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Abstract. Seismic facies classification is crucial for seismic stratigraphic interpretation and hydrocarbon reser-
voir characterization but remains a tedious and time-consuming task that requires significant manual effort.
Data-driven deep-learning approaches are highly promising for automating the seismic facies classification with
high efficiency and accuracy, as they have already achieved significant success in similar image classification
tasks within the field of computer vision (CV). However, unlike the CV domain, the field of seismic exploration
lacks a comprehensive benchmark dataset for seismic facies, severely limiting the development, application,
and evaluation of deep-learning approaches in seismic facies classification. To address this gap, we propose a
comprehensive workflow to construct a massive-scale benchmark dataset of seismic facies and evaluate its ef-
fectiveness in training a deep-learning model. Specifically, we first develop a knowledge graph of seismic facies
based on geological concepts and seismic reflection configurations. Guided by the graph, we then implement
the three strategies of field seismic data curation, knowledge-guided synthesization, and generative adversarial
network (GAN)-based generation to construct a benchmark dataset of 8000 diverse samples for five common
seismic facies. Finally, we use the benchmark dataset to train a network and then apply it to two 3-D seismic
data for automatic seismic facies classification. The predictions are highly consistent with expert interpreta-
tion results, demonstrating that the diversity and representativeness of our benchmark dataset are sufficient to
train a network that can be generalized well in seismic facies classification across field data. We have made
this dataset (https://doi.org/10.5281/zenodo.10777460, Gao et al., 2024a), the trained model, and the associated
codes (https://doi.org/10.5281/zenodo.13150879, Gao et al., 2024b) publicly available for further research and
validation of intelligent seismic facies classification.

1 Introduction

Seismic facies classification aims to delineate individual
units based on specific reflection characteristics (e.g., reflec-
tion configuration, continuity, amplitude, and frequency con-
tents), which is a fundamental and essential step in seismic
stratigraphic analysis and contributes to the interpretation of
sedimentary environments and hydrocarbon reservoir distri-
butions (Sheriff, 1976; Sangree and Widmier, 1977; Veeken,

2006; Jia et al., 2007; Xu and Haq, 2022). With the dra-
matic increase in the amount of 3-D seismic data, the manual
interpretation method is typically labor-intensive and relies
heavily on experienced experts. Thus, automatic seismic fa-
cies classification is the trend. Moreover, the development
of automatic seismic facies classification approaches benefits
accurate and efficient analyses of depositional environments
and lithologic distributions.
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In recent years, many methods have been proposed
for automatic seismic facies classification by using super-
vised, semi-supervised, and unsupervised learning. Super-
vised learning methods (Wrona et al., 2018; Zhao, 2018; Liu
et al., 2018; Zhang et al., 2021) first use large amounts of
labeled data to train a convolutional neural network (CNN)
model and then use the trained model for automatic seismic
facies classification. Semi-supervised learning methods (Qi
et al., 2016; Dunham et al., 2020; Liu et al., 2020) use both
labeled and unlabeled data to train the network to learn the
features and distributions characterizing seismic facies. Un-
supervised learning methods (Qian et al., 2018; Zhao et al.,
2018; Duan et al., 2019; Puzyrev and Elders, 2022; Li et al.,
2023) first extract the nonlinear, discriminant, and invariant
features from the unlabeled data and then cluster or classify
these features for automatic seismic facies classification. The
supervised learning methods often exhibit weak generaliza-
tion capabilities across different surveys due to a lack of la-
beled samples, while the semi-supervised and unsupervised
methods frequently encounter issues with high uncertainty
in the prediction results. In addition, seismic facies can be
classified into several different categories based on different
attribute parameters, which leads to challenges in the con-
struction of seismic facies datasets and the assessment of the
results.

To solve these problems, developing a knowledge graph
of seismic facies and using it to provide guidelines for con-
structing a benchmark dataset is considered an effective
methodology. A knowledge graph is a graphical representa-
tion model consisting of entities (nodes) and relationships
(edges) that aims to represent knowledge in the form of
graphs (Paulheim, 2017; Fensel et al., 2020; Hogan et al.,
2021). To date, knowledge-driven geoscience big-data stud-
ies have been successfully applied in various kinds of geo-
science data-mining tasks (Zhou et al., 2021; Ma et al., 2023;
Zhang et al., 2023; Hu et al., 2023). In this work, we con-
struct a knowledge graph of seismic facies that is grounded
in geological concepts and seismic reflection patterns. This
graph guides our processes of data selection, label genera-
tion, analysis, and result assessment.

