ah.
Graf, W. and Oerter, H.: Density and deuterium of firn core FRI11C90_235,
In supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar;
Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548626, 2006ai.
Graf, W. and Oerter, H.: Density and deuterium of firn core FRI13C90_335,
In supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar;
Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548628, 2006aj.
Graf, W. and Oerter, H.: Density and deuterium of firn core FRI15C90_131,
In supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar;
Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548630, 2006ak.
Graf, W. and Oerter, H.: Density and deuterium of firn core FRI17C90_231,
In supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth, Oskar;
Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar (1994):
Snow-accumulation rates and isotopic content (2H, 3H) of near-surface firn
from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20, 121–128,
hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548632, 2006al.
Graf, W. and Oerter, H.: Density, d18O, and deuterium of firn core
FRI21C90_HWF, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548636, 2006am.
Graf, W. and Oerter, H.: Density, d18O and deuterium of snow pit
FRI18S90_330, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548662, 2006an.
Graf, W. and Oerter, H.: Density, d18O, deuterium, and tritium of firn core
FRI10C90_136, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548625, 2006ao.
Graf, W. and Oerter, H.: Density, d18O, deuterium, and tritium of firn core
FRI12C90_236, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548627, 2006ap.
Graf, W. and Oerter, H.: Density, d18O, deuterium, and tritium of firn core
FRI14C90_336, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548629, 2006aq.
Graf, W. and Oerter, H.: Density, d18O, deuterium, and tritium of firn core
FRI16C90_230, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548631, 2006ar.
Graf, W. and Oerter, H.: Density, d18O, deuterium, and tritium of firn core
FRI18C90_330, In supplement to: Graf, Wolfgang; Moser, Heribert;
Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach,
Dietmar (1994): Snow-accumulation rates and isotopic content (2H, 3H) of
near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548633, 2006as.
Graf, W. and Oerter, H.: Density, d18O, deuterium, and tritium of firn core
FRI19C90_05, In supplement to: Graf, Wolfgang; Moser, Heribert; Reinwarth,
Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas; Wagenbach, Dietmar
(1994): Snow-accumulation rates and isotopic content (2H, 3H) of near-surface
firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 20,
121–128, hdl:10013/epic.11645.d001, https://doi.org/10.1594/PANGAEA.548634, 2006at.
Graf, W. and Oerter, H.: High resolution density, conductivity, deuterium,
and d18O of ice core FRI12C92_15, In supplement to: Graf, Wolfgang; Moser,
Heribert; Reinwarth, Oskar; Kipfstuhl, Sepp; Oerter, Hans; Minikin, Andreas;
Wagenbach, Dietmar (1994): Snow-accumulation rates and isotopic content (2H,
3H) of near-surface firn from the Filchner-Ronne Ice Shelf, Antarctica, Ann.
Glaciol., 20, 121–128, hdl:10013/epic.11645.d001,
https://doi.org/10.1594/PANGAEA.548744, 2006au.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Annual
means of density, d18O, and accumulation rates of ice core FRI07C84_340,
In supplement to: Graf, W et al. (1988): Accumulation and ice core-studies on
Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 11, 23–31,
hdl:10013/epic.25953.d001, https://doi.org/10.1594/PANGAEA.549170, 1988a.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Annual
means of density, d18O, and accumulation rates of snow pit FRI05S86_240,
In supplement to: Graf, W et al. (1988): Accumulation and ice core-studies on
Filchner-Ronne Ice Shelf, Antarctica, Ann. Glaciol., 11, 23–31,
hdl:10013/epic.25953.d001, https://doi.org/10.1594/PANGAEA.548930, 1988b.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI01S84_141, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548909, 1988c.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI03S86_345, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548910, 1988d.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI04S84_140, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548911, 1988e.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI05S84_240, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548912, 1988f.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI06S84_241, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548915, 1988g.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI07S84_340, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548916, 1988h.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI07S86_340, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548917, 1988i.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI08S84_341, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548918, 1988j.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI08S86_341, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548919, 1988k.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI13S86_335, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548920, 1988l.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI15S86_131, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548921, 1988m.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI16S86_230, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548922, 1988n.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI17S86_231, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548925, 1988o.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI18S86_330, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548924, 1988p.
