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Abstract. Non-floodplain wetlands – those located outside the floodplains – have emerged as integral com-
ponents to watershed resilience, contributing hydrologic and biogeochemical functions affecting watershed-
scale flooding extent, drought magnitude, and water-quality maintenance. However, the absence of a global
dataset of non-floodplain wetlands limits their necessary incorporation into water quality and quantity man-
agement decisions and affects wetland-focused wildlife habitat conservation outcomes. We addressed this crit-
ical need by developing a publicly available “Global NFW” (Non-Floodplain Wetland) dataset, comprised of
a global river–floodplain map at 90 m resolution coupled with a global ensemble wetland map incorporating
multiple wetland-focused data layers. The floodplain, wetland, and non-floodplain wetland spatial data de-
veloped here were successfully validated within 21 large and heterogenous basins across the conterminous
United States. We identified nearly 33 million potential non-floodplain wetlands with an estimated global ex-
tent of over 16× 106 km2. Non-floodplain wetland pixels comprised 53 % of globally identified wetland pix-
els, meaning the majority of the globe’s wetlands likely occur external to river floodplains and coastal habi-
tats. The identified global NFWs were typically small (median 0.039 km2), with a global median size rang-
ing from 0.018–0.138 km2. This novel geospatial Global NFW static dataset advances wetland conservation
and resource-management goals while providing a foundation for global non-floodplain wetland functional as-
sessments, facilitating non-floodplain wetland inclusion in hydrological, biogeochemical, and biological model
development. The data are freely available through the United States Environmental Protection Agency’s Envi-
ronmental Dataset Gateway (https://gaftp.epa.gov/EPADataCommons/ORD/Global_NonFloodplain_Wetlands/,
last access: 24 May 2023) and through https://doi.org/10.23719/1528331 (Lane et al., 2023a).
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1 Introduction

Wetlands are recognized as globally important ecosystems
providing functions leading to critical provisioning (e.g.,
food, freshwater for domestic, agricultural, and industrial
use) and regulating services (e.g., flood and drought mit-
igation, water purification and waste treatment, and habi-
tat; Millennium Ecosystem Assessment, 2005). Despite their
functional importance, wetlands are threatened worldwide by
myriad anthropogenic disturbances, including sea-level rise
(IPCC, 2014), drainage and filling (Davidson, 2014), wa-
ter abstraction (Liu et al., 2017), consolidation (McCauley
et al., 2015), invasive species (Zedler and Kercher, 2004),
and changing precipitation and temperature patterns (Win-
ter, 2000). These widespread and globally prevalent alter-
ations to wetlands affect their functioning, resulting in in-
creased downgradient flooding (Golden et al., 2021), modi-
fied stream baseflows (Buttle, 2018), reduced pollution miti-
gation (Evenson et al., 2018a), and habitat loss (Uden et al.,
2015).

Watershed-scale wetland management is currently ham-
pered by the paucity of accurate and fine-grained maps of
wetland location (Creed et al., 2017; Christensen et al.,
2022). However, methods to identify existing aquatic sys-
tems, including wetlands, that provide functions at global
scales have recently emerged, such as the Landsat-based
30 m global surface water inundation data (Pekel et al.,
2016), finer-resolution satellite-based land cover maps (e.g.,
Zanaga et al., 2021), and groundwater-driven aquatic sys-
tem characterizations (Fan et al., 2013). In addition, meth-
ods utilizing digital elevation models to identify topographic
depressions likely to support aquatic systems with character-
istic wetland features, such as saturated soils and/or ponded
waters, have also regionally proliferated (Wu et al., 2019a, b;
Christensen et al., 2022).

These advancements in mapping wetland location, such as
those located within the river floodplain or geographically
distal from floodplains, allow resource managers to better
incorporate wetland biogeochemical, hydrological, and bio-
logical functions and concomitantly ecosystem services into
their decision-making efforts. For instance, incorporating
floodplain wetlands into decision-making advances the wise
management and conservation of mapped riparian ecosys-
tems (Tullos, 2018; Kundzewicz et al., 2018). Thus, rec-
ognizing the importance of wetlands located within active
river floodplains, land-management decisions are being made
to quantify the functions and ecosystem services of these
wetlands and incorporate them into watershed-scale hydro-
ecological decisions (e.g., Makungu and Hughes, 2021; Ra-
jib et al., 2021).

However, non-floodplain wetlands are typically not in-
corporated into watershed-scale conservation and manage-
ment planning (e.g., Sullivan et al., 2019), thereby ignoring
their contributions to watershed-scale resilience in response
to biogeochemical and hydrological disturbances (Rains et

al., 2016; Golden et al., 2021; Lane et al., 2023b). Non-
floodplain wetlands are abundant inland freshwater wetlands
located distally from the floodplains of rivers and lakes (Lane
and D’Amico, 2016; Lane et al., 2018). Though typically
small (Cohen et al., 2016), high biogeochemical processing
rates within non-floodplain wetlands have resulted in these
systems being termed bioreactors (Marton et al., 2015). In-
deed, a literature review of over 600 articles found that the
highest reactivity rates (pollutant mass removal per unit time)
were found in the smallest water bodies and wetlands (Cheng
and Basu, 2017). Further, the high reactivity of individual
non-floodplain wetlands can cumulatively improve downgra-
dient water quality conditions (Golden et al., 2019; Evenson
et al., 2021). Non-floodplain wetlands may therefore have an
outsized impact on a watershed’s water quality.

Non-floodplain wetlands are also important ecosystems
affecting water quantity (i.e., for storing and gradually re-
leasing water to downgradient rivers and streams). Specif-
ically, precipitation is captured and stored in non-floodplain
wetlands prior to being discharged downgradient. During this
storage period, water can infiltrate to recharge aquifers, evap-
orate or transpire, or eventually “spill” overland and be trans-
ported downstream (Jones et al., 2018; Buttle, 2018). These
non-floodplain wetland water storage functions attenuate
storm flows (Shaw et al., 2012; Fossey and Rousseau, 2016;
Blanchette et al., 2022) and recharge groundwaters (Bam et
al., 2020), thereby mitigating flood hazards (Mclaughlin et
al., 2014) and ameliorating drought conditions by maintain-
ing baseflow (Ameli and Creed, 2019).