Currently, the construction of the dataset relies primarily
on manually interpreted field data and labeled synthetic data.
To address the lack of representative benchmark datasets for
seismic facies and to improve the automatic classification,
we implement a comprehensive workflow of three strate-
gies (field data curation, knowledge-guided synthesization,
and generative adversarial network (GAN)-based generation)
shown in the left blue box in Fig. 1 to construct a massive-
scale, feature-rich, and high-realism benchmark dataset of
seismic facies and use it to train a CNN model for the ac-
curate and efficient seismic facies classification shown in the
right red box in Fig. 1.

2 Building a massive-scale benchmark dataset of
seismic facies

In this section, we initially construct a knowledge graph of
seismic facies based on the geological concepts and seismic
facies configurations. Guided by the graph, we develop three
strategies to construct the benchmark dataset of seismic fa-
cies (Fig. 1). The first strategy is to build field samples from
field data curation with raw data collection, data standardiza-
tion, and skeletonization processes. The second strategy is to
build synthetic samples from knowledge-guided synthesiza-
tion by synthesizing geological structural curves. The final
strategy is to build synthetic samples from artificial intelli-
gence (AI)-based generation with a GAN model.

2.1 Knowledge graph of seismic facies

Before constructing the massive-scale benchmark dataset of
seismic facies, it is necessary to develop a knowledge graph
of seismic facies based on the geological concepts and seis-
mic reflection configurations, which can provide guidelines
for preparing representative dataset samples and assessing
facies classification results. Based on specific seismic re-
flection configurations, seismic facies can be roughly di-
vided into parallel and subparallel, prograding clinoforms,
fill, hummocky, chaotic, divergent, wave, and reflection-free
(Mitchum et al., 1977a, b; Veeken, 2006; Xu and Haq, 2022)
(Fig. 2). These seismic facies can be subdivided further based
on several independent parameters, such as reflection config-
urations, continuity, amplitude, and frequency. For example,
parallel and subparallel reflections can be subdivided into 27
different types based on frequency (high, middle, and low),
amplitude (strong, moderate, and week) and continuity (ex-
cellent, medium, and poor). Based on different reflection pat-
terns, prograding clinoforms, fill, and hummocky can be sub-
divided further into five (sigmoid, oblique, shingled, parallel,
and complex), six (onlap, prograded, mounded onlap, diver-
gent, chaotic, and complex), and four (fan complex, mound,
blanking, and chaotic) types, respectively.

As shown in Fig. 2, we develop a knowledge graph of seis-
mic facies and illustrate the typical seismic reflection config-
urations for eight types of seismic facies. However, consid-
ering the requirements for data amount and diversity in this
work, we take the five most common seismic facies (parallel
and subparallel, prograding clinoforms, fill, hummocky, and
chaotic) as examples to explain how to construct a massive-
scale, feature-rich, and high-realism benchmark dataset of
seismic facies from field data curation, knowledge-guided
synthesization, and GAN-based generation.

2.2 Building facies samples by field data curation

We start building our benchmark dataset by employing the
field seismic data curation strategy with a series of steps, i.e.,
raw data collection, manual interpretation and classification,
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Figure 1. The workflow for constructing a massive-scale, feature-rich, and high-realism benchmark dataset of seismic facies (blue box) and
deep learning for seismic facies classification (red box). We first develop a knowledge graph of seismic facies based on geological concepts
and seismic facies configurations. Guided by the graph, we implement the three strategies of field seismic data curation, knowledge-guided
synthesization, and AI-based generation to construct a massive-scale benchmark dataset. Finally, we use the benchmark dataset to train a
CNN model and then apply it to 3-D field seismic data for automatic seismic facies classification.