Graf, W., Moser, H., Oerter, H., Reinwarth, O., and Stichler, W.: Density and
d18O of snow pit FRI0686S_241, In supplement to: Graf, W et al. (1988):
Accumulation and ice core-studies on Filchner-Ronne Ice Shelf, Antarctica,
Ann. Glaciol., 11, 23–31, hdl:10013/epic.25953.d001,
https://doi.org/10.1594/PANGAEA.548914, 1988q.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI23C95_16,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548504, 1999a.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI23C95_16,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548504, 1999b.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C. and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI25C95_14,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548506, 1999c.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI26C95_13,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548507, 1999d.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI27C95_12,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548508, 1999e.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI28C95_11,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548509, 1999f.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI29C95_10,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548510, 1999g.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI29C95_10,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548510, 1999h.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, and accumulation rates of firn core FRI33C95_06,
In supplement to: Graf, W et al. (1999): Surface accumulation on Foundation
Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548512, 1999i.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, deuterium, and accumulation rates of firn core
FRI34C95_03, In supplement to: Graf, W et al. (1999): Surface accumulation
on Foundation Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548513, 1999j.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, deuterium, tritium, and accumulation rates of firn
core FRI32C95_07, In supplement to: Graf, W et al. (1999): Surface
accumulation on Foundation Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548511, 1999k.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, deuterium, tritium, and accumulation rates of firn
core FRI35C95_01, In supplement to: Graf, W et al. (1999): Surface
accumulation on Foundation Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548514, 1999l.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Annual
means of density, d18O, deuterium, tritium, and accumulation rates of firn
core FRI38C95_04, In supplement to: Graf, W et al. (1999): Surface
accumulation on Foundation Ice Stream, Antarctica, Ann. Glaciol., 29, 23–28,
https://doi.org/10.3189/172756499781820987, https://doi.org/10.1594/PANGAEA.548515, 1999m.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI24C95_15, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548448, 1999n.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI25C95_14, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548449, 1999o.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI27C95_12, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548451, 1999p.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI28C95_11, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548452, 1999q.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI30C95_09, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548454, 1999r.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI31C95_08, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548455, 1999s.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density
and d18O of firn core FRI33C95_06, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548457, 1999t.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density,
d18O, and deuterium of firn core FRI36C95_02, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548460, 1999u.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density,
d18O, and deuterium of firn core FRI37C95_05, In supplement to: Graf, W et
al. (1999): Surface accumulation on Foundation Ice Stream, Antarctica, Ann.
Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548461, 1999v.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density,
d18O, deuterium, and tritium of firn core FRI32C95_07, In supplement to:
Graf, W et al. (1999): Surface accumulation on Foundation Ice Stream,
Antarctica, Ann. Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548456, 1999w.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density,
d18O, deuterium, and tritium of firn core FRI35C95_01, In supplement to:
Graf, W et al. (1999): Surface accumulation on Foundation Ice Stream,
Antarctica, Ann. Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548459, 1999x.
Graf, W., Reinwarth, O., Oerter, H., Mayer, C., and Lambrecht, A.: Density,
d18O, deuterium, and tritium of firn core FRI38C95_04, In supplement to:
Graf, W et al. (1999): Surface accumulation on Foundation Ice Stream,
Antarctica, Ann. Glaciol., 29, 23–28, https://doi.org/10.3189/172756499781820987,
https://doi.org/10.1594/PANGAEA.548462, 1999y.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML02S98_13, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104876, 2002a.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML05C98_32 (B32), In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104862, 2002b.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML11C98_03, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104864, 2002c.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML12C98_17, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104865, 2002d.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML13C98_16, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104866, 2002e.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML14C98_15, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104867, 2002f.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML15C98_14, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104868, 2002g.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML17C98_33 (B33), In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104869, 2002h.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML18C98_04, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104870, 2002i.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML20C98_08, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104872, 2002j.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML22C98_11, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104874, 2002k.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Density and stable oxygen isotopes of firn core
DML23C98_12, In supplement to: Graf, W et al. (2002): Stable-isotope
records from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.104875, 2002l.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Physical properties of firn core DML25C00_01, In
supplement to: Graf, W et al. (2002): Stable-isotope records from Dronning
Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.58443, 2002m.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Physical properties of firn core DML27C00_04, In
supplement to: Graf, W et al. (2002): Stable-isotope records from Dronning
Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.58445, 2002n.
Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H.,
and Mulvaney, R.: Physical properties of firn core NM03C95_06, In
supplement to: Graf, W et al. (2002): Stable-isotope records from Dronning
Maud Land, Antarctica, Ann. Glaciol., 35, 195–201,
https://doi.org/10.3189/172756402781816492, https://doi.org/10.1594/PANGAEA.58791, 2002o.
Haas, C., Beckers, J., King, J., Silis, A., Stroeve, J., Wilkinson, J.,
Notenboom, B., Schweiger, A., and Hendricks, S.: Ice and Snow Thickness
Variability and Change in the High Arctic Ocean Observed by In Situ
Measurements, Geophys. Res. Lett., 44, 10462–10469,
https://doi.org/10.1002/2017GL075434, 2017.
Hall, D. K., Comiso, J. C., DiGirolamo, N. E., Shuman, C. A., Box, J. E., and
Koenig, L. S.: Variability in the surface temperature and melt extent of the
Greenland ice sheet from MODIS, Geophys. Res. Lett., 40, 2114–2120,
https://doi.org/10.1002/grl.50240, 2013.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.:
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566, 2012.
