Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-595-2025
https://doi.org/10.5194/essd-17-595-2025
Data description paper
 | 
10 Feb 2025
Data description paper |  | 10 Feb 2025

cigFacies: a massive-scale benchmark dataset of seismic facies and its application

Hui Gao, Xinming Wu, Xiaoming Sun, Mingcai Hou, Hang Gao, Guangyu Wang, and Hanlin Sheng

Related authors

ClinoformNet-1.0: stratigraphic forward modeling and deep learning for seismic clinoform delineation
Hui Gao, Xinming Wu, Jinyu Zhang, Xiaoming Sun, and Zhengfa Bi
Geosci. Model Dev., 16, 2495–2513, https://doi.org/10.5194/gmd-16-2495-2023,https://doi.org/10.5194/gmd-16-2495-2023, 2023
Short summary

Related subject area

Domain: ESSD – Land | Subject: Geophysics and geodesy
Advancing geodynamic research in Antarctica: Reprocessing GNSS data to infer consistent coordinate time series (GIANT-REGAIN)
Eric Buchta, Mirko Scheinert, Matt A. King, Terry Wilson, Achraf Koulali, Peter J. Clarke, Demián Gómez, Eric Kendrick, Christoph Knöfel, and Peter Busch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-355,https://doi.org/10.5194/essd-2024-355, 2024
Revised manuscript accepted for ESSD
Short summary
Synthetic ground motions in heterogeneous geologies from various sources: the HEMEWS-3D database
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data, 16, 3949–3972, https://doi.org/10.5194/essd-16-3949-2024,https://doi.org/10.5194/essd-16-3949-2024, 2024
Short summary
GravIS: mass anomaly products from satellite gravimetry
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-347,https://doi.org/10.5194/essd-2024-347, 2024
Revised manuscript accepted for ESSD
Short summary
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024,https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024,https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary

Cited articles

Chen, L., Lu, Y.-C., Guo, T.-L., and Deng, L.-S.: Growth characteristics of Changhsingian (Late Permian) carbonate platform margin reef complexes in Yuanba gas Field, northeastern Sichuan Basin, China, Geol. J., 47, 524–536, 2012. a
Duan, Y., Zheng, X., Hu, L., and Sun, L.: Seismic facies analysis based on deep convolutional embedded clustering, Geophysics, 84, IM87–IM97, 2019. a
Dunham, M., Malcolm, A., and Welford, J.: Toward a semisupervised machine learning application to seismic facies classification, in: EAGE 2020 Annual Conference & Exhibition Online, 2020, 1–5, European Association of Geoscientists & Engineers, 2020. a
Fensel, D., Simsek, U., Angele, K., Huaman, E., Kärle, E., Panasiuk, O., Toma, I., Umbrich, J., and Wahler, A.: Knowledge graphs, Springer, https://doi.org/10.1007/978-3-030-37439-6, 2020. a
Gao, H., Wu, X., Sun, X., and Hou, M.: cigFacies datasets: the massive-scale benchmark dataset of seismic facies, Zenodo [data set], https://doi.org/10.5281/zenodo.10777460, 2024a. a, b, c
Download
Short summary
We propose three strategies for field seismic data curation, knowledge-guided synthesization, and generative adversarial network (GAN)-based generation to construct a massive-scale, feature-rich, and high-realism benchmark dataset of seismic facies and evaluate its effectiveness in training a deep-learning model for automatic seismic facies classification.
Share
Altmetrics
Final-revised paper
Preprint