Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2927-2023
https://doi.org/10.5194/essd-15-2927-2023
Data description paper
 | 
11 Jul 2023
Data description paper |  | 11 Jul 2023

Mapping global non-floodplain wetlands

Charles R. Lane, Ellen D'Amico, Jay R. Christensen, Heather E. Golden, Qiusheng Wu, and Adnan Rajib

Related authors

Integrating remotely sensed surface water dynamics into hydrologic signature modelling
Melanie K. Vanderhoof, Peter Nieuwlandt, Heather E. Golden, Charles R. Lane, Jay R. Christensen, William Keenan, and Wayana Dolan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-298,https://doi.org/10.5194/hess-2024-298, 2024
Preprint under review for HESS
Short summary
Surface water storage influences streamflow signatures
Melanie K. Vanderhoof, Peter Nieuwlandt, Heather E. Golden, Charles R. Lane, Jay R. Christensen, Will Keenan, and Wayana Dolan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-119,https://doi.org/10.5194/hess-2024-119, 2024
Manuscript not accepted for further review
Short summary
Seasonal watershed-scale influences on nitrogen concentrations across the Upper Mississippi River Basin
Michael L. Wine, Heather E. Golden, Jay R. Christensen, Charles R. Lane, and Oleg Makhnin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-423,https://doi.org/10.5194/hess-2020-423, 2020
Preprint withdrawn
Short summary
Wetlands inform how climate extremes influence surface water expansion and contraction
Melanie K. Vanderhoof, Charles R. Lane, Michael G. McManus, Laurie C. Alexander, and Jay R. Christensen
Hydrol. Earth Syst. Sci., 22, 1851–1873, https://doi.org/10.5194/hess-22-1851-2018,https://doi.org/10.5194/hess-22-1851-2018, 2018
Short summary
Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery
Qiusheng Wu and Charles R. Lane
Hydrol. Earth Syst. Sci., 21, 3579–3595, https://doi.org/10.5194/hess-21-3579-2017,https://doi.org/10.5194/hess-21-3579-2017, 2017
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Annual high-resolution grazing-intensity maps on the Qinghai–Tibet Plateau from 1990 to 2020
Jia Zhou, Jin Niu, Ning Wu, and Tao Lu
Earth Syst. Sci. Data, 16, 5171–5189, https://doi.org/10.5194/essd-16-5171-2024,https://doi.org/10.5194/essd-16-5171-2024, 2024
Short summary
Global mapping of oil palm planting year from 1990 to 2021
Adrià Descals, David L. A. Gaveau, Serge Wich, Zoltan Szantoi, and Erik Meijaard
Earth Syst. Sci. Data, 16, 5111–5129, https://doi.org/10.5194/essd-16-5111-2024,https://doi.org/10.5194/essd-16-5111-2024, 2024
Short summary
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024,https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Jie Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, Xuebin Yang, Xiaocui Wu, Chandrashekhar Biradar, and Yang Hu
Earth Syst. Sci. Data, 16, 4619–4639, https://doi.org/10.5194/essd-16-4619-2024,https://doi.org/10.5194/essd-16-4619-2024, 2024
Short summary

Cited articles

Adame, M. F., Arthington, A. H., Waltham, N., Hasan, S., Selles, A., and Ronan, M.: Managing threats and restoring wetlands within catchments of the Great Barrier Reef, Australia, Aquat. Conserv., 29, 829–839, https://doi.org/10.1002/aqc.3096, 2019. 
Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, https://doi.org/10.1002/hyp.9947, 2014. 
Ameli, A. A. and Creed, I. F.: Does Wetland Location Matter When Managing Wetlands for Watershed-Scale Flood and Drought Resilience?, J. Ame. Water Resour. Assoc., 55, 529–542, https://doi.org/10.1111/1752-1688.12737, 2019. 
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002. 
Badiou, P., Page, B., and Akinremi, W.: Phosphorus Retention in Intact and Drained Prairie Wetland Basins: Implications for Nutrient Export, J. Environ. Qual., 47, 902–913, https://doi.org/10.2134/jeq2017.08.0336, 2018. 
Download
Short summary
Non-floodplain wetlands (NFWs) – wetlands located outside floodplains – confer watershed-scale resilience to hydrological, biogeochemical, and biotic disturbances. Although they are frequently unmapped, we identified ~ 33 million NFWs covering > 16 × 10 km2 across the globe. NFWs constitute the majority of the world's wetlands (53 %). Despite their small size (median 0.039 km2), these imperiled systems have an outsized impact on watershed functions and sustainability and require protection.
Altmetrics
Final-revised paper
Preprint