Figure 2. Knowledge graph of seismic facies and the corresponding typical seismic reflection configurations (Mitchum et al., 1977a, b;
Xu and Haq, 2022). In this graph, we roughly divided the seismic facies into eight types (parallel and subparallel, prograding clinoforms,
fill, hummocky, chaotic, divergent, wave, and reflection-free) based on specific seismic reflection configurations. In addition, we subdivided
these seismic facies based on several independent parameters such as reflection configuration, continuity, amplitude, and frequency, and we
illustrate the typical seismic reflection configurations for each type of seismic facies.

https://doi.org/10.5194/essd-17-595-2025 Earth Syst. Sci. Data, 17, 595–609, 2025



598 H. Gao et al.: cigFacies

bandpass filtering, resampling, amplitude equalization, and
skeletonization. We first collect almost 4000 global publicly
available 2-D seismic profiles and 10 3-D seismic data from
the United States Geological Survey (USGS), New Zealand
Petroleum & Minerals (NZPAM), the South Australian Re-
sources Information Gateway (SARIG), and the Society of
Exploration Geophysicists (SEG). These 2-D and 3-D seis-
mic data amount to around 130 G and are primarily located in
the Gulf of Mexico, on the eastern and western coasts of the
United States, in Alaska, in the Bering Sea, in the Beaufort
Sea, in New Zealand, in South Australia, and in the Sichuan
Basin (see the data distribution map in Fig. 1).

We then manually select, crop, and classify these field seis-
mic data based on the knowledge graph (Fig. 2). As shown
in the raw seismic data of Fig. 3, in total we collect 1000,
700, 500, 500, and 700 2-D raw seismic data for five common
seismic facies. However, due to the different data sources, de-
positional environments, and data processing methods, these
raw seismic data have large differences in their sampling
rates, amplitudes, and frequency distributions (as shown in
Figs. 3 and 4a) among the same and different classes of seis-
mic facies. These data variations and uncertainties are not re-
lated to the seismic facies. Moreover, they may pose signif-
icant obstacles to deep-learning models when learning cru-
cial features such as texture patterns and reflection configu-
rations, which are essential for identifying seismic facies cat-
egories. To eliminate such uncertainties in building our stan-
dard benchmark dataset, we introduce the data standardiza-
tion process (Fig. 4) for each raw seismic datum, including
filtering, resampling, amplitude equalization, and frequency
equalization. After applying the data standardization process,
the processed seismic data are significantly improved in the
consistency of the sampling rates, amplitudes, and frequency
distributions (as shown in Figs. 3b and 5). Finally, we re-
tain the main geological structure information of strata by
keeping only the waveform peaks as ones and setting zeros
elsewhere to obtain the corresponding field skeletonization
images shown in Figs. 3c and 6.

Compared to the skeletonization images (Fig. 4d) obtained
directly from the raw seismic data, the ones (Fig. 4c) with
data standardization can more clearly reflect the geological
structure characteristics and enhance the consistency among
the same and different classes of seismic facies. The whole
curation strategy, particularly the data standardization pro-
cesses and skeletonization, eliminates uncertainties inherent
in field data from various surveys. This approach only retains
the texture patterns associated with seismic facies to produce
standardized images for constructing the benchmark dataset.
The same processing techniques will also be applied to in-
ference data to ensure that a deep-learning model trained on
this dataset achieves consistent predictions.

However, the facies samples from these field seismic
datasets only are imbalanced in the categories and lack di-
versity, and therefore they are not sufficient for building a
massive-scale and representative benchmark dataset. For ex-

ample, parallel and subparallel data are more common than
fill or hummocky data in field seismic datasets. Additionally,
some specific patterns (e.g., parallel prograding clinoforms,
chaotic fill, complex fill, and blanking hummocky) are rare
in these publicly available field seismic data.