Hawley, R. L., Courville, Z. R., Kehrl, L. M., Lutz, E. R., Osterberg, E. C.,
Overly, T. B., and Wong, G. J.: Recent accumulation variability in northwest
Greenland from ground-penetrating radar and shallow cores along the Greenland
Inland Traverse, J. Glaciol., 60, 375–382, https://doi.org/10.3189/2014JoG13J141,
2014.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of
Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8,
1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014a.
Helm, V., Humbert, A., and Miller, H.: Elevation Model of Greenland derived
from CryoSat-2 in the period 2011 to 2013, links to DEM and uncertainty map
as GeoTIFF, In supplement to: Helm, V et al. (2014): Elevation and elevation
change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8,
1539–1559, https://doi.org/10.5194/tc-8-1539-2014, https://doi.org/10.1594/PANGAEA.831393,
2014b.
Herron, M. M. and Langway, C. C.: Firn Densification: An Empirical Model,
J. Glaciol., 25, 373–385, https://doi.org/10.3189/S0022143000015239, 1980.
Hofer, S., Tedstone, A. J., Fettweis, X., and Bamber, J. L.: Decreasing cloud
cover drives the recent mass loss on the Greenland Ice Sheet, Science
Advances, 3, e1700584, https://doi.org/10.1126/sciadv.1700584, 2017.
Hörhold, M. W., Kipfstuhl, S., Wilhelms, F., Freitag, J., and Frenzel,
A.: The densification of layered polar firn, J. Geophys. Res., 116, F01001,
https://doi.org/10.1029/2009JF001630, 2011.
Hubbard, B., Tison, J.-L., Philippe, M., Heene, B., Pattyn, F., Malone, T.,
and Freitag, J.: Ice shelf density reconstructed from optical televiewer
borehole logging, Geophys. Res. Lett., 40, 5882–5887,
https://doi.org/10.1002/2013GL058023, 2013.
IMBIE Team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018.
King, J., Howell, S., Derksen, C., Rutter, N., Toose, P., Beckers, J. F.,
Haas, C., Kurtz, N., and Richter-Menge, J.: Evaluation of Operation IceBridge
quick-look snow depth estimates on sea ice, Geophys. Res. Lett., 42,
9302–9310, https://doi.org/10.1002/2015GL066389, 2015.
Koenig, L. and Brucker, L.: Satellite-Era Accumulation Traverse 2011
(SEAT11) snowpit density data., 2011.
Koenig, L., Box, J., and Kurtz, N.: Improving Surface Mass Balance Over Ice
Sheets and Snow Depth on Sea Ice, Eos T. Am. Geophys. Un., 94, 100–100,
https://doi.org/10.1002/2013EO100006, 2013.
Koenig, L. S., Miège, C., Forster, R. R., and Brucker, L.: Initial in
situ measurements of perennial meltwater storage in the Greenland firn
aquifer, Geophys. Res. Lett., 41, 81–85, https://doi.org/10.1002/2013GL058083, 2014.
Koenig, L. S., Ivanoff, A., Alexander, P. M., MacGregor, J. A., Fettweis, X.,
Panzer, B., Paden, J. D., Forster, R. R., Das, I., McConnell, J. R., Tedesco,
M., Leuschen, C., and Gogineni, P.: Annual Greenland accumulation rates
(2009–2012) from airborne snow radar, The Cryosphere, 10, 1739–1752,
https://doi.org/10.5194/tc-10-1739-2016, 2016.
Kreutz, K.: Microparticle, Conductivity, and Density Measurements from the
WAIS Divide Deep Ice Core, Antarctica, U.S. Antarctic Program Data Center,
https://doi.org/10.7265/N5K07264, 2011.
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y., Howat, I. M.,
Box, J. E., Mosley-Thompson, E., McConnell, J. R., Steffen, K., Harper, J.
T., Das, S. B., and van den Broeke, M. R.: Elevation change of the Greenland
Ice Sheet due to surface mass balance and firn processes, 1960–2014, The
Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, 2015.
Kurtz, N.: IceBridge Sea Ice Freeboard, Snow Depth, and Thickness, Version 1,
National Snow and Ice Data Center, https://doi.org/10.5067/7XJ9HRV50O57, 2012.
Kwok, R., Kurtz, N. T., Brucker, L., Ivanoff, A., Newman, T., Farrell, S. L.,
King, J., Howell, S., Webster, M. A., Paden, J., Leuschen, C., MacGregor, J.
A., Richter-Menge, J., Harbeck, J., and Tschudi, M.: Intercomparison of snow
depth retrievals over Arctic sea ice from radar data acquired by Operation
IceBridge, The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017,
2017.
Laepple, T., Hörhold, M., Münch, T., Freitag, J., Wegner, A., and
Kipfstuhl, S.: Layering of surface snow and firn at Kohnen Station,
Antarctica: Noise or seasonal signal?, J. Geophys. Res.-Earth, 121,
1849–1860, https://doi.org/10.1002/2016JF003919, 2016.
