Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2927-2023
https://doi.org/10.5194/essd-15-2927-2023
Data description paper
 | 
11 Jul 2023
Data description paper |  | 11 Jul 2023

Mapping global non-floodplain wetlands

Charles R. Lane, Ellen D'Amico, Jay R. Christensen, Heather E. Golden, Qiusheng Wu, and Adnan Rajib

Related authors

Integrating remotely sensed surface water dynamics into hydrologic signature modelling
Melanie K. Vanderhoof, Peter Nieuwlandt, Heather E. Golden, Charles R. Lane, Jay R. Christensen, William Keenan, and Wayana Dolan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-298,https://doi.org/10.5194/hess-2024-298, 2024
Preprint under review for HESS
Short summary
Surface water storage influences streamflow signatures
Melanie K. Vanderhoof, Peter Nieuwlandt, Heather E. Golden, Charles R. Lane, Jay R. Christensen, Will Keenan, and Wayana Dolan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-119,https://doi.org/10.5194/hess-2024-119, 2024
Manuscript not accepted for further review
Short summary
Seasonal watershed-scale influences on nitrogen concentrations across the Upper Mississippi River Basin
Michael L. Wine, Heather E. Golden, Jay R. Christensen, Charles R. Lane, and Oleg Makhnin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-423,https://doi.org/10.5194/hess-2020-423, 2020
Preprint withdrawn
Short summary
Wetlands inform how climate extremes influence surface water expansion and contraction
Melanie K. Vanderhoof, Charles R. Lane, Michael G. McManus, Laurie C. Alexander, and Jay R. Christensen
Hydrol. Earth Syst. Sci., 22, 1851–1873, https://doi.org/10.5194/hess-22-1851-2018,https://doi.org/10.5194/hess-22-1851-2018, 2018
Short summary
Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery
Qiusheng Wu and Charles R. Lane
Hydrol. Earth Syst. Sci., 21, 3579–3595, https://doi.org/10.5194/hess-21-3579-2017,https://doi.org/10.5194/hess-21-3579-2017, 2017
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025,https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary
Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022
Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl
Earth Syst. Sci. Data, 17, 741–772, https://doi.org/10.5194/essd-17-741-2025,https://doi.org/10.5194/essd-17-741-2025, 2025
Short summary
EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025,https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary
A Sentinel-2 machine learning dataset for tree species classification in Germany
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data, 17, 351–367, https://doi.org/10.5194/essd-17-351-2025,https://doi.org/10.5194/essd-17-351-2025, 2025
Short summary
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025,https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary

Cited articles

Adame, M. F., Arthington, A. H., Waltham, N., Hasan, S., Selles, A., and Ronan, M.: Managing threats and restoring wetlands within catchments of the Great Barrier Reef, Australia, Aquat. Conserv., 29, 829–839, https://doi.org/10.1002/aqc.3096, 2019. 
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, https://doi.org/10.1002/hyp.9947, 2014. 
Ameli, A. A. and Creed, I. F.: Does Wetland Location Matter When Managing Wetlands for Watershed-Scale Flood and Drought Resilience?, J. Ame. Water Resour. Assoc., 55, 529–542, https://doi.org/10.1111/1752-1688.12737, 2019. 
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002. 
Badiou, P., Page, B., and Akinremi, W.: Phosphorus Retention in Intact and Drained Prairie Wetland Basins: Implications for Nutrient Export, J. Environ. Qual., 47, 902–913, https://doi.org/10.2134/jeq2017.08.0336, 2018. 
Download
Short summary
Non-floodplain wetlands (NFWs) – wetlands located outside floodplains – confer watershed-scale resilience to hydrological, biogeochemical, and biotic disturbances. Although they are frequently unmapped, we identified ~ 33 million NFWs covering > 16 × 10 km2 across the globe. NFWs constitute the majority of the world's wetlands (53 %). Despite their small size (median 0.039 km2), these imperiled systems have an outsized impact on watershed functions and sustainability and require protection.
Share
Altmetrics
Final-revised paper
Preprint