Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-611-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-611-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GravIS: mass anomaly products from satellite gravimetry
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Eva Boergens
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Ingo Sasgen
Geosciences, Alfred Wegener Institute, 27568 Bremerhaven, Germany
Institute of Geography, University of Augsburg, 86159 Augsburg, Germany
Thorben Döhne
Institut für Planetare Geodäsie, Technische Universität Dresden, 01069 Dresden, Germany
Sven Reißland
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Henryk Dobslaw
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Volker Klemann
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Michael Murböck
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Institute of Geodesy, Technische Universität Berlin, 10623 Berlin, Germany
Rolf König
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Institute of Geodesy, Technische Universität Berlin, 10623 Berlin, Germany
Robert Dill
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Mike Sips
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Ulrike Sylla
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Andreas Groh
Institut für Planetare Geodäsie, Technische Universität Dresden, 01069 Dresden, Germany
Martin Horwath
Institut für Planetare Geodäsie, Technische Universität Dresden, 01069 Dresden, Germany
Frank Flechtner
Geodesy, GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Institute of Geodesy, Technische Universität Berlin, 10623 Berlin, Germany
Related authors
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Jonathan Fipper, Jakob Abermann, Ingo Sasgen, Henrik Skov, Lise Lotte Sørensen, and Wolfgang Schöner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3381, https://doi.org/10.5194/egusphere-2025-3381, 2025
Short summary
Short summary
We use measurements conducted with uncrewed aerial vehicles (UAVs) and reanalysis data to study the drivers of vertical air temperature structures and their link to the surface mass balance of Flade Isblink, a large ice cap in Northeast Greenland. Surface properties control temperature structures up to 100 m above ground, while large-scale circulation dominates above. Mass loss has increased since 2015, with record loss in 2023 associated with frequent synoptic conditions favoring melt.
Çağatay Çakan, M. Tuğrul Yımaz, Henryk Dobslaw, E. Sinem Ince, Fatih Evrendilek, Christoph Förste, and Ali Levent Yagci
Hydrol. Earth Syst. Sci., 29, 3359–3377, https://doi.org/10.5194/hess-29-3359-2025, https://doi.org/10.5194/hess-29-3359-2025, 2025
Short summary
Short summary
The study assesses the Global Precipitation Climatology Centre (GPCC) and Global Precipitation Climatology Project (GPCP) precipitation products by estimating hydrological drought recovery time (DRT) using satellite gravimetry data, Jet Propulsion Laboratory mass concentration solution (JPL mascon), and Global Gravity-based Groundwater Project (G3P) terrestrial water storage (TWS) products. The findings reveal that DRTs from GPCC and GPCP are comparable, and JPL mascon shows longer DRT, while G3P demonstrates greater consistency. These results contribute to a deeper understanding of precipitation and water storage dynamics and are essential for meteorological and hydrological research.
Linus Shihora, Torge Martin, Anna Christina Hans, Rebecca Hummels, Michael Schindelegger, and Henryk Dobslaw
Ocean Sci., 21, 1533–1548, https://doi.org/10.5194/os-21-1533-2025, https://doi.org/10.5194/os-21-1533-2025, 2025
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a major part of the ocean circulation. Satellite gravimetry missions, like GRACE, which measure changes in Earth's mass distribution, could help monitor changes in the AMOC by detecting variations in ocean bottom pressure. To help assess if future satellite missions could detect these changes, we used ocean model simulation data to study their connection. Additionally, we created a synthetic data set for future satellite mission simulations.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025, https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean processes related to the mass balance of glaciers in northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79° N Glacier. We find that together, the different in situ and remote sensing observations and model simulations reveal a consistent picture of a coupled atmosphere–ice sheet–ocean system that has entered a phase of major change.
Jakub Miluch, Wenyan Zhang, Jan Harff, Andreas Groh, Peter Arlinghaus, and Celine Denker
Earth Syst. Dynam., 16, 585–605, https://doi.org/10.5194/esd-16-585-2025, https://doi.org/10.5194/esd-16-585-2025, 2025
Short summary
Short summary
We present a high-resolution paleogeographic reconstruction of the Baltic Sea for the Holocene period by combining eustatic sea-level change, glacio-isostatic movement, and sediment dynamics. In the northeastern part, morphological change is dominated by regression caused by post-glacial rebound that outpaces the eustatic sea level rise, whereas a transgression, together with active sediment erosion/deposition, constantly shapes the coastal morphology in the southeastern part.