Despite the important functions provided by non-
floodplain wetlands (Biggs et al., 2017; Chen et al., 2022) a
substantive data gap remains: no global maps or datasets ex-
ist identifying the geospatial location of non-floodplain wet-
lands and open waters. Regionally focused efforts, such as
the recent work by Lane and D’Amico (2016) and Lane et
al. (2023b), mapped the extent of non-floodplain wetlands
(also known as geographically isolated wetlands; Leibowitz,
2015; Mushet et al., 2015) across the geospatially data-rich
conterminous United States (CONUS; see abbreviation list
in Appendix A). They found that 16 %–23 % of freshwater
systems were potential non-floodplain wetlands, suggesting
a substantial yet hitherto unknown portion of the globe’s wet-
lands are likely also this vulnerable water resource.

Fortunately, geospatial data for identifying aquatic sys-
tems, including wetlands, are burgeoning. Global land cover
and land use geospatial datasets that include a wetland cover
class continue to propagate (Hu et al., 2017a), taking ad-
vantage of both lengthy time-series Landsat data (Homer et
al., 2020) and recently launched advanced high-resolution
satellites and/or satellites equipped with synthetic-aperture
radar (SAR; e.g., Sentinel-1, Sentinel-2, and many commer-
cially available platforms; Martinis et al., 2022) and topo-
graphic data sources and analyses (e.g., Wu et al., 2019b).
Examples include the GlobeLand30 product (Chen et al.,
2015), the European Space Agency (ESA) WorldCover 2020
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product (Zananga et al., 2021), and the Dynamic World
dataset (Brown et al., 2022), as well as consortiums focus-
ing on annual land cover change mapping (e.g., Tsendbazar
et al., 2021). Several recent publications review the available
wetland-focused datasets, including Hu et al. (2017a, their
Table 1), Davidson et al. (2018, their Table S1), Tootchi et
al. (2019, their Table 1), and Zhang et al. (2023, their Ta-
ble 1). We summarize additional emerging global land cover
datasets related to surface water and wetlands in Appendix
Table B1.

Lehner and Döll (2004) were amongst the first to publish
a geospatially explicit global map focusing on wetland ex-
tents. Their Global Lakes and Wetlands Database (GLWD)
provides 1 km estimates of wetland abundance. More re-
cent and/or higher-resolution wetland-focused datasets have
emerged. For instance, Hu et al. (2017b) incorporated pre-
cipitation and a topographic wetness index to create a 1 km
global wetland dataset, and Tootchi et al. (2019) developed
a global map using multi-sourced 500 m composite maps of
regularly flooded and groundwater-driven wetlands. The ap-
proach by Tootchi et al. (2019) identified small and scat-
tered wetlands. However, they recognized that the limita-
tions inherent in their global product (ca. 500 m per pixel
resolution) resulted in omission errors for many wetland sys-
tems, especially those smaller than their 500×500 m (25 ha)
data resolution. This suggests, and Tootchi et al. (2019) ac-
knowledged, that many (non-floodplain) wetlands were omit-
ted in the Tootchi et al. (2019) 500 m global product. Co-
hen et al. (2016) determined that non-floodplain wetlands in
the CONUS are “unambiguously small”; e.g., their average
non-floodplain wetland area was 2.1 ha. Based on the “all-or-
nothing” methodological approach in Tootchi et al. (2019),
> 12.5 ha of a given 25.0 ha cell (one homogenous pixel)
would have to be identified as wetland in their resampling
of the finer-scale data – much larger than the average 2.1 ha
wetlands found in Cohen et al. (2016).

Concurrent with increasingly available global land cover
and wetland data, there is an increasing global focus on de-
riving floodplain and flood hazard-prone areal extents within
river networks based on high-resolution topographic data
coupled with hydrologic and/or hydraulic modeling (Tul-
los, 2018; Kundzewicz et al., 2018). The past decade has
seen development of multiple regional to continental flood
models that span physically based approaches (e.g., 1-,2-,
and 3-D hydrodynamic models) to empirical models (includ-
ing machine-learning (ML) approaches and statistical mod-
els) (see review by Mudashiru et al., 2021). On the global
scale, openly accessible global flood models include those
reviewed by Hoch and Trigg (2019), namely CaMa-Flood
(Catchment-based Macro-scale Floodplain; Yamazaki et al.,
2011), GLOFRIS (Global Flood Risk with Image Scenarios;
Winsemius et al., 2013), JRC (Joint Research Center; Dot-
tori et al., 2016), CIMA-UNEP (CIMA Research Foundation
– United Nations Environmental Programme; Rudari et al.,
2015), Fathom (Sampson et al., 2015), and ECMWF (Euro-

pean Centre for Medium-Range Weather Forecasts; Papper-
berger et al., 2012). For instance, Sampson et al. (2015) cre-
ated a global 90 m map of flood-prone areas between 60◦ N
and 56◦ S using a regional flood-frequency model. More
recently, Nardi et al. (2019) published a global floodplain
dataset at 250 m resolution that extended from 60◦ N to 60◦ S
developed through geomorphic or terrain-based analyses of
floodplain elevations and maximum flood-prone areas using
a drainage-area scaling variable (Rajib et al., 2021). The evo-
lution of the MERIT (Multi-Error Removed Improved Ter-
rain) Hydro 90 m global hydrography dataset by Yamazaki et
al. (2019) and machine-learning approaches (e.g., Zhao et al.,
2021) has created additional opportunities to further advance
the derivation of global floodplains, with improved identifi-
cation of flow accumulation area, river-basin shape, and river
channel location.

These wetland location and floodplain extent data are crit-
ical for watershed-scale sustainable aquatic resource policy
decisions (Creed et al., 2017; Golden et al., 2017). The lack
of these data can result in disproportionately large model er-
rors and potentially misguided management decisions when
non-floodplain wetlands are not incorporated in hydrological
and biogeochemical models, ignoring their watershed-scale
impacts on flooding, drought, and water quality (Evenson et
al., 2018a; Rajib et al., 2020; Golden et al., 2021).

Here, we provide the first global geospatial dataset of non-
floodplain wetlands. We incorporate the recent development
of a high-resolution global floodplain mapping algorithm
based on digital terrain models by Nardi et al. (2019). We
couple these spatial floodplain data with higher-resolution
modifications to the gridded global wetland and open-water
data layers developed by Tootchi et al. (2019) that incorpo-
rate the Pekel et al. (2016) satellite-based inundation prod-
uct, modeled groundwater-driven wetland extent (Fan et al.,
2013, and ancillary satellite land cover data from Herold et
al., 2015). We test the applicability of our global dataset of
non-floodplain wetlands in 21 large and spatial-data rich wa-
tersheds spanning nearly 700 000 km2 across the CONUS.
This novel global product identifying non-floodplain wet-
lands provides for the quantification and estimation of the
locations and extent of important aquatic systems with abun-
dant hydrological, biogeochemical, and biological functions,
filling a noted research gap while delivering useful data for
informed natural resource decision-making and management
(Creed et al., 2017; Lane et al., 2023b).

