Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1733-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-1733-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
German Research Centre for Geoscience GFZ, Potsdam, Germany
Riccardo Zaccarelli
German Research Centre for Geoscience GFZ, Potsdam, Germany
Angelo Strollo
German Research Centre for Geoscience GFZ, Potsdam, Germany
Domenico Di Giacomo
International Seismological Center ISC, Thatcham, UK
Andres Heinloo
German Research Centre for Geoscience GFZ, Potsdam, Germany
Peter Evans
German Research Centre for Geoscience GFZ, Potsdam, Germany
Fabrice Cotton
German Research Centre for Geoscience GFZ, Potsdam, Germany
Institute of Geociences, University of Potsdam, Potsdam, Germany
Frederik Tilmann
German Research Centre for Geoscience GFZ, Potsdam, Germany
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Related authors
Ssu-Ting Lai, Kyaw Moe Oo, Yin Myo Min Htwe, Tin Yi, Htay Htay Than, Oo Than, Zaw Min, Tun Minn Oo, Phyo Maung Maung, Dino Bindi, Fabrice Cotton, Peter L. Evans, Andres Heinloo, Laura Hillmann, Joachim Saul, Christoph Sens-Schönfelder, Angelo Strollo, Frederik Tilmann, Graeme Weatherill, Ming-Hsuan Yen, Riccardo Zaccarelli, Thomas Zieke, and Claus Milkereit
Earth Syst. Sci. Data, 17, 5149–5164, https://doi.org/10.5194/essd-17-5149-2025, https://doi.org/10.5194/essd-17-5149-2025, 2025
Short summary
Short summary
On 28 March 2025, Myanmar was struck by a destructive Mw 7.7 earthquake. We present detailed information on the data and metadata availability for the Naypyitaw station (NPW) in Myanmar, the only local strong-motion station located near the Sagaing Fault that recorded the mainshock without saturation. We also highlight the collaborative effort that made the installation of NPW possible. The high-quality recordings from NPW offer critical insights for seismic hazard assessment in the region.
Leonardo Colavitti, Dino Bindi, Gabriele Tarchini, Davide Scafidi, Matteo Picozzi, and Daniele Spallarossa
Earth Syst. Sci. Data, 17, 3089–3108, https://doi.org/10.5194/essd-17-3089-2025, https://doi.org/10.5194/essd-17-3089-2025, 2025
Short summary
Short summary
This work describes a dataset of 5 years of earthquakes with magnitude range of 2.0–5.5 from January 2019 along the East Anatolian Fault, Türkiye. All events were located using the non-linear location algorithm, providing reliable horizontal locations and depths. The distributed product includes Fourier amplitude spectra, peak ground acceleration and peak ground velocity; we strongly believe that the creation of high-quality open-source datasets is crucial for any seismological investigation.
Ssu-Ting Lai, Kyaw Moe Oo, Yin Myo Min Htwe, Tin Yi, Htay Htay Than, Oo Than, Zaw Min, Tun Minn Oo, Phyo Maung Maung, Dino Bindi, Fabrice Cotton, Peter L. Evans, Andres Heinloo, Laura Hillmann, Joachim Saul, Christoph Sens-Schönfelder, Angelo Strollo, Frederik Tilmann, Graeme Weatherill, Ming-Hsuan Yen, Riccardo Zaccarelli, Thomas Zieke, and Claus Milkereit
Earth Syst. Sci. Data, 17, 5149–5164, https://doi.org/10.5194/essd-17-5149-2025, https://doi.org/10.5194/essd-17-5149-2025, 2025
Short summary
Short summary
On 28 March 2025, Myanmar was struck by a destructive Mw 7.7 earthquake. We present detailed information on the data and metadata availability for the Naypyitaw station (NPW) in Myanmar, the only local strong-motion station located near the Sagaing Fault that recorded the mainshock without saturation. We also highlight the collaborative effort that made the installation of NPW possible. The high-quality recordings from NPW offer critical insights for seismic hazard assessment in the region.