Ehsan Sharifi, Julian Haas, Eva Börgens, Henryk Dobslaw, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1514, https://doi.org/10.5194/egusphere-2025-1514, 2025
Short summary
Short summary
This study presents a method to make the spatial resolution of global Water Storage Compartments (WSCs) compatible with terrestrial water storage (TWS) data from GRACE missions. The method compares the spatial structure of the WSCs and TWS by considering the correlation between neighboring grid cells. An isotropic Gaussian filter with an optimal filter width of 250 km is found to be the most suitable, ensuring compatibility for consistent comparison with GRACE data in hydrological applications.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past, 21, 719–751, https://doi.org/10.5194/cp-21-719-2025, https://doi.org/10.5194/cp-21-719-2025, 2025
Short summary
Short summary
A fully coupled atmosphere–ocean–ice-sheet–solid-earth model was applied to simulate the time from the Last Glacial Maximum (about 25 000 years before the present) to the pre-industrial period. The model simulations are compared to observational estimates. During this climate transition, the model simulates several abrupt changes in the North Atlantic region, which are initiated by different processes. The underlying mechanisms are analysed and described.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data, 17, 65–78, https://doi.org/10.5194/essd-17-65-2025, https://doi.org/10.5194/essd-17-65-2025, 2025
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Abelardo Romero, Andreas Richter, Amilcar Juarez, Federico Suad Corbetta, Eric Marderwald, Pedro Granovsky, Thorben Döhne, and Martin Horwath
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W6-2024, 51–58, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-51-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W6-2024-51-2024, 2024
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Torsten Albrecht, Meike Bagge, and Volker Klemann
The Cryosphere, 18, 4233–4255, https://doi.org/10.5194/tc-18-4233-2024, https://doi.org/10.5194/tc-18-4233-2024, 2024
Short summary
Short summary
We performed coupled ice sheet–solid Earth simulations and discovered a positive (forebulge) feedback mechanism for advancing grounding lines, supporting a larger West Antarctic Ice Sheet during the Last Glacial Maximum. During deglaciation we found that the stabilizing glacial isostatic adjustment feedback dominates grounding-line retreat in the Ross Sea, with a weak Earth structure. This may have consequences for present and future ice sheet stability and potential rates of sea-level rise.
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024, https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Short summary
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for analysing satellite radar altimeter measurements to accurately determine the surface height of ice sheets. Surface height estimates obtained with AWI-ICENet1 (along with related products, such as ice sheet height change and volume change) show improved and unbiased results compared to other products. This is important for the long-term monitoring of ice sheet mass loss and its impact on sea level rise.
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024, https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Short summary
Comprehensive datasets of calving-front changes are essential for studying and modeling outlet glaciers. Current records are limited in temporal resolution due to manual delineation. We use deep learning to automatically delineate calving fronts for 23 glaciers in Greenland. Resulting time series resolve long-term, seasonal, and subseasonal patterns. We discuss the implications of our results and provide the cryosphere community with a data product and an implementation of our processing system.
Matteo Willeit, Reinhard Calov, Stefanie Talento, Ralf Greve, Jorjo Bernales, Volker Klemann, Meike Bagge, and Andrey Ganopolski
Clim. Past, 20, 597–623, https://doi.org/10.5194/cp-20-597-2024, https://doi.org/10.5194/cp-20-597-2024, 2024
Short summary
Short summary
We present transient simulations of the last glacial inception with the coupled climate–ice sheet model CLIMBER-X showing a rapid increase in Northern Hemisphere ice sheet area and a sea level drop by ~ 35 m, with the vegetation feedback playing a key role. Overall, our simulations confirm and refine previous results showing that climate-vegetation–cryosphere–carbon cycle feedbacks play a fundamental role in the transition from interglacial to glacial states.