2.3 Building facies samples from knowledge-guided
synthesization

In order to overcome the sample imbalance and improve the
diversity of the dataset, we further develop the second strat-
egy to automatically generate synthetic facies samples based
on the knowledge graph of seismic facies and independent
seismic reflection configurations. We first define the different
geological structural curves by using the following geometric
functions:

z= z0, (1)
z= k0 · x+ z0, (2)

z= k0 · x
2
+ z0, (3)

z=
1

k1+ k2 · e−k3·x
, (4)

z=
ek1·x − e−k2·x

ek1·x + e−k2·x
, (5)

where x and z represent the positions in the crossline and
depth directions, respectively. Other parameters (z0, k0, k1,
k2, and k3) are used to control the geometry and distribu-
tion of the geological structural curves. We then set different
combinations of geological structural curves based on dif-
ferent seismic facies categories. Additionally, we randomly
set shape parameters for these geological structural curves
and combine them at random intervals to enhance their diver-
sity. Furthermore, we first define some key points for some
complex geological structures and then generate the corre-
sponding geological structural curves by applying an inter-
polation process. After generating these different geological
structural curves, we add random noise and apply a random
local mask to each curve to improve the realism of the syn-
thetic curves. Finally, we set ones on the geological struc-
tural curves and zeros elsewhere to generate the correspond-
ing synthetic skeletonization data.

In this way, we randomly generate synthetic facies sam-
ples for each type of seismic facies, especially some spe-
cific patterns that are rare in field data curation, thus com-
plementing the benchmark dataset of seismic facies. Finally,
we automatically generate 500 synthetic facies samples for
the five common seismic facies shown in Fig. 7. Compared
to the field facies samples shown in Fig. 6, the synthetic fa-
cies samples generated from knowledge-guided synthesiza-
tion contain more diverse patterns and reduce sample imbal-
ance. However, these synthetic facies samples may be ideally
patterned and lack realism.
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Figure 3. Subset-1: raw seismic data manually collected and interpreted from the large number of publicly available seismic datasets. In
total, we select, crop, and classify 1000, 700, 500, 500, and 700 2-D raw seismic data for parallel and subparallel, prograding clinoforms,
fill, hummocky, and chaotic, respectively.

Figure 4. The workflow for constructing the field samples from field seismic data curation. We first manually collect and interpret raw seis-
mic data (a). Then we introduce a data standardization process for all the raw seismic data to improve the consistency of the sampling rates,
amplitudes, and frequency distributions. After obtaining the processed seismic data (b), we retain the main geological structure information
of the strata by keeping the waveform peaks as ones and setting zeros elsewhere to obtain the corresponding field skeletonization images (c).
Furthermore, the skeletonization images (d) obtained directly from the raw seismic data (without standardization) exhibit significant uncer-
tainties and variations.

2.4 Building facies samples from GAN-based
generation

As shown in subset-1 and subset-2 in Figs. 6, 7, and 8a, b,
the field facies samples have high realism but low diversity,
while the synthetic facies samples have high diversity but

low realism. In order to construct a comprehensive bench-
mark dataset of seismic facies, we develop the final strategy
of GAN-based generation (Fig. 8) to build more facies sam-
ples with both high diversity and high realism.
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Figure 5. Subset-1: processed seismic data generated from the raw seismic data by applying the data standardization processes. Compared
to the raw seismic data, the processed seismic data exhibit significant improvements in the consistency of the sampling rates, amplitudes, and
frequency distributions.

Figure 6. Subset-1: field facies samples generated from the processed seismic data by applying the skeletonization process. After obtaining
the processed seismic data, we retain the main geological structure information of the strata to generate the corresponding field skeletonization
images. Finally, we use the first strategy to manually select 1000, 700, 500, 500, and 700 field facies samples for five common seismic facies.

As shown in Fig. 8c, the architecture of the deep-learning
network used in this work is modified from the progressive
growing of GANs proposed by Karras et al. (2017). Tradi-
tionally, progressive growing of GANs consists of a gener-
ator model (G) and a discriminator model (D), where G is
used to capture the data distribution and generate fake im-
ages to resemble the training dataset (real images) and D is
used to assess the probability of images being real or fake. G
is composed of a Gen-1 module, five Gen-2 modules, and a

Conv1×1 layer, where the Gen-1 module consists of a 4× 4
convolutional layer and a 3× 3 convolutional layer and the
Gen-2 module consists of an upsampling layer and two 3×3
convolutional layers. D is composed of a Conv1×1 layer, five
Dis-1 modules, and a Dis-2 module, where the Dis-1 mod-
ule consists of two 3×3 convolutional layers and an average
pooling layer and the Dis-2 module consists of a minibatch
stddev layer, a 3×3 convolutional layer, a 4×4 convolutional
layer, a flattened layer, and a linear layer. Compared to tra-
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Figure 7. Subset-2: synthetic facies samples generated from knowledge-guided synthesization. In this strategy, we first construct some
geological structural curves from geometric functions or interpolation processes. Then we add random noise and a mask for each curve
to improve the realism of the synthetic facies samples. Finally, we use the second strategy to automatically generate 500 synthetic facies
samples with more diverse patterns for each seismic facies.