2 Methodology and data

Identifying global non-floodplain wetlands required the fol-
lowing steps: (1) determination of global floodplain ex-
tent, (2) identification of the global distribution of wetlands,
(3) spatial overlay (masking) of floodplains and wetlands to
derive a non-floodplain wetland data layer, and (4) data veri-
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fication and accuracy assessment. Steps 1–3 are outlined in a
flow chart given in Fig. 1.

2.1 Global floodplain data

Nardi et al. (2019) combined spaceborne elevation data and
terrain analysis with a novel open-source algorithm to de-
lineate the geomorphic floodplains across the globe between
60◦ N and 60◦ S latitudes. Conceptually, Nardi et al. (2019)
identified floodplains from surrounding hillslopes as those
low-lying landscape features that have been naturally shaped
by accumulated geomorphic effects of past flood events. The
original Nardi et al. (2019) dataset was limited in its spa-
tial extent (60◦ N–60◦ S) and resolution (250 m); this study
sought to delineate global floodplain extent while concur-
rently identifying floodplain features further up the river net-
work than possible with 250 m pixels. Hence, we utilized the
freely available Nardi et al. (2019) GFPlain (Global Flood-
plain) v1.0 algorithm and coupled this with the MERIT
Hydro (Yamazaki et al., 2019), global raster digital terrain
model data to develop a higher-resolution (90 m) geomor-
phic riverine floodplain for the globe, termed hereafter GF-
Plain90.

The development of GFPlain90 required multiple steps.
We first extracted elevation data from MERIT Hydro and
reprojected the data in UTM (Universal Transverse Merca-
tor) zones to prevent distortion when using the GFPlain al-
gorithm. We then developed the drainage network, drainage
area, flow accumulation, and flow direction data from these
data using the established scaling parameters in Nardi et
al. (2019; power-law coefficient (a) of 0.01 and dimension-
less exponent (b) = 0.30). We established 20 km2 as the
minimum contributing-area threshold required to create the
drainage network, balancing the development of a global
stream-network distribution and extent with computational
requirements. We then globally organized the data by Hy-
droBASINS Level 4 basins (Lehner and Grill, 2013). Hy-
droBASINS provides seamless watershed boundaries and
subbasin delineations at global scales; there are 1342 Level 4
HydroBASINS globally. The floodplain extent resolution of
GFPlain90 was resampled (using nearest neighbor) to 30 m
for subsequent performance assessment and overlap analy-
ses with the wetland spatial data. All spatial analyses in this
study were conducted using ArcGIS Pro v.2.9.x (ESRI, Red-
lands, California) and GRASS GIS v 7.4.4 (OSGEO, Beaver-
ton, Oregon).

2.2 Global wetland data

Tootchi et al. (2019) developed a widely used composite
global wetland map at ∼ 500 m by combining multiple data
sources, including both satellite-based surface water inun-
dation mapping and vegetation classification coupled with
model-based approaches capturing important groundwater-
driven wetland systems. We specifically used the Tootchi

et al. (2019) composite map consisting of both regularly
surface-water-flooded wetlands (“regularly flooded wet-
lands”, RFWs) and groundwater-discharge-maintained wet-
lands (“groundwater-driven wetlands”, GDWs) as the foun-
dation for our global wetland map. Tootchi et al. (2019)
merged the RFW and GDW maps, described below, to form a
union product used here that demonstrated a high correlation
with available evaluation data, called the composite wetland–
water table depth (or CW-WTD).

2.2.1 Original composite wetland data

Regularly flooded wetlands (RFWs) derived by Tootchi et
al. (2019) were based on three data sources: 30 m resolu-
tion global surface water (GSW) data by Pekel et al. (2016),
300 m Climate Change Initiative (CCI) land cover data by
Herold et al. (2015), and 500 m GIEMS-D15 (Global Inun-
dation Extent from Multi-Satellites – Downscaled 15 arcsec-
onds) wetland extent data by Fluet-Chouinard et al. (2015).
GSW data used by Tootchi et al. (2019) were developed
from Landsat satellite imagery analyses of pixels identi-
fied as inundated at least once during the 32-year period of
record by Pekel et al. (2016). CCI input wetland data for
Tootchi et al. (2019) included both inundated and wetland
vegetation-classed pixels assessed during the period 2008–
2012 by Herold et al. (2015). For GIEMS-D15, data in-
cluded were the mean annual maximum extent of pixels iden-
tified as wetlands using multi-sensor satellite data by Prigent
et al. (2007), downscaled to ∼ 500 m resolution by Fluet-
Chouinard et al. (2015). GSW and CCI input data were re-
sampled to ∼ 500 m resolution using an all-or-nothing” ap-
proach by Tootchi et al. (2019). This means that a pixel cat-
egorization of “wetland” at 500 m resolution was given by
Tootchi et al. (2019) only if the majority of resampled finer-
resolution input pixels were classed as wetlands. The upward
resampling from 30 and 300 to 500 m resulted in a loss of in-
formative spatial data on wetland extent from GSW and CCI
data. Tootchi et al. (2019) calculated that RFWs cover ap-
proximately 9.7 % of the global land area (excluding lakes
(sourced from Messager et al., 2016), Antarctica, and the
Greenland ice sheet).

Groundwater-driven wetlands (GDWs in the analysis of
Tootchi et al., 2019) used in this study were based on the wa-
ter table depth estimates by Fan et al. (2013). Fan et al. (2013)
developed a 1 km resolution groundwater map based on cli-
mate and terrain variables that was validated by over 1 mil-
lion government-recorded and published observations. Fan
et al. (2013) estimated that shallow groundwater influenced
nearly 15 % of groundwater-fed surface features, explaining
important wetland patterning at global scales (as well as veg-
etation classes at local and regional scales). A water table
depth threshold of ≤ 20 cm was used by Tootchi et al. (2019)
to identify groundwater-driven wetlands, and they resampled
these data to ∼ 500 m cell resolution. The GDW distribution
based on water table depths covered approximately 15 % of
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Figure 1. Data flow chart identifying the main datasets and processes involved in deriving the Global Floodplain and Global Wetland data
layers, as well as the intersection of those data to create the Global Non-Floodplain Wetland data product. Curved boxes represent final
products, and abbreviations may be found in the text and Appendix A.

the global land mass (including large portions of the Ama-
zon basin, coastal zones, and North American and Siberian
peatlands).