Matthias O. Willen, Martin Horwath, Eric Buchta, Mirko Scheinert, Veit Helm, Bernd Uebbing, and Jürgen Kusche
The Cryosphere, 18, 775–790, https://doi.org/10.5194/tc-18-775-2024, https://doi.org/10.5194/tc-18-775-2024, 2024
Short summary
Short summary
Shrinkage of the Antarctic ice sheet (AIS) leads to sea level rise. Satellite gravimetry measures AIS mass changes. We apply a new method that overcomes two limitations: low spatial resolution and large uncertainties due to the Earth's interior mass changes. To do so, we additionally include data from satellite altimetry and climate and firn modelling, which are evaluated in a globally consistent way with thoroughly characterized errors. The results are in better agreement with independent data.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Vasaw Tripathi, Andreas Groh, Martin Horwath, and Raaj Ramsankaran
Hydrol. Earth Syst. Sci., 26, 4515–4535, https://doi.org/10.5194/hess-26-4515-2022, https://doi.org/10.5194/hess-26-4515-2022, 2022
Short summary
Short summary
GRACE/GRACE-FO provided global observations of water storage change since 2002. Scaling is a common approach to compensate for the spatial filtering inherent to the results. However, for complex hydrological basins, the compatibility of scaling with the characteristics of regional hydrology has been rarely assessed. We assess traditional scaling approaches and a new scaling approach for the Indus Basin. Our results will help users with regional focus understand implications of scaling choices.
Reyko Schachtschneider, Jan Saynisch-Wagner, Volker Klemann, Meike Bagge, and Maik Thomas
Nonlin. Processes Geophys., 29, 53–75, https://doi.org/10.5194/npg-29-53-2022, https://doi.org/10.5194/npg-29-53-2022, 2022
Short summary
Short summary
Glacial isostatic adjustment is the delayed reaction of the Earth's lithosphere and mantle to changing mass loads of ice sheets or water. The deformation behaviour of the Earth's surface depends on the ability of the Earth's mantle to flow, i.e. its viscosity. It can be estimated from sea level observations, and in our study, we estimate mantle viscosity using sea level observations from the past. This knowledge is essential for understanding current sea level changes due to melting ice.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020, https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Short summary
Correctly determining the orbit of Earth-orbiting satellites requires to account multiple background effects which appear in the system Earth. Usually, these effects are introduced by various complex force models, which are not always easy to handle. We publish and validate a data set of commonly used models to make it easier to track down potential issues when applying such background forces in orbit and gravity field determination.
Cited articles
Abrykosov, P., Sulzbach, R., Pail, R., Dobslaw, H., and Thomas, M.: Treatment of ocean tide background model errors in the context of GRACE/GRACE-FO data processing, Geophys. J. Int., 228, 1850–1865, https://doi.org/10.1093/gji/ggab421, 2022.
Bagge, M., Klemann, V., Steinberger, B., Latinović, M., and Thomas, M.: Glacial-isostatic adjustment models using geodynamically constrained 3D Earth structures, Geochem. Geophy. Geosy., 22, e2021GC009853, https://doi.org/10.1029/2021GC009853, 2021.
Bandikova, T., McCullough, C., Kruizinga, G., Save, H., and Christophe, B.: GRACE accelerometer data transplant, Adv. Space Res., 64, 3, 623–644, https://doi.org/10.1016/j.asr.2019.05.021, 2019.
Behzadpour, S., Mayer-Gürr, T., and Krauss, S.: GRACE Follow-On accelerometer data recovery, J. Geophys. Res.-Sol. Ea., 126, e2020JB021297, https://doi.org/10.1029/2020JB021297, 2021.
Boergens, E.: Python Package Regional TWS Uncertainty, GFZ Data Services [code], https://doi.org/10.5880/GFZ.1.3.2021.005, 2021.
Boergens, E., Dobslaw, H., and Dill, R.: GFZ GravIS RL06 Continental Water Storage Anomalies, V. 0006, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRAVIS_06_L3_TWS, 2019.
Boergens, E., Dobslaw, H., and Dill, R.: COST-G GravIS RL01 Continental Water Storage Anomalies, V. 0005, GFZ Data Services [data set], https://doi.org/10.5880/COST-G.GRAVIS_01_L3_TWS, 2020a.
Boergens, E., Dobslaw, H., Dill, R., Thomas, M., Dahle, C., Murböck, M., and Flechtner, F.: Modelling spatial covariances for terrestrial water storage variations verified with synthetic GRACE-FO data, Int. J. Geomath., 11, 24, https://doi.org/10.1007/s13137-020-00160-0, 2020b.
Boergens, E., Güntner, A., Dobslaw, H., and Dahle, C.: Quantifying the Central European droughts in 2018 and 2019 with GRACE Follow-On, Geophys. Res. Lett., 47, e2020GL087285, https://doi.org/10.1029/2020GL087285, 2020c.