ditional GANs, the progressive growing of GANs does not
directly generate high-resolution images but starts by gen-
erating simple low-resolution images and then continuously
increasing the resolution of the generated images during the
network training. This training strategy allows the network to
learn the features of the training dataset from coarse to fine
scales, resulting in a faster training speed, higher stability,
and better-quality images. In addition, we use the Wasser-
stein GAN with a gradient penalty (WGAN-GP) loss pro-
posed by Gulrajani et al. (2017) as the GANs loss function
L(G, D) to optimize the network.

We combine subset-1 and subset-2 as training datasets to
train the progressive growing of GANs. Initially, we first
train a simple network consisting of a Gen-1 module, two
Conv1×1 layers, and a Dis-2 module to generate and access
the real and fake facies samples at a 4× 4 scale. After stabi-
lizing the training of this simple network, we incorporate a
Gen-2 module and a Dis-1 module into it to double the res-
olutions of G and D. In this way, our network will progres-
sively grow to steadily generate high-resolution (128× 128)
facies samples. Finally, we use the trained G to automatically
generate 500 facies samples for each type of seismic facies
shown in subset-3 in Figs. 8d and 9. Compared to subset-1
and subset-2, the facies samples constructed by the GAN-
based generation have both high diversity and high realism.

2.5 The final benchmark dataset of seismic facies

After applying the three strategies of field data curation,
knowledge-guided synthesization, and GAN-based gener-
ation to generate diverse facies samples, we construct a

massive-scale, feature-rich, and high-realism benchmark
dataset of seismic facies, and we display some facies sam-
ples in Figs. 6–9. As shown in Fig. 10, finally we gener-
ate totals of 2000, 1500, 1500, 1500, and 1500 diverse fa-
cies samples (128 [inline]× 128 [time]) for five common
seismic facies (parallel and subparallel, prograding clino-
forms, fill, hummocky, and chaotic). The final benchmark
dataset, named cigFacies, has been made publicly avail-
able at https://doi.org/10.5281/zenodo.10777460 (Gao et al.,
2024a).

3 Deep learning for seismic facies classification

After constructing the comprehensive benchmark dataset of
seismic facies (Fig. 10), we use it to train a simple CNN for
the seismic facies classification task shown in the right red
box in Fig. 1. In this study, we first use 6400 samples to
train the model and another 1600 samples for the validation.
Then we develop a prediction workflow to apply the trained
network to automatic seismic facies classification in the 3-D
field seismic data.

3.1 Training and validation

We consider seismic facies classification to be an image clas-
sification problem with the goal of classifying 3-D field seis-
mic data according to the corresponding seismic facies (e.g.,
parallel and subparallel, prograding clinoforms, fill, hum-
mocky, and chaotic). In this study, we use a simple deep-
learning network (ResNet-50) proposed by He et al. (2016)
(Fig. 11a) to implement automatic seismic facies classifica-
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Figure 8. The workflow for constructing the synthetic samples from GAN-based generation. In this strategy, we first use subset-1 (a) and
subset-2 (b) generated with the first and second strategies to train the progressive growing of GANs (c), and then we use the trained G to
automatically generate synthetic facies samples (d) for each type of seismic facies.

Figure 9. Subset-3: synthetic facies samples from GAN-based generation. In total, we use the third strategy to automatically generate 500
synthetic facies samples with both high diversity and high realism for each type of seismic facies.

tion. We train and validate our CNN model by using 6400
and 1600 random pairs of facies samples. In addition, in or-
der to improve the diversity of the dataset, we apply random
data augmentation strategies (e.g., flip, translation, crop, or
resize) for each facies sample before feeding them into the
network. We train our network by using the following cross-
entropy loss function L:

L=−
N−1∑
i=0

yi log(xi), (6)

where N denotes the number of classes and xi and yi repre-
sent the one-hot prediction and label for the ith class. Con-

sidering the computation time and memory, we set the batch
size to 32 and use the Adam optimizer to optimize the net-
work parameters. In the training process, we start the learn-
ing rate at 0.01 and adaptively reduce the learning rate by
half when the training metric stagnates within two epochs.
As shown in Fig. 11b, c, both the training loss and valida-
tion loss converge to 0.006 and 0.1, while the learning rate
decreases from 0.01 to 0.00001 after 200 epochs.