Leonardo Colavitti, Dino Bindi, Gabriele Tarchini, Davide Scafidi, Matteo Picozzi, and Daniele Spallarossa
Earth Syst. Sci. Data, 17, 3089–3108, https://doi.org/10.5194/essd-17-3089-2025, https://doi.org/10.5194/essd-17-3089-2025, 2025
Short summary
Short summary
This work describes a dataset of 5 years of earthquakes with magnitude range of 2.0–5.5 from January 2019 along the East Anatolian Fault, Türkiye. All events were located using the non-linear location algorithm, providing reliable horizontal locations and depths. The distributed product includes Fourier amplitude spectra, peak ground acceleration and peak ground velocity; we strongly believe that the creation of high-quality open-source datasets is crucial for any seismological investigation.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci., 24, 3755–3787, https://doi.org/10.5194/nhess-24-3755-2024, https://doi.org/10.5194/nhess-24-3755-2024, 2024
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake processes. To understand why and how recent state-of-the-art seismic hazard models for France, Germany, and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Irina Dallo, Michèle Marti, Nadja Valenzuela, Helen Crowley, Jamal Dabbeek, Laurentiu Danciu, Simone Zaugg, Fabrice Cotton, Domenico Giardini, Rui Pinho, John F. Schneider, Céline Beauval, António A. Correia, Olga-Joan Ktenidou, Päivi Mäntyniemi, Marco Pagani, Vitor Silva, Graeme Weatherill, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 291–307, https://doi.org/10.5194/nhess-24-291-2024, https://doi.org/10.5194/nhess-24-291-2024, 2024
Short summary
Short summary
For the release of cross-country harmonised hazard and risk models, a communication strategy co-defined by the model developers and communication experts is needed. The strategy should consist of a communication concept, user testing, expert feedback mechanisms, and the establishment of a network with outreach specialists. Here we present our approach for the release of the European Seismic Hazard Model and European Seismic Risk Model and provide practical recommendations for similar efforts.
Max Schneider, Fabrice Cotton, and Pia-Johanna Schweizer
Nat. Hazards Earth Syst. Sci., 23, 2505–2521, https://doi.org/10.5194/nhess-23-2505-2023, https://doi.org/10.5194/nhess-23-2505-2023, 2023
Short summary
Short summary
Hazard maps are fundamental to earthquake risk reduction, but research is missing on how to design them. We review the visualization literature to identify evidence-based criteria for color and classification schemes for hazard maps. We implement these for the German seismic hazard map, focusing on communicating four properties of seismic hazard. Our evaluation finds that the redesigned map successfully communicates seismic hazard in Germany, improving on the baseline map for two key properties.
Juan Camilo Gómez Zapata, Massimiliano Pittore, Nils Brinckmann, Juan Lizarazo-Marriaga, Sergio Medina, Nicola Tarque, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 23, 2203–2228, https://doi.org/10.5194/nhess-23-2203-2023, https://doi.org/10.5194/nhess-23-2203-2023, 2023
Short summary
Short summary
To investigate cumulative damage on extended building portfolios, we propose an alternative and modular method to probabilistically integrate sets of single-hazard vulnerability models that are being constantly developed by experts from various research fields to be used within a multi-risk context. We demonstrate its application by assessing the economic losses expected for the residential building stock of Lima, Peru, a megacity commonly exposed to consecutive earthquake and tsunami scenarios.
Audrey Bonnelye, Pierre Dick, Marco Bohnhoff, Fabrice Cotton, Rüdiger Giese, Jan Henninges, Damien Jougnot, Grzegorz Kwiatek, and Stefan Lüth
Adv. Geosci., 58, 177–188, https://doi.org/10.5194/adgeo-58-177-2023, https://doi.org/10.5194/adgeo-58-177-2023, 2023
Short summary
Short summary
The overall objective of the CHENILLE project is to performed an in-situ experiment in the Underground Reaserch Laboratory of Tournemire (Southern France) consisting of hydraulic and thermal stimulation of a fault zone. This experiment is monitored with extensive geophysical means (passive seismic, active seismic, distributed fiber optics for temperature measurements) in order to unravel the physical processes taking place during the stimulation for a better charactization of fault zones.