Boergens, E., Kvas, A., Eicker, A., Dobslaw, H., Schawohl, L., Dahle, C., Murböck, M., and Flechtner, F.: Uncertainties of GRACE-Based Terrestrial Water Storage Anomalies for Arbitrary Averaging Regions, J. Geophys. Res.-Sol. Earth, 127, e2021JB022081, https://doi.org/10.1029/2021JB022081, 2022.
Cáceres, D., Marzeion, B., Malles, J. H., Gutknecht, B. D., Müller Schmied, H., and Döll, P.: Assessing global water mass transfers from continents to oceans over the period 1948–2016, Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, 2020.
Chambers, D. P. and Bonin, J. A.: Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean, Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, 2012.
Chen, J., Famiglietti, J. S., Scanlon, B. R., and Rodell, M.: Groundwater Storage Changes: Present Status from GRACE Observations, Surv. Geophys., 37, 397–417, https://doi.org/10.1007/s10712-015-9332-4, 2016.
Chen, J., Tapley, B., Seo, K.-W., Wilson, C., and Ries, J.: Improved Quantification of Global Mean Ocean Mass Change Using GRACE Satellite Gravimetry Measurements. Geophys. Res. Lett., 46, 13984–13991, https://doi.org/10.1029/2019GL085519, 2019.
Chen, J., Cazenave, A., Dahle, C., Llovel, W., Panet, I., Pfeffer, J., and Moreira, L.: Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry, Surv. Geophys., 43, 305–345, https://doi.org/10.1007/s10712-021-09685-x, 2022.
Cheng, M. and Ries, J.: The unexpected signal in GRACE estimates of C20, J. Geodesy, 91, 897–914, https://doi.org/10.1007/s00190-016-0995-5, 2017.
Dahle, C. and Murböck, M.: Post-processed GRACE/GRACE-FO Geopotential GSM Coefficients GFZ RL06 (Level-2B Product), V. 0004, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRAVIS_06_L2B, 2019.
Dahle, C. and Murböck, M.: Post-processed GRACE/GRACE-FO Geopotential GSM Coefficients COST-G RL01 (Level-2B Product), V. 0003, GFZ Data Services [data set], https://doi.org/10.5880/COST-G.GRAVIS_01_ L2B, 2020.
Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, H., Abrykosov, O., Reinhold, A., and König, R.: GRACE Geopotential GSM Coefficients GFZ RL06, V. 6.0, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRACE_06_GSM, 2018.
Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, K. H., Abrykosov, O., Reinhold, A., and König, R.: GRACE-FO Geopotential GSM Coefficients GFZ RL06, V. 6.3, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRACEFO_06_GSM, 2019a.
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K. H., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., and Förste, C.: The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment, Remote Sens., 11, 2116, https://doi.org/10.3390/rs11182116, 2019b.
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C., Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06, Geophys. J. Int., 211, 263–269, https://doi.org/10.1093/gji/ggx302, 2017.
Dobslaw, H., Boergens, E., and Dill, R.: GFZ GravIS RL06 Ocean Bottom Pressure Anomalies, V. 0006, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRAVIS_06_L3_OBP, 2019.
Dobslaw, H., Boergens, E., and Dill, R.: COST-G GravIS RL01 Ocean Bottom Pressure Anomalies, V. 0005, GFZ Data Services [data set], https://doi.org/10.5880/COST-G.GRAVIS_01_L3_OBP, 2020a.
Dobslaw, H., Dill, R., Bagge, M., Klemann, V., Boergens, E., Thomas, M., Dahle, C., and Flechtner, F.: Gravitationally Consistent Mean Barystatic Sea-Level Rise From Leakage-Corrected Monthly GRACE Data, J. Geophys. Res.-Sol. Earth, 125, e2020JB020923, https://doi.org/10.1029/2020JB020923, 2020b.
Döhne, T., Horwath, M., Groh, A., and Buchta, E.: The sensitivity kernel perspective on GRACE mass change estimates, J. Geodesy, 97, 11, https://doi.org/10.1007/s00190-022-01697-8, 2023.
Flechtner, F., Neumayer, K.H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., and Güntner, A.: What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?, Surv. Geophys., 37, 453–470, https://doi.org/10.1007/s10712-015-9338-y, 2016.
Girotto, M. and Rodell, M.: Terrestrial water storage, in: Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment, edited by: Maggioni, V. and Massari, C., Elsevier, 41–64, https://doi.org/10.1016/B978-0-12-814899-0.00002-X, 2019.