Tootchi et al. (2019) created a merged “final” product,
called the composite wetland–water table depth (CW-WTD)
map, which is based on the union of the RFW and GDW
maps. They measured an approximately 3.8 % overlap be-
tween the total land pixels identified as wetlands in both
the RFW and GDW maps that comprise the CW-WTD, sug-
gesting the different input maps capture different wetland
types. At the global scale, Tootchi et al. (2019) reported spa-
tial Pearson correlations between CW-WTD (wetland frac-
tions at 3 arcmin, or ∼ 4.9 km grids) and wetlands within
the GLWD (Lehner and Döll, 2004) and Hu et al. (2017b)
as r = 0.34 and r = 0.43, respectively. Tootchi et al. (2019,
their Tables 5 and S1) provided additional analysis of the

correlations between their global wetland product and ex-
isting benchmark data. The total CW-WTD global wetland
estimate was ∼ 21.1 % of the land mass or approximately
27.5× 106 km2 (excluding large lakes, Antarctica, and the
Greenland ice sheet; Tootchi et al., 2019).

2.2.2 Derived global wetland data

To account for the acknowledged limitations of the Tootchi
et al. (2019) data and to accurately identify more of the ex-
isting small and, specifically, non-floodplain wetlands across
the globe (e.g., those < 25 ha), we improved upon and aug-
mented the CW-WTD (Tootchi et al., 2019) global wetland
data layer with the 30 m native-resolution GSW (Pekel et
al., 2016) and 300 m native-resolution CCI (Herold et al.,
2015) data. The inclusive wetland categories of Tootchi et
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al. (2019) were maintained, namely at least one inundation
event over a 32-year range (for GSW data) and CCI pixels
defined as “. . . mixed classes of flooded areas with tree cov-
ers, shrubs, or herbaceous covers plus inland water bodies
. . . ” (Tootchi et al., 2019, p. 193). However, for our analy-
sis we resampled the 500 m CW-WTD product to 30 m us-
ing the nearest-neighbor approach and then added any iden-
tified wetland pixel from the CCI data (resampled from 300
to 30 m) and inundated pixel from the GSW data (30 m reso-
lution). Resampling to a finer resolution (as we did in our
analysis) does not result in data losses: the same data are
retained but are divided into equal, smaller parts. However,
moving from a finer resolution to coarser resolution (as in
the CW-WTD dataset’s all-or-nothing approach) does cause
data losses: fine-scale data are necessarily aggregated (often
by averaging) to a larger grid cell size, and therefore less
information is retained. To compensate for this data loss in
the CW-WTD dataset, the finer-resolution GSW (30 m) and
CCI (300 m) data were added back into the dataset. This re-
sulted in a novel and encompassing wetland ensemble end
product, hereafter termed the “Global Wetland” dataset. This
new dataset is inclusive of finer-resolution (30 and 300 m)
data, thereby accounting for a wide range of wetland sizes –
such as smaller non-floodplain wetlands (Cohen et al., 2016)
– that remained unmapped by Tootchi et al. (2019).

2.3 Global non-floodplain wetlands (NFWs)

To identify non-floodplain wetlands specifically, we overlaid
our GFPlain90 floodplain data with our mapped Global Wet-
land data to mask wetland pixels collocated on the floodplain.
Then, to avoid tidally influenced wetlands, we conducted a
region-group analysis to identify connected pixels abutting
coastal shorelines in order to mask wetlands in coastal areas
(e.g., those directly abutting the shoreline and spatially con-
nected to tidally influenced areas). We used a four-directional
contagion criterion to identify connected pixels (i.e., those
connected in cardinal directions). Subsequently, we applied
a 1 km buffer to the HydroBASINS (Lehner and Grill, 2013)
coastline area and removed from our analyses any wetland
region group partially or completely overlain by the 1 km
coastline buffer. In addition, Tootchi et al. (2019) removed
lake systems (≥ 10 ha) from their wetland-focused data by
masking aquatic layers using HydroLAKES (Messager et al.,
2016). To avoid including large lakes in our emerging non-
floodplain wetland geospatial data, we also applied the Hy-
droLAKES mask and removed lake systems ≥ 10 ha (Mes-
sager et al., 2016) from our Global Wetland dataset. Thus,
our final global non-floodplain wetland data product (here-
after “Global NFW” dataset) did not include fluvial flood-
plain wetlands, nor did it include coastal wetland complexes
and large open-water lacustrine (lake-like; Cowardin et al.,
1979) systems.

2.4 Data verification and assessment

We evaluated the global products developed here through
comparison of high-resolution floodplain and wetland extent
data from 21 basins representing disparate climatic (accord-
ing to the Köppen–Geiger classification, Beck et al., 2018),
elevation, and land use gradients within the CONUS (Fig. 2;
summarized in Table B2). We specifically focused on the
CONUS for product assessment because of its wide-ranging
data availability and diversity of physiographic and climatic
regions.

2.4.1 Verifying floodplain extent

We used a recently developed machine-learning-based 30 m
resolution CONUS floodplain dataset (Woznicki et al., 2019)
as the benchmark to evaluate our GFPlain90 global flood-
plain data. Specifically, the ML model by Woznicki et
al. (2019) used the US Federal Emergency Management
Agency (FEMA) 100-year floodplain (i.e., a 1 % chance of
coastal or fluvial flood inundation in a given year; Jakubínský
et al., 2021) as the training data and subsequently used soil
and topographic characteristic along with land cover to iden-
tify potential floodplain grid cells across the CONUS at 30 m
resolution. Woznicki et al. (2019) reported that their ML ap-
proach correctly identified ∼ 79 % of the FEMA 100-year
coastal and fluvial floodplains, providing spatially complete
100-year floodplain coverage totaling 980 450 km2 across the
CONUS.