Lewis, M. J., Tison, J. L., Weissling, B., Delille, B., Ackley, S. F.,
Brabant, F., and Xie, H.: Sea ice and snow cover characteristics during the
winter–spring transition in the Bellingshausen Sea: An overview of SIMBA
2007, Deep-Sea Res. Pt. II, 58, 1019–1038, https://doi.org/10.1016/j.dsr2.2010.10.027,
2011.
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S.,
and Tabler, R. D.: Simulating complex snow distributions in windy
environments using SnowTran-3D, J. Glaciol., 53, 241–256,
https://doi.org/10.3189/172756507782202865, 2007.
MacFerrin, M., Machguth, H., van As, D., Charalampidis, C., Stevens, M.,
Vandecrux, B., Heilig, A., Langen, P., Mottram, R., Fettweis, X., van den
Broeke, M. R., Moussavi, M., and Abdalati, W.: Rapid expansion of Greenland's
low-permeability ice slabs in a warming climate, Nature, in review, 2018.
McGrath, D., Colgan, W., Bayou, N., Muto, A., and Steffen, K.: Recent warming
at Summit, Greenland: Global context and implications, Geophys. Res. Lett.,
40, 2091–2096, https://doi.org/10.1002/grl.50456, 2013.
Machguth, H., MacFerrin, M., van As, D., Box, J. E., Charalampidis, C.,
Colgan, W., Fausto, R. S., Meijer, H. A. J., Mosley-Thompson, E., and van de
Wal, R. S. W.: Greenland meltwater storage in firn limited by near-surface
ice formation, Nat. Clim. Change, 6, 390–393, https://doi.org/10.1038/nclimate2899,
2016a.
Machguth, H., Thomsen, H. H., Weidick, A., Ahlstrøm, A. P., Abermann, J.,
Andersen, M. L., Andersen, S. B., Bjørk, A. A., Box, J. E., Braithwaite,
R. J., Bøggild, C. E., Citterio, M., Clement, P., Colgan, W., Fausto, R.
S., Gleie, K., Gubler, S., Hasholt, B., Hynek, B., Knudsen, N. T., Larsen, S.
H., Mernild, S. H., Oerlemans, J., Oerter, H., Olesen, O. B., Smeets, C. J.
P. P., Steffen, K., Stober, M., Sugiyama, S., van As, D., Broeke, M. R. V.
D., and van de Wal, R. S.: Greenland surface mass-balance observations from
the ice-sheet ablation area and local glaciers, J. Glaciol., 62, 861–887,
https://doi.org/10.1017/jog.2016.75, 2016b.
Matsuoka, K., Skoglund, A., and Roth, G.: Quantarctica, Norwegian Polar
Institute, https://doi.org/10.21334/npolar.2018.8516e961, 2018.
Mayewski, P. and Dixon, D. A.: US International Trans-Antarctic Scientific
Expedition (US ITASE) Glaciochemical Data, Version 2, US_ITASE_Core
Info-SWE-Density_2013.xlsx, National Snow and Ice Data Center, Boulder,
Colorado, USA, 2013.
Mayewski, P. and Whitlow, S.: Regional Survey of Greenland, 1988 – Snow Pit
Data, Version 1.0, https://doi.org/10.5065/D6154F6J, 2009a.
Mayewski, P. and Whitlow, S.: Snow Pit and Ice Core Data from Southern
Greenland, 1984, Version 1.0, https://doi.org/10.5065/D6S180MH, 2009b.
Mayewski, P. and Whitlow, S.: Snow Pit Data from Greenland Summit, 1987,
Version 1.0, https://doi.org/10.5065/D63X84RQ, 2009c.
Mayewski, P. and Whitlow, S.: Snow Pit Data from Greenland Summit, 1989 to
1993, Version 1.0, https://doi.org/10.5065/D6NP22KX, 2009d.
McGrath, D., Colgan, W., Bayou, N., Muto, A., and Steffen, K.: Recent warming
at Summit, Greenland: Global context and implications, Geophys. Res. Lett.,
40, 2091–2096, https://doi.org/10.1002/grl.50456, 2013.
Medley, B., Joughin, I., Das, S. B., Steig, E. J., Conway, H., Gogineni, S.,
Criscitiello, A. S., McConnell, J. R., Smith, B. E., van den Broeke, M. R.,
Lenaerts, J. T. M., Bromwich, D. H., and Nicolas, J. P.: Airborne-radar and
ice-core observations of annual snow accumulation over Thwaites Glacier, West
Antarctica confirm the spatiotemporal variability of global and regional
atmospheric models, Geophys. Res. Lett., 40, 3649–3654,
https://doi.org/10.1002/grl.50706, 2013.
Miège, C., Forster, R. R., Box, J. E., Burgess, E. W., McConnell, J. R.,
Pasteris, D. R., and Spikes, V. B.: Southeast Greenland high accumulation
rates derived from firn cores and ground-penetrating radar, Ann. Glaciol.,
54, 322–332, https://doi.org/10.3189/2013AoG63A358, 2013.
Miller, H. and Schwager, M.: Density of ice core ngt37C95.2 from the North
Greenland Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.57798, 2000a.
