Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-595-2025
https://doi.org/10.5194/essd-17-595-2025
Data description paper
 | 
10 Feb 2025
Data description paper |  | 10 Feb 2025

cigFacies: a massive-scale benchmark dataset of seismic facies and its application

Hui Gao, Xinming Wu, Xiaoming Sun, Mingcai Hou, Hang Gao, Guangyu Wang, and Hanlin Sheng

Related authors

ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi
Geosci. Model Dev., 16, 2495–2513, https://doi.org/10.5194/gmd-16-2495-2023,https://doi.org/10.5194/gmd-16-2495-2023, 2023
Short summary

Related subject area

Domain: ESSD – Land | Subject: Geophysics and geodesy
GravIS: mass anomaly products from satellite gravimetry
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data, 17, 611–631, https://doi.org/10.5194/essd-17-611-2025,https://doi.org/10.5194/essd-17-611-2025, 2025
Short summary
Regional scale shear wave velocity profiles for ground response analyses uncertainties evaluations – the Piedmont Region (NW Italy) Database
Cesare Comina, Guido Maria Adinolfi, Carlo Bertok, Andrea Bertea, Vittorio Giraud, and Pierluigi Pieruccini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-413,https://doi.org/10.5194/essd-2024-413, 2024
Revised manuscript accepted for ESSD
Short summary
Airborne Gravimetry with Quantum Technology: Observations from Iceland and Greenland
Tim Enzlberger Jensen, Bjørnar Dale, Andreas Stokholm, René Forsberg, Alexandre Bresson, Nassim Zahzam, Alexis Bonnin, and Yannick Bidel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-511,https://doi.org/10.5194/essd-2024-511, 2024
Revised manuscript accepted for ESSD
Short summary
Advancing geodynamic research in Antarctica: Reprocessing GNSS data to infer consistent coordinate time series (GIANT-REGAIN)
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-355,https://doi.org/10.5194/essd-2024-355, 2024
Revised manuscript accepted for ESSD
Short summary
Satellite Altimetry-based Extension of global-scale in situ river discharge Measurements (SAEM)
Peyman Saemian, Omid Elmi, Molly Stroud, Ryan Riggs, Benjamin M. Kitambo, Fabrice Papa, George H. Allen, and Mohammad J. Tourian
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-406,https://doi.org/10.5194/essd-2024-406, 2024
Revised manuscript accepted for ESSD
Short summary

Cited articles

Chen, L., Lu, Y.-C., Guo, T.-L., and Deng, L.-S.: Growth characteristics of Changhsingian (Late Permian) carbonate platform margin reef complexes in Yuanba gas Field, northeastern Sichuan Basin, China, Geol. J., 47, 524–536, 2012. a
Duan, Y., Zheng, X., Hu, L., and Sun, L.: Seismic facies analysis based on deep convolutional embedded clustering, Geophysics, 84, IM87–IM97, 2019. a
Dunham, M., Malcolm, A., and Welford, J.: Toward a semisupervised machine learning application to seismic facies classification, in: EAGE 2020 Annual Conference & Exhibition Online, 2020, 1–5, European Association of Geoscientists & Engineers, 2020. a
Fensel, D., Simsek, U., Angele, K., Huaman, E., Kärle, E., Panasiuk, O., Toma, I., Umbrich, J., and Wahler, A.: Knowledge graphs, Springer, https://doi.org/10.1007/978-3-030-37439-6, 2020. a
Gao, H., Wu, X., Sun, X., and Hou, M.: cigFacies datasets: the massive-scale benchmark dataset of seismic facies, Zenodo [data set], https://doi.org/10.5281/zenodo.10777460, 2024a. a, b, c
Download
Short summary
We propose three strategies for field seismic data curation, knowledge-guided synthesization, and generative adversarial network (GAN)-based generation to construct a massive-scale, feature-rich, and high-realism benchmark dataset of seismic facies and evaluate its effectiveness in training a deep-learning model for automatic seismic facies classification.
Share
Altmetrics
Final-revised paper
Preprint