Graf, M. and Pail, R.: Combination of geometric and gravimetric data sets for the estimation of high-resolution mass balances of the Greenland ice sheet, Geophys. J. Int., 235, 2149–2167, https://doi.org/10.1093/gji/ggad356, 2023.
Groh, A. and Horwath, M.: Antarctic Ice Mass Change Products from GRACE/GRACE-FO Using Tailored Sensitivity Kernels, Remote Sens., 13, 1736, https://doi.org/10.3390/rs13091736, 2021.
Groh, A., Horwath, M., Horvath, A., Meister, R., Sørensen, L. S., Barletta, V. R., Forsberg, R., Wouters, B., Ditmar, P., Ran, J., Klees, R., Su, X., Shang, K., Guo, J., Shum, C. K., Schrama, E., and Shepherd, A.: Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet – Methods and Results, Geosciences, 9, 415, https://doi.org/10.3390/geosciences9100415, 2019.
Güntner, A., Sharifi, E., Haas, J., Boergens, E., Dahle, C., Dobslaw, H., Dorigo, W., Dussailant, I., Flechtner, F., Jäggi, A., Kosmale, M., Luojus, K., Mayer-Gürr, T., Meyer, U., Preimesberger, W., Ruz Vargas, C., and Zemp, M.: Global Gravity-based Groundwater Product (G3P), V. 1.12, GFZ Data Services [data set], https://doi.org/10.5880/G3P.2024.001, 2024.
Han, S.-C., Riva, R., Sauber, J., and Okal, E.: Source parameter inversion for recent great earthquakes from a decade-long observation of global gravity fields, J. Geophys. Res.-Sol. Earth, 118, 1240–1267, https://doi.org/10.1002/jgrb.50116, 2013.
Hanna, E., Topál, D., Box, J. E., Buzzard, S., Christie, F., Hvidberg, C., Morlighem, M., De Santis, L., Silvano, A., Colleoni, F., Sasgen, I., Banwell, A., van den Broeke, M., DeConto, R., De Rydt, J., Goelzer, H., Gossart, A., Gudmundsson, G. H., Lindbäck, K., Miles, B., Mottram, R., Pattyn, F., Reese, R., Rignot, E., Srivastava, A., Sun, S., Toller, J., Tuckett, P., and Ultee, L.: Short- and long-term variability of the Antarctic and Greenland ice sheets, Nat. Rev. Earth Environ., 5, 193–210, https://doi.org/10.1038/s43017-023-00509-7, 2024.
Harvey, N., McCullough, C., and Save, H.: Modeling GRACE-FO accelerometer data for the version 04 release, Adv. Space Res., 69, 1393–1407, https://doi.org/10.1016/j.asr.2021.10.056, 2022.
Harvey, N., Bertiger, W., McCullough, C., Miller, M., Save, H., and Yuan, D.-N.: Recovering differential forces from the GRACE-D accelerometer, Earth Space Sci., 11, e2023EA003200, https://doi.org/10.1029/2023EA003200, 2024.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning – Data Mining, Inference, and Prediction, Second Edition, Springer Series in Statistics, Springer, New York, 745 pp., https://doi.org/10.1007/978-0-387-84858-7, 2009.
Hauk, M., Wilms, J., Sulzbach, R., Panafidina, N., Hart-Davis, M., Dahle, C., Müller, V., Murböck, M., and Flechtner, F.: Satellite gravity field recovery using variance-covariance information from ocean tide models, Earth Space Sci., 10, e2023EA003098, https://doi.org/10.1029/2023ea003098, 2023.
Horvath, A., Murböck, M., Pail, R., and Horwath, M.: Decorrelation of GRACE Time Variable Gravity Field Solutions Using Full Covariance Information, Geosciences, 8, 323, https://doi.org/10.3390/geosciences8090323, 2018.
Horwath, M., Gutknecht, B. D., Cazenave, A., Palanisamy, H. K., Marti, F., Marzeion, B., Paul, F., Le Bris, R., Hogg, A. E., Otosaka, I., Shepherd, A., Döll, P., Cáceres, D., Müller Schmied, H., Johannessen, J. A., Nilsen, J. E. Ø., Raj, R. P., Forsberg, R., Sandberg Sørensen, L., Barletta, V. R., Simonsen, S. B., Knudsen, P., Andersen, O. B., Ranndal, H., Rose, S. K., Merchant, C. J., Macintosh, C. R., von Schuckmann, K., Novotny, K., Groh, A., Restano, M., and Benveniste, J.: Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation, Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, 2022.