To verify the performance of the trained network, we first
apply it to the validation dataset, which is not included in
the training dataset. As shown in Fig. 11d, the predicted re-
sults are highly consistent with the labels. In addition, the
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Figure 10. cigFacies: the final benchmark dataset of seismic facies constructed from the three strategies of field data curation, knowledge-
guided synthesization, and GAN-based generation. In this dataset, we generate totals of 2000, 1500, 1500, 1500, and 1500 diverse facies
samples (128 [inline]× 128 [time]) for five common seismic facies (parallel and subparallel, prograding clinoforms, fill, hummocky, and
chaotic).

predicted accuracies for the five common seismic facies in
the validation dataset can be up to 97.75%, 99%, 99.67%,
97.33%, and 98.33 %, which indicates that the trained net-
work has successfully learned automatic seismic facies clas-
sification.

3.2 Testing on the 3-D field seismic data

To further verify the performance of the trained model, we
develop a prediction workflow shown in Fig. 12a for auto-
matic seismic facies classification in 3-D field seismic data.
We first use an automatic horizon-picking method (Wu and
Fomel, 2018) to extract the top and bottom surfaces (green
and red curves in Fig. 12b) of the target section in the 3-D
field seismic data. Then we flatten the field seismic data with
the bottom surface to eliminate the influence of the geolog-
ical structures. In addition, we set a sliding window (blue
box in Fig. 12b) centered on the midpoint of the top and
bottom horizons and bounded by these surfaces in order to
extract a 2-D raw seismic image pixel by pixel (or trace by
trace). The width of the sliding window mainly depends on
the size of the classified object within the target section and
is typically slightly greater than the widths of the objects. We
also apply the standardization and skeletonization processes
to the flattened image to make it consistent with the training
dataset. Finally, we feed the corresponding skeletonization
image into the trained network for automatic seismic facies
classification.

In this work, we apply the trained network to two distinct
3-D field seismic data (Longang and Yuanba) with complex
geological structures. The Longgang (LG) and Yuanba (YB)
areas in the Sichuan Basin develop a huge number of plat-
form margin reef complexes, which have emerged as an im-
portant field for oil and gas exploration (Chen et al., 2012;
Xu et al., 2015; Tan et al., 2020). The first study case is the
Permian Changhsingian formation of the LG 3-D seismic
data (991 [inline]× 1187 [crossline]× 501 [time]) shown
in Figs. 12b and 13a. We employ the prediction workflow
(Fig. 12a) with a sliding window traversing all the 3-D target
strata, yielding the seismic facies classification result shown
in Fig. 12c. In addition, we display the predicted results with
different 2-D profiles in the crossline and inline directions
in Fig. 13b–i. The regions indicated by the blue arrows are
correctly predicted to be hummocky facies, which is roughly
consistent with the geological structural uplift in the corre-
sponding 2-D seismic profiles. However, some artifacts or
inaccurate predictions still appear in some areas indicated
by the red arrows in Fig. 13f and h, which is mainly due to
the incomplete flattening of the strata. As shown in Fig. 13i,
we can clearly observe a distinct reef–top interface reflec-
tion axis indicated by blue arrows. The trend of this reflec-
tion axis indicates that the reef gradually moves backwards in
the increasing crossline direction, which closely matches the
trends observed in both our predicted results and the expert
interpretation results. Finally, we obtain the corresponding
sedimentary facies result (Fig. 12d) based on the predicted
seismic facies result, well log information, seismic data, and
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Figure 11. (a) The architecture of the deep neural network (ResNet-50) used in this work for automatic seismic facies classification. The
training (blue) and validation (orange) loss curves (b) and the learning rate curve (c) during network training are shown. After training
the network, we apply it to the validation dataset to verify its performance. The predicted results are consistent with the labels (d), which
demonstrates that the trained network has successfully learned to automatically classify the seismic facies.

geological and geophysical knowledge. Our final sedimen-
tary facies result (Fig. 12d) is highly consistent with the ex-
pert interpretation of sedimentary facies shown in Fig. 12e.