2.4.2 Verifying wetland and non-floodplain wetland
extent

We evaluated our inclusive Global Wetland and Global NFW
datasets in 21 basins covering ∼ 680 000 km2 (Fig. 2). We
contrasted our products to the 2016 National Land Cover
Database (NLCD; Dewitz, 2019). The NLCD is a 30 m Land-
sat satellite-based geospatial product with an overall accu-
racy of 86 % that incorporates high-resolution aerial imagery
of wetland location for model parameterization and calibra-
tion (Jin et al., 2019; Wickham et al., 2021). Three NLCD
classes were selected for comparison with the Global Wet-
land product: woody wetlands, emergent herbaceous wet-
lands, and open water. To assess the relative improvement of
our 30 m Global Wetland and Global NFW dataset with the
500 m Tootchi et al. (2019) data, we also contrasted the CW-
WTD with the NLCD classes within the verification water-
sheds. For equal comparisons, following Tootchi et al. (2019)
we used the Messager et al. (2016) HydroLAKES to mask
out large lake systems (≥ 10 ha) from both the Global Wet-
land and the NLCD data within the 21 verification water-
sheds.
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Figure 2. A total of 21 validation watersheds were selected from across the CONUS to capture the breadth and extent of land use (top,
NLCD, 2019) and climate and physiographic regions (bottom) within the CONUS according to the Köppen–Geiger classification (Beck et
al., 2018; also summarized in Table B2). The hydrologic unit code (HUC) classifications are sourced from the USGS Watershed Boundary
Dataset (2022a).
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2.4.3 Standard performance measures

We evaluated the floodplain and wetland spatial data within
the 21 validation watersheds using commonly employed per-
formance measures. Following Wing et al. (2017), we first
created a contingency table for our performance assessment
(Table 1). As noted, we selected 20 km2 as the minimum
contributing area to develop stream networks in our global
floodplain analysis, a reasonable area for flow accumulation
that balances computational efficiency for global geospatial
model development. The dataset from Woznicki et al. (2019),
our benchmark floodplain dataset, used a 4.5 km2 contribut-
ing area in their high-resolution CONUS analysis. To ap-
propriately compare between datasets of two varying reso-
lutions, we removed stream and river network components
from the Woznicki et al. (2019) validation dataset developed
with contributing areas < 20 km2, as our model did not dis-
cern landscape data at that granularity.

To provide a full assessment of our geospatial model-
ing performance, we contrasted our GFPlain90 floodplain
dataset across the 21 validation watersheds using the ap-
proaches described below following Sampson et al. (2015),
Wing et al. (2017), and others (e.g., Bates and De Roo, 2000;
Alfieri et al., 2014; Sangwan and Merwade, 2015; Jafarzade-
gan et al., 2018; Woznicki et al., 2019). We first contrasted
our GFPlain90 floodplains to the data from Woznicki et
al. (2019), our benchmark floodplain data. We then analyzed
the watershed-scale comparison of our Global Wetland prod-
uct versus the NLCD wetlands (combined open-water and
wetland classes), our benchmark wetlands data. We followed
with a comparison focusing only on our Global NFW data
and those NLCD wetlands and open-water pixels that were
determined to be non-floodplain systems (i.e., NLCD data
that also do not overlap the GFPlain90 data nor coastal wa-
ters and with lakes > 10 ha removed). These NLCD wetlands
were our benchmark non-floodplain wetland data. Lastly, we
assessed the mean and aggregate error bias of our analyses
by exploring results at coarser spatial granularity (i.e., 1 km
pixel size) along the riverine network (for floodplain assess-
ment) and, for wetland metrics, throughout the entirety of
our 21 performance assessment watersheds (Sampson et al.,
2015; Wing et al., 2017). The metrics described below and in
Table 2 were used in our analyses.

The hit rate (Bates and De Roo, 2000; Horritt and Bates,
2002; Tayefi et al., 2007), also referred to as “recall”
(Woznicki et al., 2019) and “correct” (Sangwan and Mer-
wade, 2015), measures how well a geospatial model classi-
fication replicates the benchmark data but does not penalize
for overprediction. H varies from 0, where there is no over-
lap between the modeled data and the benchmark data, to
1, where the modeled data completely contain the bench-
mark data. Precision (Woznicki et al., 2019), also known
as “spatial coincidence” (Tootchi et al., 2019), indicates the
proportion of the benchmark data that are correctly pre-
dicted and mapped in the modeled data. This metric, P ,

also ranges from 0 to 1, with higher values indicating better
performance. The false alarm ratio (Sampson et al., 2015;
Wing et al., 2017), also known as the “false discovery ra-
tio”, quantifies modeled data overprediction relative to the
benchmark data. F varies from 0 (zero false alarms) to 1
(all false alarms); lower values are considered better perfor-
mance. The false alarm ratio can also be calculated as 1 mi-
nus precision (Woznicki et al., 2019). The critical success
index (CSI; Bates and De Roo, 2000; Aronica et al., 2002;
Werner et al., 2005; Fewtrell et al., 2008), also known as Jac-
card’s index (Tootchi et al., 2019) and fit (Sangwan and Mer-
wade, 2015), penalizes for both over- and underprediction,
ranging from 0 (no match) to 1 (perfect match). Woznicki
et al. (2019) utilized a performance metric, F1, which com-
bines the hit rate (called recall by Woznicki et al., 2019) and
precision using their harmonic mean. F1 also varies from 0
to 1, with higher values indicating better performance. Error
bias (EB) characterizes the tendency of the model towards
under- or overprediction (Sampson et al., 2015). Values of 1
indicate no bias, and 0≤ EB < 1 indicates underprediction,
whereas 1 < EB≤∞ indicates that the model is tending to-
wards overprediction.

Lastly, two additional metrics were calculated that as-
sessed performance at the 30 arcsec (∼ 1 km) scale. These
measures, mean absolute error and aggregate error bias
(Sampson et al., 2015; Wing et al., 2017), characterize the
data accuracy across large spatial extents. Large spatial ex-
tents are areas where 30 m data and overlap accuracy is less
a concern than general dataset performance for broad-scale
end-user applications (e.g., when coarser, watershed-scale
“lumped” hydrologic characterizations of water storage are
all that is required). For these metrics, both estimated and
benchmark data were resampled to 1 km resolution across
the whole of each watershed; values within each 1 km pixel
ranged from 0 to 1 and represented the fraction of the 30 m
resolution estimates and benchmark data. We assessed flood-
plain estimates after calculating the fractional abundance
comprising each 1 km2 pixel within a 1 km buffer around the
floodplain data from Woznicki et al. (2019). We additionally
analyzed all wetlands at the watershed scale as well as fo-
cusing on non-floodplain wetlands (e.g., wetlands exclusive
of the GFPlain90 floodplain or coastal connections, our tar-
get aquatic system). In Eqs. (7) and (8) (given in Table 2),
M is the area estimated as floodplain (or wetland), B is the
benchmark floodplain (or wetland) area, and N is the number
of 1 km cells with data. Mean absolute error and error bias
were calculated for each of the 21 HUCs, following Wing et
al. (2017).