Houborg, R., Rodell, M., Li, B., Reichle, R., and Zaitchik, B.: Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations, Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291, 2012.
Jäggi, A., Meyer, U., Lasser, M., Jenny, B., Lopez, T., Flechtner, F., Dahle, C., Förste, C., Mayer-Gürr, T., Kvas, A., Lemoine, J.-M., Bourgogne, S., Weigelt, M., and Groh, A.: International Combination Service for Time-Variable Gravity Fields (COST-G), in: Beyond 100: The Next Century in Geodesy, International Association of Geodesy Symposia, vol 152, edited by: Freymueller, J. T. and Sánchez, L., Springer, Cham, Germany, 57–65, https://doi.org/10.1007/1345_2020_109, 2020.
Jensen, L., Eicker, A., Dobslaw, H., Stacke, T., and Humphrey, V.: Long-term wetting and drying trends in land water storage derived from GRACE and CMIP5 models, J. Geophys. Res.-Atmos., 124, 9808–9823, https://doi.org/10.1029/2018JD029989, 2019.
Johnson, G. C. and Chambers, D. P.: Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications, J. Geophys. Res.-Oceans, 118, 4228–4240, https://doi.org/10.1002/jgrc.20307, 2013.
King, M. A. and Christoffersen, P.: Major modes of climate variability dominate nonlinear Antarctic ice-sheet elevation changes 2002–2020, Geophys. Res. Lett., 51, e2024GL108844, https://doi.org/10.1029/2024GL108844, 2024.
Klemann, V. and Martinec, Z.: Contribution of glacial-isostatic adjustment to the geocenter motion, Tectonophysics, 511, 99–108, https://doi.org/10.1016/j.tecto.2009.08.031, 2011.
König, R., Schreiner, P., and Dahle, C.: Monthly estimates of C(2,0) generated by GFZ from SLR satellites based on GFZ GRACE/GRACE-FO RL06 background models, V. 1.0, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRAVIS_06_C20_SLR, 2019.
Kusche, J., Schmidt, R., Petrovic, S., and Rietbroek, R.: Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model, J. Geodesy, 83, 903–913, https://doi.org/10.1007/s00190-009-0308-3, 2009.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Landerer, F. W., Flechtner, F., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur, S. V., Byun, S., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D., McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S., Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H., Wiese, D. N., and Yuan, D.: Extending the global mass change data record: GRACE Follow-On instrument and science data performance, Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020GL088306, 2020.
Liu, H., Yuan, X., and Zhang, M.: Unraveling human influence on evapotranspiration over East Asian monsoon river basins by using GRACE/GRACE-FO data and land surface models, J. Hydrol., 605, 127349, https://doi.org/10.1016/j.jhydrol.2021.127349, 2022.
Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.: Regularization and error characterization of GRACE mascons, J. Geodesy, 93, 1381–1398, https://doi.org/10.1007/s00190-019-01252-y, 2019a.
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise, Geophys. Res. Lett., 46, 6910–6917, https://doi.org/10.1029/2019GL082929, 2019b.
Loomis, B. D., Rachlin, K. E., Wiese, D. N., Landerer, F. W., and Luthcke, S. B.: Replacing GRACE/GRACE-FO C30 with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change, Geophys. Res. Lett., 47, e2019GL085488, https://doi.org/10.1029/2019GL085488, 2020.
Meyer, U., Jäggi, A., Dahle, C., Flechtner, F., Kvas, A., Behzadpour, S., Mayer-Gürr, T., Lemoine, J.-M., and Bourgogne, S.: International Combination Service for Time-variable Gravity Fields (COST-G) Monthly GRACE Series, V. 01, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.COST-G.001, 2020a.
Meyer, U., Lasser, M., Jäggi, A., Dahle, C., Flechtner, F., Kvas, A., Behzadpour, S., Mayer-Gürr, T., Lemoine, J.-M., Koch, I., Flury, J., and Bourgogne, S.: International Combination Service for Time-variable Gravity Fields (COST-G) Monthly GRACE-FO Series, V. 01, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.COST-G.002, 2020b.