The second study case is the Permian Changhsingian for-
mation of the YB 3-D seismic data (1300 [inline]× 475
[crossline]× 600 [time]), as shown in Figs. 12f and 14a. The
YB data consist of more complex geological structures com-
pared to the LG 3-D seismic data. Using the same prediction
workflow as the previous case, we obtain the corresponding

distributions of seismic facies and overlay the result with a
manually interpreted horizon shown in Figs. 12g and 14b.
The predicted distribution of hummocky seismic facies is
consistent with the uplifted areas on the manually interpreted
horizon. This high consistency can also be demonstrated in
Fig. 14b–i, which display additional 2-D seismic profiles
with the predicted result in a different 3-D view. In partic-
ular, the areas indicated by the blue arrows in Fig. 14g and
h demonstrate that our method accurately captures the dis-
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Figure 12. We employ the prediction workflow (a) with a sliding window scanning the entire 3-D target section in the 3-D seismic data (b,
f), yielding the seismic facies classification results (c, g). Then we obtain the corresponding sedimentary facies results (d, h) based on the
predicted seismic facies results, well log information, seismic data, and geological and geophysical knowledge. Compared to the expert
interpretation results (e, i), our predicted sedimentary facies results are highly consistent.

tribution of the patch reef and platform reef zone. Moreover,
our predicted results are consistent with expert interpretation
results of the reef distribution along the complex platform
margin. However, some regions indicated by the red arrows
(Fig. 14f) are incorrectly classified as other seismic facies,
which is probably due to the unsuitable scale of the sliding
window for these local regions, the influence of boundary ef-
fects from the sliding window, and incomplete flattening of
the stratum. Finally, we also generate the corresponding sed-
imentary facies results shown in Fig. 12h, where the platform
margin reef is clearly and reasonably resolved and the spatial
distribution of the platform margin is highly consistent with
the expert interpretation in Fig. 12i.

4 Discussion

In this work, we present a benchmark dataset and a deep-
learning-based approach for automatic seismic facies clas-
sification. Our method utilizes a knowledge graph of seis-
mic facies to guide the construction of the dataset, which
includes a combination of field data curation, knowledge-
guided synthesization, and GAN-based generation. These
strategies avoid problems such as sample imbalance, poor
diversity, and low realism that usually result from traditional
dataset construction methods. In addition, the data standard-
ization and skeletonization processes successfully mitigate
all potential data uncertainties (not related to seismic facies)

across diverse data sources. This enables a deep-learning
model trained by the dataset to be applied effectively to field
data across various surveys, thereby enhancing its generaliz-
ability. Applications to the validation dataset and two distinct
3-D field seismic data (LG and YB) demonstrate that the sim-
ple CNN model trained with the benchmark dataset achieves
promising performance and great generalization ability for
automatic seismic facies classification tasks.

Although our method constructs a comprehensive bench-
mark dataset of the seismic facies and achieves promising
classification results, some limitations remain in the dataset
construction and model application processes. In the data
construction processes, we initially develop a knowledge
graph primarily categorized by geological structure, em-
phasizing the role of structural information in seismic fa-
cies classification. However, the knowledge graph overlooks
other important multi-attribute parameters, such as ampli-
tude, continuity, frequency, and wave patterns, which also
contain rich information. Additionally, constructing the 2-D
skeletonization dataset for seismic facies classification does
not fully consider the information contained in the seismic
data in the inline direction, which may lead to lateral discon-
tinuities in 3-D applications.