3 Results

3.1 Floodplain data performance

The GFPlain90 floodplain data (Fig. 3) performed well when
contrasted with the 100-year coastal and fluvial floodplain
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Table 1. Contingency table of possible outcomes for each cell used in assessing the performance of either the floodplain or wetland geospa-
tially modeled data. We contrasted published benchmark data from Woznicki et al. (2019) for floodplain extent against modeled GFPlain90
data. Wetland comparisons contrasted NLCD wetlands (Dewitz, 2019; open-water and wetland classes) against both Global Wetland and
Global NFW data. The table is modified from Wing et al. (2017). The subscript “1” equates to a positive outcome or overlapping extent for
either the modeled (M) or benchmark (B) data, whereas a zero means no data overlap or a negative outcome.

Floodplain (or wetland) Not floodplain (or wetland)
in benchmark data in benchmark data

Floodplain (or wetland) in modeled data M1B1 M1B0
Not floodplain (or wetland) in modeled data M0B1 M0B0

Table 2. Performance metrics used in validation assessments of floodplain and wetland data layers. Data for assessment (e.g., M1B1) follow
those given in Table 1 and modified from Wing et al. (2017), with the exception of Eqs. (7) and (8) (see text).

Equation Metrics Equation Range
number

1 Hit rate (H ) Hit rate (H )= M1B1
M1B1+M0B1

0–1; higher is better

2 Precision (P ) Precision (P )= M1B1
M1B1+M1B0

0–1; higher is better

3 False alarm ratio (FA) False alarm ratio (FA)= M1B0
M1B0+M1B1

0–1; lower is better

4 Critical success index (CSI) Critical success index (CSI) = M1B1
M1B1+M0B1+M1B0

0–1; higher is better

5 F1 F1= 2
(

H ×P
H +P

)
0–1; higher is better

6 Error bias (EB) Error bias (EB)= M1B0
M0B1

0−∞; < 1 underprediction, 1= no
bias, > 1 indicates overprediction

7 Mean absolute error (EA) Mean absolute error (EA)=
∑N

i=1|M−B|

N
0–1; lower is better

8 Aggregate error bias (BA) Aggregate error bias (BA) =
∑N

i=1M−B

N
−1 to 1; negative values indicate
underprediction and positive val-
ues overprediction

extent data from Woznicki et al. (2019), even though our
analyses do not map coastal floodplains. A median hit rate
of 0.77 suggests that nearly 80 % of the benchmark flood-
plain from Woznicki et al. (2019) was similarly captured by
the GFPlain90 floodplain data (see Appendix Table B3). In
addition, the median false alarm of 0.26 indicates that for ev-
ery three pixels correctly identified as within the Woznicki
et al. (2019) floodplain, one pixel was incorrectly identified
as such (i.e., a commission error measure); this is evident in
wider GFPlain90 floodplains in lower river reaches than pre-
dicted by Woznicki et al. (2019). These performance values
are similar to those reported by Woznicki et al. (2019; false
alarm 0.22) and Wing et al. (2017; false alarm 0.34–0.37).
Critical success index (CSI) scores penalize for overpredic-
tion; our median value of 0.53 approximates previously pub-
lished regional (e.g., Sangwan and Merwade, 2015; CSI val-
ues ranging from 0.44–0.89) and continental flood-extent ap-
proaches (e.g., Sampson et al., 2015, CSI values from 0.43–
0.67; Wing et al., 2017; CSI values between 0.50 and 0.55

reported). Median precision (0.74) and F1 (0.70) values ap-
proximate those in the literature as well (e.g., Woznicki et al.
(2017) reported values of 0.78 for both). Median error bias
values of 1.0 suggest the model neither overestimates nor
underestimates floodplain extents (Wing et al., 2017). The
mean absolute error of 0.08 reported here indicates an ap-
proximate 8 % difference between our GFPlain90 model and
that of Woznicki et al. (2017) at the 1 km cell resolution.

3.2 Wetland data performance

3.2.1 Global Wetland dataset

The novel ensemble Global Wetland approach improved
upon the previously published Tootchi et al. (2019) research
product, the CW-WTD (Table 3), when contrasted with
CONUS data. A median hit rate value of 0.24 indicates that
both the inclusive Global Wetland and CW-WTD captured
∼ one-quarter of the high-resolution, 30 m pixel size NLCD
wetlands and open waters in the validation dataset. How-
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ever, across the 21 validation watersheds, the Global Wet-
land dataset developed here correctly identified more wet-
lands than the CW-WTD alone, as indicated by an 8 % mean
increase in precision, 43 % increase in the critical success in-
dex, 38 % increase in F1, a −8 % decrease in the false alarm
ratio, and a 21 % decrease in error bias. At coarser, 1 km2

scales, there was a slight decrease in the mean absolute error
associated with the Global Wetland data and no difference in
aggregate error bias between the data products.

3.2.2 Global Non-Floodplain Wetland (Global NFW)
dataset

Non-floodplain wetland identification using the Global Wet-
land data (i.e., Global NFW) similarly improved upon the
CW-WTD product (Fig. 4). For instance, though the hit rate
values were low (e.g., median values ≤ 0.10), underscoring
both the difficulty in mapping non-floodplain wetlands and
the challenge of assessing performance using high-resolution
data, Global NFW analyses correctly identified 50 % more
non-floodplain wetlands than the CW-WTD (Table 4, Tootchi
et al., 2019). Improvements when focusing on non-floodplain
wetlands were found in every category with the Global NFW
dataset, demonstrating increased non-floodplain wetland ac-
curacy versus the original CW-WTD across the median met-
ric values for precision, critical success index, F1, false
alarms, and error bias (e.g., 33 % increase in precision, 20 %
increase in critical success index, 10 % increase in F1 scores,
and a 12 % decrease in false alarms and a 19 % decrease in
error bias). There was no difference between the datasets for
EA and BA, with median values for mean absolute error (me-
dian values for both = 0.09) or aggregate error bias (median
values for both = 0.07). Thus, at the 1 km2 cell size, there
was < 10 % difference between both the CW-WTD and the
Global NFW data and the benchmark NLCD non-floodplain
wetlands and open waters (with the difference mostly stem-
ming from an increase in identified wetlands with both CW-
WTD and Global NFW data, as indicated with the positive
aggregate error bias values).