Meyer, U., Lasser, M., Dahle, C., Förste, C., Behzadpour, S., Koch, I., and Jäggi, A.: Combined monthly GRACE-FO gravity fields for a Global Gravity-based Groundwater Product, Geophys. J. Int., 236, 456–469, https://doi.org/10.1093/gji/ggad437, 2024.
Murböck, M., Pail,. R., Daras, I., and Gruber, T.: Optimal orbits for temporal gravity recovery regarding temporal aliasing, J. Geodesy, 88, 113–126, https://doi.org/10.1007/s00190-013-0671-y, 2014.
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al., J. Geophys. Res.-Sol. Earth, 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Peralta-Ferriz, C., Morison, J. H., Wallace, J. M., Bonin, J. A., and Zhang, J.: Arctic Ocean Circulation Patterns Revealed by GRACE, J. Climate, 27, 1445–1468, https://doi.org/10.1175/JCLI-D-13-00013.1, 2014.
Petit, G. and Luzum, B. (Eds.):, IERS Conventions (2010), IERS Technical Note No. 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, ISSN 1019-4568, 2010.
Rodell, M. and Li, B.: Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO, Nat. Water, 1, 241–248, https://doi.org/10.1038/s44221-023-00040-5, 2023.
Sasgen, I., Martinec, Z., and Fleming, K.: Wiener optimal filtering of GRACE data, Stud. Geophys. Geod., 50, 499–508, https://doi.org/10.1007/s11200-006-0031-y, 2006.
Sasgen, I., van den Broeke, M., Bamber, J. L., Rignot, E., Sørensen, L. S., Wouters, B., Martinec, Z., Velicogna, I., and Simonsen, S. B.: Timing and origin of recent regional ice-mass loss in Greenland, Earth Planet. Sci. Lett., 333–334, 293–303, https://doi.org/10.1016/j.epsl.2012.03.033, 2012.
Sasgen, I., Konrad, H., Ivins, E. R., Van den Broeke, M. R., Bamber, J. L., Martinec, Z., and Klemann, V.: Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates, The Cryosphere, 7, 1499–1512, https://doi.org/10.5194/tc-7-1499-2013, 2013.
Sasgen, I., Groh, A., and Horwath, M.: GFZ GravIS RL06 Ice-Mass Change Products, V. 0004, GFZ Data Services [data set], https://doi.org/10.5880/GFZ.GRAVIS_06_L3_ICE, 2019.
Sasgen, I., Groh, A., and Horwath, M.: COST-G GravIS RL01 Ice-Mass Change Products, V. 0003, GFZ Data Services [data set], https://doi.org/10.5880/COST-G.GRAVIS_01_L3_ICE, 2020.
Sasgen, I., Salles, A., Wegmann, M., Wouters, B., Fettweis, X., Noël, B., and Beck, C.: Arctic glaciers record wavier circumpolar winds, Nat. Clim. Chang., 12, 249–255, https://doi.org/10.1038/s41558-021-01275-4, 2022.
Save, H., Bettadpur, S., and Tapley, B. D.: High resolution CSR GRACE RL05 mascons, J. Geophys. Res.-Sol. Earth, 121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016.
Shepherd, A., Ivins, E., A, G., Barletta, V., Bentley, M., Bettadpur, S., Briggs, K., Bromwich, D., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M., Lenaerts, J., Li, J., Ligtenberg, S., Luckman, A., Luthcke, S., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J., Paden, J., Payne, A., Pritchard, H., Rignot, E., Rott, H., Sandberg Sørensen, L., Scambos, T., Scheuchl, B., Schrama, E., Smith, B., Sundal, A., van Angelen, J., van de Berg, W., van den Broeke, M., Vaughan, D., Velicogna, I., Wahr, J., Whitehouse, P., Wingham, D., Yi, D., Young, D., and Zwally, J.: A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189, https://doi.org/10.1126/science.1228102, 2012.
Stammer, D., Ray, R., Andersen, O., Arbic, B., Bosch, W., Carrère, L., Cheng, Y., Chinn, D., Dushaw, B., Egbert, G., Erofeeva, S., Fok, H., Green, J., Griffiths, S., King, M., Lapin, V., Lemoine, F., Luthcke, S., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J., Shriver, J., Shum, C. K., Taguchi, E., and Yi, Y.: Accuracy assessment of global barotropic ocean tide models, Rev. Geophys., 52, 243–282, https://doi.org/10.1002/2014RG000450, 2014.