Domenico Di Giacomo and Dmitry A. Storchak
Earth Syst. Sci. Data, 14, 393–409, https://doi.org/10.5194/essd-14-393-2022, https://doi.org/10.5194/essd-14-393-2022, 2022
Short summary
Short summary
The surface wave magnitude Ms is the only magnitude type that can be computed since the dawn of modern observational seismology (beginning
of the last century) for most shallow earthquakes worldwide. As a result of a 10+ year effort to digitize pre-1971 measurements of surface wave amplitudes and periods from printed bulletins, we are able to recompute Ms using a large set of stations and obtain it for the first time for several hundred earthquakes.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Domenico Di Giacomo, James Harris, and Dmitry A. Storchak
Earth Syst. Sci. Data, 13, 1957–1985, https://doi.org/10.5194/essd-13-1957-2021, https://doi.org/10.5194/essd-13-1957-2021, 2021
Short summary
Short summary
We provide a comprehensive overview of the content in terms of moment magnitude (Mw) in the Bulletin of the International Seismological Centre (ISC). Mw is the preferred magnitude to characterize earthquakes in various research topics (e.g. Earth seismicity rates) and other applications (e.g. seismic hazard). We describe first the contribution of global agencies and agencies operating at a regional scale and then discuss features of Mw via different sets of comparisons.
Cited articles
Aki, K.: Generation and Propagation of G Waves from the Niigata Earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum, B. Earthq. Res. I. Tokyo, 44, 73–88, https://doi.org/10.15083/0000033586, 1966. a
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA [data set], https://repository.library.noaa.gov/view/noaa/1163 (last access: March 2024), 2009. a
Atik, L. A. and Youngs, R. R.: Epistemic Uncertainty for NGA-West2 Models, Earthq. Spectra, 30, 1301–1318, https://doi.org/10.1193/062813EQS173M, 2014. a
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, J. Stat. Softw., 67, 1–48, https://doi.org/10.18637/jss.v067.i01, 2015. a
Boatwright, J. and Choy, G. L.: Teleseismic estimates of the energy radiated by shallow earthquakes, J. Geophys. Res.-Sol. Ea., 91, 2095–2112, https://doi.org/10.1029/JB091iB02p02095, 1986. a, b
Bormann, P., Baumbach, M., Bock, G., Grosser, H., Choy, G., and Boatwright, J.: Seismic Sources and Source Parameters, in: IASPEI New Manual of Seismological Observatory Practice, edited by Bormann, P., vol. 1, chap. 3, 94 pp., Deutsches GeoForschungsZentrum GFZ, Potsdam, https://gfzpublic.gfz-potsdam.de/pubman/item/item_4015 (last access: March 2024), 2002. a
Convers, J. A. and Newman, A. V.: Global Evaluation of Large Earthquake Energy from 1997 Through mid-2010, J. Geophys. Res., 116, B08304, https://doi.org/10.1029/2010JB007928, 2011. a
Di Giacomo, D., Harris, J., and Storchak, D. A.: Complementing regional moment magnitudes to GCMT: a perspective from the rebuilt International Seismological Centre Bulletin, Earth Syst. Sci. Data, 13, 1957–1985, https://doi.org/10.5194/essd-13-1957-2021, 2021. a
Frohlich, C. and Apperson, K. D.: Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries, Tectonics, 11, 279–296, https://doi.org/10.1029/91TC02888, 1992. a
Gutenberg, B.: Amplitudes of surface waves and magnitudes of shallow earthquakes, B. Seismol. Soc. Am., 35, 3–12, 1945a. a
Gutenberg, B.: Amplitudes of P, PP, and S and magnitude of shallow earthquakes, B. Seismol. Soc. Am., 35, 57–69, https://doi.org/10.1785/BSSA0350020057, 1945b. a
Hanks, T. C. and Kanamori, H.: A moment magnitude scale, J. Geophys. Res., 84, 2348–2350, https://doi.org/10.1029/JB084IB05P02348, 1979. a
Haskell, N. A.: Total energy and energy spectral density of elastic wave radiation from propagating faults, B. Seismol. Soc. Am., 54, 1811–1841, https://doi.org/10.1785/bssa05406a1811, 1964. a, b