3.3 Global extent analyses and synthesis

3.3.1 Floodplains

Floodplains were estimated to cover 26.6× 106 km2 (Ta-
ble 5), or 19.7 % of the global landmass. Approximately
23 %–24 % of the African and Australasian land masses were
categorized as occurring within a floodplain, the greatest per-
centage of global areas categorized in this way. Conversely,
the Arctic (northern Canada and Alaska) and Greenland (ex-
cluding the ice sheet) had the least land mass categorized as
floodplain (13 %–14 %). In comparison, Nardi et al. (2019)
calculated a global floodplain extent of 13 394 139 km2, us-
ing a 250 m pixel size and a 1000 km2 minimum contributing
area and bounding their study between 60◦ N and 60◦ S lat-
itudes. Our analyses using the same latitudinal bounds but

with a higher-resolution dataset (90 m) and a 20 km2 min-
imum contributing area identified 24 185 775 km2, an 81 %
areal increase (Fig. B1). The relative percent composition
of each HydroBASIN that is comprised of GFPlain90 flood-
plains is given in Fig. 5.

3.3.2 Wetlands

Global Wetland extent covered 30.5× 106 km2 (Table 6).
With a focus on smaller systems compared to those presented
by Tootchi et al. (2019), our Global Wetland dataset identi-
fied 11 % more potential global wetlands (3× 106 km2 ad-
ditional wetlands). Australasia had the greatest proportional
wetland abundance (see also Zhu et al., 2022), with wetlands
covering 38 % of the landmass (driven, in part, by island
abundance and fringing estuarine wetlands, Fan et al., 2013).
Greenland (3 %) and Africa (12 %) had the least wetlands
identified on the land mass.

3.3.3 Non-floodplain wetlands (global NFWs)

Approximately 16.0× 106 km2 of potential non-floodplain
wetlands was identified globally (global NFWs, Fig. 6),
meaning that 11.9 % of the global landmass is estimated to
be covered by non-floodplain wetlands (Table 7). This repre-
sents∼ 53 % of the total global wetlands found in the dataset
used in this analysis (see Sect. 2.2.2 above, “Derived global
wetland data”). The global distribution of non-floodplain
wetlands is widespread, though they were found to comprise
a higher proportion of wetlands within more northern Hy-
droBASINS watersheds (i.e., higher abundances in formerly
glaciated basins), as demonstrated in Fig. 7. The Arctic por-
tion of northern Canada and Alaska (21.7 %) and Siberian
Russia (17.4 %), typically underlain by permafrost and fre-
quently inundated or saturated due to poor drainage evolu-
tion (Kremenetski et al., 2003; Robarts et al., 2013; Ole-
feldt et al., 2021), had the greatest percent of non-floodplain
wetlands. Africa (5.4 %) and Greenland (1.0 %, excluding
ice sheets) had the least abundance of non-floodplain wet-
lands. A four-direction region-group (contagion) analysis
conducted to identify adjacent pixels considered as contigu-
ous units or non-floodplain wetland systems identified 32.8×
106 individual non-floodplain wetlands. Non-floodplain wet-
lands are typically small aquatic systems (see Table 7): the
median size differed across the HydroBASINS regions from
0.018 km2 (1.8 ha) to 0.138 km2 (13.8 ha) with a global me-
dian of 0.039 km2 (3.87 ha).

4 Discussion

We report here, for the first time, the global abundance
of non-floodplain wetlands, a functionally important and
imperiled resource (Creed et al., 2017). Our estimate of
16.0× 106 km2 suggests that approximately 53 % of the
Earth’s wetlands are likely non-floodplain wetland systems.
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Figure 3. The robust performance of GFPlain90 relative to the benchmark floodplain data from Woznicki et al. (2019) is evident in the
two rows, with the top panels (HUC_0304) showing different spatial extents of a coastal watershed spanning North and South Carolina,
United States, and the bottom two panels showing different spatial extents of a Midwestern US watershed (HUC_1024). The main stem of
the river network appeared wider in the GFPlain90 data in both examples, especially in the lower reaches, though the complete network was
represented well (i.e., floodplains were identified to the furthest extent of the stream network’s headwaters). Satellite imagery is sourced from
ESRI (2022).

These aquatic systems are small, with a range from 0.018–
0.138 km2 (1.8–13.8 ha) across the globe and a global me-
dian size of 0.039 km2 (3.87 ha; see Table 7).

The global abundance of non-floodplain wetlands is a rea-
sonable first approximation of the total non-floodplain wet-
land extent. For instance, non-floodplain wetland estimates
in the CONUS were conducted by Lane et al. (2023b) using

high-resolution aerial-sourced spatial data layers developed
by the National Wetlands Inventory (US Fish and Wildlife
Service, various dates). Lane et al. (2023b) reported approx-
imately 23 % of the area of freshwater wetlands to be non-
floodplain wetland systems. Yet the CONUS has lost nearly
half of its wetlands since the European colonization (Dahl,
1990), with smaller and shallower non-floodplain wetlands
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Table 3. Spatial performance assessment of both the Global Wetland (abbreviated here as GW) and CW-WTD (abbreviated here as WTD;
Tootchi et al., 2019) datasets when contrasted with the benchmark NLCD wetlands (Dewitz, 2019). The first six equations directly assess
the spatial concordance and overlap between each spatial dataset and the benchmark (e.g., CW-WTD contrasted with the NLCD), whereas
mean absolute error (MAE; Eq. 7) and aggregate error bias (AEB; Eq. 8) are coarser fractional analyses measured throughout each watershed
(e.g., the proportional abundance NLCD within each 1 km2 cell is contrasted with the proportional abundance of global wetlands predicted
correctly within that cell).

Hydrologic unit code (HUC) ID Hit rate Precision False alarm Critical success index

(Eq. 1) (Eq. 2) (Eq. 3) (Eq. 4)

WTD GW WTD GW WTD GW WTD GW

HUC_0101 0.31 0.32 0.51 0.53 0.49 0.47 0.24 0.25
HUC_0103 0.26 0.28 0.42 0.45 0.58 0.55 0.19 0.21
HUC_0106 0.25 0.27 0.41 0.44 0.59 0.56 0.18 0.20
HUC_0203 0.12 0.12 0.51 0.53 0.49 0.47 0.11 0.11
HUC_0208 0.31 0.33 0.56 0.65 0.44 0.35 0.25 0.28
HUC_0304 0.42 0.43 0.65 0.69 0.35 0.31 0.35 0.36
HUC_0313 0.39 0.41 0.58 0.64 0.42 0.36 0.30 0.33
HUC_0501 0.15 0.17 0.57 0.64 0.43 0.36 0.14 0.15
HUC_0706 0.24 0.25 0.86 0.92 0.14 0.08 0.23 0.24
HUC_0804 0.45 0.46 0.70 0.75 0.30 0.25 0.38 0.40
HUC_1003 0.14 0.16 0.32 0.41 0.68 0.59 0.11 0.13
HUC_1015 0.25 0.40 0.17 0.42 0.83 0.58 0.12 0.26
HUC_1016 0.13 0.16 0.54 0.70 0.46 0.30 0.12 0.15
HUC_1024 0.10 0.10 0.67 0.75 0.33 0.25 0.09 0.10
HUC_1029 0.10 0.13 0.51 0.72 0.49 0.28 0.09 0.13
HUC_1304 0.02 0.02 0.44 0.52 0.56 0.48 0.02 0.02
HUC_1601 0.29 0.33 0.34 0.45 0.66 0.55 0.19 0.24
HUC_1708 0.24 0.24 0.48 0.49 0.52 0.51 0.19 0.20
HUC_1711 0.09 0.10 0.46 0.51 0.54 0.49 0.08 0.09
HUC_1805 0.14 0.15 0.62 0.64 0.38 0.36 0.13 0.13
HUC_1808 0.12 0.13 0.51 0.55 0.49 0.45 0.11 0.11