Sulzbach, R., Dobslaw, H., and Thomas, M.: High-resolution numerical modeling of barotropic global ocean tides for satellite gravimetry, J. Geophys. Res.-Oceans, 126, e2020JC017097, https://doi.org/10.1029/2020JC017097, 2021.
Sun, Y., Riva, R., and Ditmar, P.: Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models, J. Geophys. Res.-Sol. Earth, 121, 8352–8370, https://doi.org/10.1002/2016JB013073, 2016.
Swenson, S. and Wahr, J.: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, J. Geophys. Res., 107, 2193, https://doi.org/10.1029/2001JB000576, 2002.
Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res.-Sol. Earth, 113, B08410, https://doi.org/10.1029/2007JB005338, 2008.
Tamisiea, M. E., Hill, E. M., Ponte, R. M., Davis, J. L., Velicogna, I., and Vinogradova, N. T.: Impact of self-attraction and loading on the annual cycle in sea level, J. Geophys. Res., 115, C07004, https://doi.org/10.1029/2009JC005687, 2010.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C., Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and Velicogna, I.: Contributions of GRACE to understanding climate change, Nat. Clim. Chang., 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019.
van der Wal, W., Kurtenbach, E., Kusche, J., and Vermeersen, B.: Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment, Geophys. J. Int., 187, 797–812, https://doi.org/10.1111/j.1365-246X.2011.05206.x, 2011.
Van Dijk, A., Beck, H., Boergens, E., de Jeu, R., Dorigo, W., Frederikse, T., Güntner, A., Haas, J., Hou, J., Preimesberger, W., Rahman, J., Rozas Larraondo, P., and van der Schalie, R.: Global Water Monitor 2023, Summary Report, Global Water Monitor, available at: https://www.globalwater.online/globalwater/wp-content/uploads/2018/09/GlobalWaterMonitor_2023_SummaryReport.pdf (last access: 21 January 2025), 2024.
Velicogna, I., Mohajerani, Y., A, G., Landerer, F., Mouginot, J., Noel, B., Rignot, E., Sutterley, T., van den Broeke, M., van Wessem, M., and Wiese, D.: Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions, Geophys. Res. Lett., 47, e2020GL087291, https://doi.org/10.1029/2020GL087291, 2020.
Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, 30205–30229, https://doi.org/10.1029/98JB02844, 1998.
Ward, J. H.: Hierarchical Grouping to Optimize an Objective Function, J. Am. Stat. Assoc., 58, 236–244, https://doi.org/10.2307/2282967, 1963.
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.: Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Earth, 120, 2648–2671, https://doi.org/10.1002/2014JB011547, 2015.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
World Meteorological Organization (WMO): State of Global Water Resources report 2022, Report, WMO-No. 1333, WMO, 67 pp., ISBN 978-92-63-11333-7, 2023.
World Meteorological Organization (WMO): United Nations Environment Programme (UNEP), International Science Council (ISC), Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization (IOC-UNESCO): The 2022 GCOS Implementation Plan (GCOS-244), Report, WMO, 98 pp., available at: https://library.wmo.int/idurl/4/58104 (last access: 21 January 2025), 2022.
Wouters, B., Gardner, A. S., and Moholdt, G.: Global Glacier Mass Loss During the GRACE Satellite Mission (2002–2016), Front. Earth Sci., 7, 96, https://doi.org/10.3389/feart.2019.00096, 2019.
Zhang, L., Dobslaw, H., and Thomas, M.: Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications, Geophys. J. Int., 206, 1, 368–378, https://doi.org/10.1093/gji/ggw153, 2016.
Zhao, M., A, G., Velicogna, I., and Kimball, J. S.: Satellite Observations of Regional Drought Severity in the Continental United States Using GRACE-Based Terrestrial Water Storage Changes, J. Climate, 30, 6297–6308, https://doi.org/10.1175/JCLI-D-16-0458.1, 2017.
Ziese, M., Rauthe-Schöch, A., Becker, A., Finger, P., Rustemeier, E., and Schneider, U.: GPCC Full Data Daily Version 2020 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data, Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst, https://doi.org/10.5676/DWD_GPCC/FD_D_V2020_100, 2020.
Short summary
GRACE and GRACE-FO are unique observing systems to quantify mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS (Gravity Information Service) provides easy access to user-friendly, regularly updated mass anomaly products. The portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
GRACE and GRACE-FO are unique observing systems to quantify mass changes at the Earth’s surface...
Altmetrics
Final-revised paper
Preprint