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and GEMPA GmbH: The SeisComP seismological software package, GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.4.2020.003, 2008. a, b
IRIS DMC: Data Services Products: EQEnergy Earthquake energy & rupture duration, https://doi.org/10.17611/DP/EQE.1, 2013. a
Kanamori, H.: The energy release in great earthquakes, J. Geophys. Res., 82, 2981–2987, https://doi.org/10.1029/JB082I020P02981, 1977. a
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108–124, https://doi.org/10.1111/j.1365-246x.1995.tb03540.x, 1995. a
Montagner, J.-P. and Kennett, B.: How to reconcile body-wave and normal-mode reference Earth models?, Geophys. J. Int., 125, 229–248, 1996. a
Newman, A. V. and Okal, E. A.: Teleseismic estimates of radiated seismic energy: The discriminant for tsunami earthquakes, J. Geophys. Res.-Sol. Ea., 103, 26885–26898, https://doi.org/10.1029/98JB02236, 1998. a, b
Quinteros, J., Strollo, A., Evans, P. L., Hanka, W., Heinloo, A., Hemmleb, S., Hillmann, L., Jaeckel, K., Kind, R., Saul, J., Zieke, T., and Tilmann, F.: The GEOFON Program in 2020, Seismol. Res. Lett., 92, 1610–1622, https://doi.org/10.1785/0220200415, 2021. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: March 2024), 2020. a
Stafford, P. J.: Crossed and Nested Mixed‐Effects Approaches for Enhanced Model Development and Removal of the Ergodic Assumption in Empirical Ground‐Motion Models, B. Seismol. Soc. Am., 104, 702–719, https://doi.org/10.1785/0120130145, 2014. a
Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P., Marmureanu, A., Ottemöller, L., Pedersen, H., Sleeman, R., Stammler, K., Armbruster, D., Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M., Neagoe, C., Heimers, S., Heinloo, A., Hoffmann, M., Kaestli, P., Lauciani, V., Michalek, J., Odon Muhire, E., Ozer, M., Palangeanu, L., Pardo, C., Quinteros, J., Quintiliani, M., Antonio Jara‐Salvador, J., Schaeffer, J., Schloemer, A., and Triantafyllis, N.: EIDA: The European Integrated Data Archive and Service Infrastructure within ORFEUS, Seismol. Res. Lett., 92, 1788–1795, https://doi.org/10.1785/0220200413, 2021. a
Wang, R.: A simple orthonormalization method for stable and efficient computation of Green’s functions, B. Seismol. Soc. Am., 89, 733–741, https://doi.org/10.1785/BSSA0890030733, 1999. a
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013. a
Zaccarelli, R.: Stream2segment: a tool to download, process and visualize event-based seismic waveform data (Version 2.7.3), GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.4.2019.002, 2018. a
Zaccarelli, R.: sdaas – a Python tool computing an amplitude anomaly score of seismic data and metadata using simple machine‐Learning models, GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.6.2023.009, 2022. a
Zaccarelli, R.: me-compute: a Python software to download events and data from FDSN web services and compute their energy magnitude (Me), GFZ Data Services [code], https://doi.org/10.5880/GFZ.2.6.2023.008, 2023. a, b
Zaccarelli, R., Bindi, D., Strollo, A., Quinteros, J., and Cotton, F.: Stream2segment: An Open‐Source Tool for Downloading, Processing, and Visualizing Massive Event‐Based Seismic Waveform Datasets, Seismol. Res. Lett., 90, 2028–2038, https://doi.org/10.1785/0220180314, 2019. a
Zaccarelli, R., Bindi, D., and Strollo, A.: Anomaly Detection in Seismic Data – Metadata Using Simple Machine‐Learning Models, Seismol. Res. Lett., 92, 2627–2639, https://doi.org/10.1785/0220200339, 2021. a
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
The size of an earthquake is often described by a single number called the magnitude. Among the...
Altmetrics
Final-revised paper
Preprint