Miller, H. and Schwager, M.: Density of ice core ngt42C95.2 from the North
Greenland Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.57655, 2000b.
Mock, S. J.: Accumulation patterns on the Greenland ice sheet, U.S. Army
Materiel Command, Cold Regions Research & Engineering Laboratory, Hanover,
N.H., 18 pp., http://www.dtic.mil/docs/citations/AD0661638, 1967a.
Mock, S. J.: Calculated Patterns of Accumulation on the Greenland Ice Sheet,
J. Glaciol., 6, 795–803, https://doi.org/10.3189/S0022143000020104, 1967b.
Morris, E. M.: A theoretical analysis of the neutron scattering method of
measuring snow and ice density, J. Geophys. Res., 113, F03019,
https://doi.org/10.1029/2007JF000962, 2008.
Morris, E. M. and Wingham, D. J.: Densification of polar snow: Measurements,
modeling, and implications for altimetry, J. Geophys. Res.-Earth, 119,
349–365, https://doi.org/10.1002/2013JF002898, 2014.
Mosley-Thompson, E., McConnell, J. R., Bales, R. C., Li, Z., Lin, P.-N.,
Steffen, K., Thompson, L. G., Edwards, R., and Bathke, D.: Local to
regional-scale variability of annual net accumulation on the Greenland ice
sheet from PARCA cores, J. Geophys. Res., 106, 33839–33851,
https://doi.org/10.1029/2001JD900067, 2001.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan,
K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt
across the Greenland ice sheet in 2012, Geophys. Res. Lett., 39, L20502,
https://doi.org/10.1029/2012GL053611, 2012.
Oerter, H.: Density of firn core DML28C01_00, Alfred Wegener Institute,
Helmholtz Center for Polar and Marine Research, Bremerhaven, PANGAEA,
https://doi.org/10.1594/PANGAEA.69513, 2002.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML76S05_11, https://doi.org/10.1594/PANGAEA.708113, 2008a.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML77S05_12, https://doi.org/10.1594/PANGAEA.708114, 2008b.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML78S05_13, https://doi.org/10.1594/PANGAEA.708115, 2008c.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML79S05_14, https://doi.org/10.1594/PANGAEA.708116, 2008d.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML80S05_15, https://doi.org/10.1594/PANGAEA.708117, 2008e.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML81S05_16, https://doi.org/10.1594/PANGAEA.708118, 2008f.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML82S05_17, https://doi.org/10.1594/PANGAEA.708119, 2008g.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML83S05_18, https://doi.org/10.1594/PANGAEA.708120, 2008h.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML84S05_19, https://doi.org/10.1594/PANGAEA.708121, 2008i.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML85S05_20, https://doi.org/10.1594/PANGAEA.708122, 2008j.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML86S05_21, https://doi.org/10.1594/PANGAEA.708123, 2008k.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML87S05_22, https://doi.org/10.1594/PANGAEA.708124, 2008l.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML88S05_23, https://doi.org/10.1594/PANGAEA.708125, 2008m.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML89S05_24, https://doi.org/10.1594/PANGAEA.708126, 2008n.
Oerter, H.: Annual means of d18O and accumulation rates of snow pit
DML90S05_25, https://doi.org/10.1594/PANGAEA.708127, 2008o.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML76S05_11,
https://doi.org/10.1594/PANGAEA.708097, 2008p.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML77S05_12,
https://doi.org/10.1594/PANGAEA.708098, 2008q.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML78S05_13,
https://doi.org/10.1594/PANGAEA.708099, 2008r.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML79S05_14,
https://doi.org/10.1594/PANGAEA.708100, 2008s.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML80S05_15,
https://doi.org/10.1594/PANGAEA.708101, 2008t.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML81S05_16,
https://doi.org/10.1594/PANGAEA.708102, 2008u.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML82S05_17,
https://doi.org/10.1594/PANGAEA.708103, 2008v.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML83S05_18,
https://doi.org/10.1594/PANGAEA.708104, 2008w.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML84S05_19,
https://doi.org/10.1594/PANGAEA.708105, 2008x.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML85S05_20,
https://doi.org/10.1594/PANGAEA.708106, 2008y.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML86S05_21,
https://doi.org/10.1594/PANGAEA.708107, 2008z.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML87S05_22,
https://doi.org/10.1594/PANGAEA.708108, 2008aa.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML88S05_23,
https://doi.org/10.1594/PANGAEA.708109, 2008ab.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML89S05_24,
https://doi.org/10.1594/PANGAEA.708110, 2008ac.
Oerter, H.: Density and d18O in 10 cm resolution of snow pit DML90S05_25,
https://doi.org/10.1594/PANGAEA.708111, 2008ad.
Oerter, H.: High resolution density and d18O of snow pit DML87S05_22,
https://doi.org/10.1594/PANGAEA.708093, 2008ae.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML01C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58434, 1999a.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML03C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58794, 1999b.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML04C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58436, 1999c.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML05C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58795, 1999d.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML06C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58796, 1999e.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML07C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58792, 1999f.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML08C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58440, 1999g.
Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Physical
properties of firn core DML09C97_00, In supplement to: Oerter, H et
al. (1999): Accumulation studies on Amundsenisen, Dronning Maud Land, by
means of tritium, DEP and stable isotope measurements: first results from the
1995/96 and 1996/97 field seasons, Ann. Glaciol., 29, 1–9,
https://doi.org/10.3189/172756499781820914, https://doi.org/10.1594/PANGAEA.58793, 1999h.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML03C98_09, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58410, 2000a.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML05C98_06, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58407, 2000b.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML05C98_07, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58806, 2000c.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML12C98_17, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58418, 2000d.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML16C98_13, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58414, 2000e.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML19C98_05, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58406, 2000f.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML21C98_10, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58807, 2000g.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML24C98_18, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58419, 2000h.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core
DML60C98_02, In supplement to: Oerter, H et al. (2000): Accumulation rates
in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling
measurements of shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58797, 2000i.
Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, F., Miller,
H., Graf, W., and Sommer, S.: Physical properties of firn core NM03C98_01,
In supplement to: Oerter, H et al. (2000): Accumulation rates in Dronning
Maud Land, Antarctica, as revealed by dielectric-profiling measurements of
shallow firn cores, Ann. Glaciol., 30, 27–34,
https://doi.org/10.3189/172756400781820705, https://doi.org/10.1594/PANGAEA.58799, 2000j.
Ohmura, A.: ETH Greenland Expedition I, progress report no. 1, April 1989 to
February 1991, ETH Zürich, Department of Geography, Tech. Report,
108 pp., 1991.
Ohmura, A.: ETH Greenland expedition: progress report no. 2: April 1991 to
October 1992, ETH Zürich, Department of Geography, Tech. Report, 94 pp.,
1992.
Ohmura, A. and Reeh, N.: New precipitation and accumulation maps for
Greenland, J. Glaciol., 37, 140–148, https://doi.org/10.3189/S0022143000042891, 1991.
Overly, T. B., Hawley, R. L., Helm, V., Morris, E. M., and Chaudhary, R. N.:
Greenland annual accumulation along the EGIG line, 1959–2004, from ASIRAS
airborne radar and neutron-probe density measurements, The Cryosphere, 10,
1679–1694, https://doi.org/10.5194/tc-10-1679-2016, 2016.
Philippe, M., Tison, J.-L., Fjøsne, K., Hubbard, B., Kjær, H. A.,
Lenaerts, J. T. M., Drews, R., Sheldon, S. G., De Bondt, K., Claeys, P., and
Pattyn, F.: Annual layer thicknesses and age-depth (oldest estimate) of
Derwael Ice Rise (IC12), Dronning Maud Land, East Antarctica, Supplement to:
Philippe, M et al. (2016): Ice core evidence for a 20th century increase in
surface mass balance in coastal Dronning Maud Land, East Antarctica, The
Cryosphere, 10, 2501–2516, https://doi.org/10.5194/tc-10-2501-2016,
https://doi.org/10.1594/PANGAEA.857574, 2016.
Reeh, N., Fisher, D. A., Koerner, R. M., and Clausen, H. B.: An empirical
firn-densification model comprising ice lenses, Ann. Glaciol., 42, 101–106,
https://doi.org/10.3189/172756405781812871, 2005.
Renaud, A.: Etude physiques et chimiques sur la glace de l'indlandsis du
Groenland, Meddelelser om Groenland, 177, 100–107, 1959.
Richter-Menge, J., Overland, J. E., and Mathis, J. T.: Arctic Report Card:
Update for 2016, LSU Law Center: Climate Change Law and Policy Project, 2016.
Schaller, C. F., Freitag, J., Kipfstuhl, S., Laepple, T., Steen-Larsen, H.
C., and Eisen, O.: A representative density profile of the North Greenland
snowpack, The Cryosphere, 10, 1991–2002, https://doi.org/10.5194/tc-10-1991-2016,
2016.
Schaller, C. F., Kipfstuhl, S., Steen-Larsen, H.-C., Freitag, J., and Eisen,
O.: Spatial variability of density stratigraphy and melt features for two
polar snowpacks in Greenland and East Antarctica, PANGAEA,
https://doi.org/10.1594/PANGAEA.884003, 2017.
Schlosser, E. and Oerter, H.: Annual mean values of d18O of firn core
NM02C89_01, In supplement to: Schlosser, E; Oerter, H (2002): Shallow firn
cones from Neumayer, Ekströmisen, Antartica: a comparison of accumulation
rates and stable-isotope ratios, Ann. Glaciol., 35, 91–96,
https://doi.org/10.3189/172756402781816915, https://doi.org/10.1594/PANGAEA.690383, 2002a.