In the model application process, a special geological
structure and the introduction of a sliding window may also
cause the inaccurate results. The normal or reverse faults in
the 3-D seismic data probably introduce unreasonable geo-
logical structures when flattening the seismic data, thus re-
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Figure 13. (a) Three-dimensional Longgang (LG) seismic data (991 [inline]× 1187 [crossline]× 501 [time]) and the corresponding top and
bottom horizons of the target strata shown in red and green curves. (b–f) Different 2-D seismic profiles in the different crossline directions
(0, 200, 400, 800, and 1100) and inline directions (50, 200, and 400), overlaid with the predicted result. The blue arrows indicate areas where
the predicted results align with the geological structural uplift in different 2-D views.

sulting in inaccurate predictions. We simplify the classifica-
tion of the 3-D field seismic data by classifying the strati-
graphic skeletonization information within the 2-D sliding
window without fully utilizing the 3-D information in the in-
line direction, which may lead to instability in the predicted
results, especially in the direction perpendicular to the sliding
window. In addition, the proper size of the sliding window
has a significant effect on the results, which need to appro-
priately match the scale of the key seismic facies in the field
data. Furthermore, due to the predicted result being obtained
by scanning pixel by pixel (trace by trace), some inaccurate
predicted results may occur on the boundaries between the
different seismic facies, where the sliding window only con-
tains the partial geological structure.

5 Code and data availability

The benchmark dataset of seismic facies has been
uploaded to Zenodo and is freely available at
https://doi.org/10.5281/zenodo.10777460 (Gao et al.,

2024a). The corresponding codes for constructing the dataset
and training the model have been uploaded to Zenodo and are
freely available at https://doi.org/10.5281/zenodo.13150879
(Gao et al., 2024b).

6 Conclusion

We have developed three strategies guided by a knowledge
graph to build a benchmark dataset that is vast in scale, is rich
in features, and offers high realism. To the best of our knowl-
edge, this dataset is the most extensive dataset of seismic fa-
cies that is currently available. The seismic facies knowledge
graph, developed based on a comprehensive literature re-
view, summarizes various typical seismic facies types, along
with their corresponding geological origins and seismic re-
sponse features. This knowledge graph provides comprehen-
sive guidance for the three strategies employed in building
the benchmark dataset, ensuring the comprehensiveness and
representativeness of the data sample construction. The first
strategy of field seismic data curation yields the first subset
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Figure 14. (a) Three-dimensional Yuanba (YB) seismic data (1300 [inline]× 475 [crossline]× 600 [time]) and the corresponding top and
bottom horizons of the target strata shown in red and green curves. (b) Three-dimensional predicted results overlaid on an expert-interpreted
horizon; the distributions of the hummocky seismic facies are consistent with the uplifted areas indicated by the blue arrows. (c–i) Various 2-
D views of seismic data with different combinations of crossline (120, 240, 400, and 900) and inline (200, 400, and 700) directions, together
with the predicted results.

that is authentic but exhibits some imbalance and limited di-
versity. The second strategy of sample synthesis, informed
by the knowledge graph, generates a second subset of sam-
ples containing any category and pattern features, thereby ad-
dressing the issues of uneven sample type distribution and
lack of diversity in the first subset. However, the synthesized
samples also face the problem of being overly idealized and
not sufficiently realistic. Consequently, a third strategy, based
on AI generation, is adopted to refine the dataset construc-
tion. This strategy involves training a GAN model using the
already constructed first and second subsets and then lever-
aging it to derive a third subset with diverse patterns and re-
alistic features. By merging these three subsets, we have ul-
timately constructed a dataset containing 2000, 1500, 1500,
1500, and 1500 samples for five common seismic facies. This
benchmark dataset has been demonstrated to effectively train
a CNN model that achieves notable performance in seismic
facies classification across two distinct 3-D field datasets. We

have made this benchmark dataset publicly available, encour-
aging its further enhancement and utilization by others in the
development and evaluation of deep-learning approaches for
seismic facies characterization.

In the future, we can construct a more comprehensive and
refined knowledge graph of seismic facies based on multi-
attribute parameters such as reflection configuration, conti-
nuity, amplitude, frequency, and wave pattern. Then, we can
also construct 3-D seismic datasets with multi-attribute fea-
tures for more refined seismic facies classification tasks, in-
stead of 2-D skeletonization datasets that only have structural
information and a lack of variations in the inline direction.
Additionally, we can develop a multiscale 3-D network for
automatic seismic facies classification, which can enhance
both the accuracy and stability of predicted results, partic-
ularly for different seismic facies boundaries and 3-D field
seismic data.
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