Schlosser, E. and Oerter, H.: Annual mean values of d180 and accumulation
rate of ice core NM03C98_01, In supplement to: Schlosser, E; Oerter,
H (2002): Shallow firn cones from Neumayer, Ekströmisen, Antartica: a
comparison of accumulation rates and stable-isotope ratios, Ann. Glaciol.,
35, 91–96, https://doi.org/10.3189/172756402781816915, https://doi.org/10.1594/PANGAEA.690397,
2002b.
Schlosser, E. and Oerter, H.: Density and d18O of firn core NM02C89_01, In
supplement to: Schlosser, E; Oerter, H (2002): Shallow firn cones from
Neumayer, Ekströmisen, Antartica: a comparison of accumulation rates and
stable-isotope ratios, Ann. Glaciol., 35, 91–96,
https://doi.org/10.3189/172756402781816915, https://doi.org/10.1594/PANGAEA.690382, 2002c.
Serreze, M. C. and Francis, J. A.: The Arctic on the fast track of change,
Weather, 61, 65–69, https://doi.org/10.1256/wea.197.05, 2006.
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J.,
Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N.,
Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li,
J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister,
R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A.
J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A.,
Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J.
H., van de Berg, W. J., Broeke, M. R. van den, Vaughan, D. G., Velicogna, I.,
Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally,
H. J.: A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338,
1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Spikes, V. B., Hamilton, G. S., Mayewski, P. A., Arcone, S., and Kaspari, S.:
US International Trans-Antarctic Scientific Expedition (US ITASE): GPR
Profiles and Accumulation Mapping, https://doi.org/10.7265/N5GH9FV6, 2005.
Sturm, M., Holmgren, J., and Perovich, D. K.: Winter snow cover on the sea
ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean
(SHEBA): Temporal evolution and spatial variability, J. Geophys. Res., 107,
8047, https://doi.org/10.1029/2000JC000400, 2002.
Thomas, E. R., van Wessem, J. M., Roberts, J., Isaksson, E., Schlosser, E.,
Fudge, T. J., Vallelonga, P., Medley, B., Lenaerts, J., Bertler, N., van den
Broeke, M. R., Dixon, D. A., Frezzotti, M., Stenni, B., Curran, M., and
Ekaykin, A. A.: Regional Antarctic snow accumulation over the past 1000
years, Clim. Past, 13, 1491–1513, https://doi.org/10.5194/cp-13-1491-2017, 2017.
Turner, K., Harris, C., Lindsay, J. M., Mahoney, A. R., Schaeffer, R., and
Witte, C.: unpublished field observations, Ikaaġvik Sikukun project,
2018a.
Turner, K., Ayre, M., Baadshaug, O., Clark, A., Alexeev, V., Doulgeris, A.
P., Eicken, H., Gong, M., Jensen, D., Kjellman, S. E., Krivova, M., Lohse, J.
P., Mahoney, A. R., Miller, K., Moorman, B., Ochwat, N., Olsen, I. L.,
Quigley, C., Romeyn, R., Shates, J., and St. Germain, S.: Unpublished field
observations, INTPART Arctic Field Summer Schools: Norway-Canada-USA
collaboration (NFR project 261786/H30) supported by NSF and Ukpeaġvik
Iñupiat Corporation, 2018b.
Vandecrux, B., Fausto, R. S., Langen, P. L., Van As, D., MacFerrin, M.,
Colgan, W. T., Ingeman-Nielsen, T., Steffen, K., Jensen, N. S., Møller, M.
T., and Box, J. E.: Drivers of Firn Density on the Greenland Ice Sheet
Revealed by Weather Station Observations and Modelling, J. Geophys.
Res.-Earth, 123, https://doi.org/10.1029/2017JF004597, online first, 2018.
van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., Fettweis, X.,
and van Meijgaard, E.: Rapid loss of firn pore space accelerates 21st century
Greenland mass loss, Geophys. Res. Lett., 40, 2109–2113,
https://doi.org/10.1002/grl.50490, 2013.
van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco,
M., van As, D., van de Berg, W. J., and van Kampenhout, L.: Greenland Ice
Sheet Surface Mass Loss: Recent Developments in Observation and Modeling,
Current Climate Change Reports, 3, 345–356, https://doi.org/10.1007/s40641-017-0084-8,
2017.
Vaughan, D. G. and Russell, J.: Compilation of surface mass balance
measurements in Antarctica, British Antarctic Survey, Cambridge, UK, Internal
Report, 56 pp., ES4/8/1/1997/1, 1997.
Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney,
R., Hodgson, D. A., King, J. C., Pudsey, C. J., and Turner, J.: Recent Rapid
Regional Climate Warming on the Antarctic Peninsula, Climatic Change, 60,
243–274, https://doi.org/10.1023/A:1026021217991, 2003.
Velicogna, I., Sutterley, T. C., and Broeke, M. R. van den: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137,
https://doi.org/10.1002/2014GL061052, 2014.
Verfaillie, D., Fily, M., Le Meur, E., Magand, O., Jourdain, B., Arnaud, L.,
and Favier, V.: Snow accumulation variability derived from radar and firn
core data along a 600 km transect in Adelie Land, East Antarctic plateau,
The Cryosphere, 6, 1345–1358, https://doi.org/10.5194/tc-6-1345-2012, 2012.
Wagenbach, D., Graf, W., Minikin, A., Trefzer, U., Kipfstuhl, S., Oerter, H.,
and Blindow, N.: Annual means of density, d18O, deuterium, tritium, and
accumulation rates of firn core BER01C90_01, In supplement to: Wagenbach,
D et al. (1994): Reconnaissance of chemical and isotopic firn properties on
top of Berkner Island, Antarctica, Ann. Glaciol., 20, 307–312,
hdl:10013/epic.15271.d001, https://doi.org/10.1594/PANGAEA.548637, 1994a.
Wagenbach, D., Graf, W., Minikin, A., Trefzer, U., Kipfstuhl, S., Oerter, H.,
and Blindow, N.: Density and d18O of snow pit BER01S90_01, In supplement
to: Wagenbach, D et al. (1994): Reconnaissance of chemical and isotopic firn
properties on top of Berkner Island, Antarctica, Ann. Glaciol., 20, 307–312,
hdl:10013/epic.15271.d001, https://doi.org/10.1594/PANGAEA.548653, 1994b.
Wagenbach, D., Graf, W., Minikin, A., Trefzer, U., Kipfstuhl, S., Oerter, H.,
and Blindow, N.: Density and d18O of snow pit BER02S90_02, In supplement
to: Wagenbach, D et al. (1994): Reconnaissance of chemical and isotopic firn
properties on top of Berkner Island, Antarctica, Ann. Glaciol., 20, 307–312,
hdl:10013/epic.15271.d001, https://doi.org/10.1594/PANGAEA.548654, 1994c.
Wagenbach, D., Graf, W., Minikin, A., Trefzer, U., Kipfstuhl, S., Oerter, H.,
and Blindow, N.: Density, d18O, deuterium, and tritium of firn core
BER02C90_02, In supplement to: Wagenbach, D et al. (1994): Reconnaissance
of chemical and isotopic firn properties on top of Berkner Island,
Antarctica, Ann. Glaciol., 20, 307–312, hdl:10013/epic.15271.d001,
https://doi.org/10.1594/PANGAEA.548622, 1994d.
Wang, Y., Ding, M., van Wessem, J. M., Schlosser, E., Altnau, S., van den
Broeke, M. R., Lenaerts, J. T. M., Thomas, E. R., Isaksson, E., Wang, J., and
Sun, W.: A Comparison of Antarctic Ice Sheet Surface Mass Balance from
Atmospheric Climate Models and In Situ Observations, J. Climate, 29,
5317–5337, https://doi.org/10.1175/JCLI-D-15-0642.1, 2016.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N.
N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea Ice,
J. Climate, 12, 1814–1829,
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2,
1999.
Webster, M. A., Rigor, I. G., Nghiem, S. V., Kurtz, N. T., Farrell, S. L.,
Perovich, D. K., and Sturm, M.: Interdecadal changes in snow depth on Arctic
sea ice, J. Geophys. Res.-Oceans, 119, 5395–5406,
https://doi.org/10.1002/2014JC009985, 2014.
Wilhelms, F.: Leitfähigkeits- und Dichtemessung an
Eisbohrkernen/Measuring the Conductivity and Density of Ice Cores, Diplom
thesis, Universität Bonn, Germany, 1996.
Wilhelms, F.: Density of ice core ngt03C93.2 from the North Greenland
Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.56560, 2000a.
Wilhelms, F.: Density of ice core ngt06C93.2 from the North Greenland
Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.57153, 2000b.
Wilhelms, F.: Density of ice core ngt14C93.2 from the North Greenland
Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.56615, 2000c.
Wilhelms, F.: Density of ice core ngt27C94.2 from the North Greenland
Traverse, PANGAEA, https://doi.org/10.1594/PANGAEA.57296, 2000d.
Wilhelms, F.: Explaining the dielectric properties of firn as a
density-and-conductivity mixed permittivity (DECOMP), Geophys. Res. Lett.,
32, L16501, https://doi.org/10.1029/2005GL022808, 2005.
Zwally, H. J. and Jun, L.: Seasonal and interannual variations of firn
densification and ice-sheet surface elevation at the Greenland summit,
J. Glaciol., 48, 199–207, https://doi.org/10.3189/172756502781831403, 2002.
Short summary
The SUMup dataset is a standardized, expandable, community dataset of Arctic and Antarctic observations of surface mass balance components, including snow/firn density, snow accumulation on land ice, and snow depth on sea ice. The measurements in this dataset were compiled from field notes, papers, technical reports, and digital files. We use these observations to monitor change in the polar regions and evaluate model output as well as remote sensing measurements.
The SUMup dataset is a standardized, expandable, community dataset of Arctic and Antarctic...
Altmetrics
Final-revised paper
Preprint