Median 0.24 0.24 0.51 0.55 0.49 0.45 0.14 0.20
Difference 0.00 0.04 −0.04 0.06
Change (%) 0.0 7.8 −8.2 42.9

Hydrologic unit code (HUC) ID F1 Error bias MAE AEB

(Eq. 5) (Eq. 6) (Eq. 7) (Eq. 8)

WTD GW WTD GW WTD GW WTD GW

HUC_0101 0.38 0.40 0.43 0.40 0.18 0.17 0.09 0.09
HUC_0103 0.32 0.34 0.50 0.47 0.16 0.15 0.06 0.07
HUC_0106 0.31 0.33 0.49 0.46 0.20 0.19 0.08 0.08
HUC_0203 0.19 0.20 0.13 0.13 0.36 0.36 0.28 0.28
HUC_0208 0.40 0.44 0.35 0.27 0.17 0.17 0.09 0.10
HUC_0304 0.51 0.53 0.39 0.34 0.21 0.21 0.12 0.13
HUC_0313 0.47 0.50 0.48 0.38 0.16 0.16 0.07 0.09
HUC_0501 0.24 0.26 0.14 0.11 0.10 0.10 0.09 0.09
HUC_0706 0.37 0.39 0.05 0.03 0.12 0.12 0.11 0.12
HUC_0804 0.55 0.57 0.36 0.29 0.20 0.20 0.12 0.14
HUC_1003 0.19 0.23 0.34 0.27 0.04 0.04 0.02 0.02
HUC_1015 0.21 0.41 1.59 0.91 0.05 0.04 -0.01 0.00
HUC_1016 0.21 0.26 0.13 0.08 0.26 0.26 0.23 0.24
HUC_1024 0.17 0.18 0.05 0.04 0.14 0.14 0.13 0.14
HUC_1029 0.17 0.22 0.11 0.06 0.11 0.12 0.10 0.11
HUC_1304 0.04 0.04 0.02 0.02 0.08 0.08 0.08 0.08
HUC_1601 0.31 0.38 0.80 0.59 0.05 0.05 0.01 0.01
HUC_1708 0.32 0.33 0.34 0.33 0.15 0.15 0.08 0.08
HUC_1711 0.15 0.17 0.12 0.11 0.17 0.17 0.14 0.15
HUC_1805 0.23 0.24 0.10 0.10 0.25 0.26 0.21 0.21
HUC_1808 0.20 0.20 0.13 0.12 0.09 0.09 0.07 0.07

Median 0.24 0.33 0.34 0.27 0.16 0.15 0.09 0.09
Difference 0.09 0.07 −0.01 0.00
Change (%) 37.5 −20.6 −6.3 0.0
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Figure 4. Demonstration of the relative accuracy of the Global NFW dataset in identifying non-floodplain wetlands using a Prairie Pothole
Region watershed (HUC_1016; see Fig. 2) replete with abundant non-floodplain wetlands. Correctly identified wetlands occur in both wetland
sources (magenta color). Omission errors (NLCD non-floodplain wetlands, smaller systems in yellow) and commission errors (Global NFW
dataset, green) are evident as a result of the higher resolution of the NLCD validation dataset. Satellite imagery sourced from ESRI (2022).
Note the scale increasing from the left panel to the right panel (i.e., the orange box in the first panel is shown in the second panel at a higher
resolution, and the box in the second panel is shown in the last panel at an even higher resolution).

Figure 5. Floodplain extents derived from GFPlain90 as a proportion of each of the Level 4 HydroBASINS (Lehrner and Grill, 2013). The
data range demonstrated that up to ∼ 90 % of a given watershed was comprised of floodplain area, as evidenced by HydroBASINS in south
central Africa and central South America. The basemap layer is from the ESRI World Terrain Base (2022).
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Table 4. Non-floodplain wetland performance metrics contrasting both the Global NFW (abbreviated here as GNFW) and CW-WTD (ab-
breviated here as WTD, Tootchi et al., 2019) non-floodplain wetland spatial data with the benchmark NLCD wetlands (Dewitz, 2019).
Descriptions of the metrics are the same as in Table 3, though the focus here is on wetlands outside the GFPlain90-derived floodplain.

Hydrologic unit code (HUC) ID Hit rate Precision False alarm Critical success index

(Eq. 1) (Eq. 2) (Eq. 3) (Eq. 4)

WTD GNFW WTD GNFW WTD GNFW WTD GNFW

HUC_0101 0.24 0.25 0.43 0.45 0.57 0.55 0.18 0.19
HUC_0103 0.17 0.18 0.30 0.32 0.70 0.68 0.12 0.13
HUC_0106 0.15 0.18 0.14 0.17 0.86 0.83 0.08 0.10
HUC_0203 0.12 0.13 0.20 0.23 0.80 0.77 0.08 0.09
HUC_0208 0.14 0.16 0.34 0.41 0.66 0.59 0.11 0.13
HUC_0304 0.26 0.28 0.45 0.49 0.55 0.51 0.20 0.21
HUC_0313 0.21 0.23 0.35 0.40 0.65 0.60 0.15 0.17
HUC_0501 0.05 0.07 0.32 0.41 0.68 0.59 0.05 0.06
HUC_0706 0.05 0.06 0.63 0.72 0.37 0.28 0.05 0.05
HUC_0804 0.30 0.31 0.51 0.55 0.49 0.45 0.23 0.25
HUC_1003 0.04 0.07 0.13 0.21 0.87 0.79 0.03 0.05
HUC_1015 0.07 0.25 0.05 0.28 0.95 0.72 0.03 0.15
HUC_1016 0.07 0.11 0.31 0.53 0.69 0.47 0.06 0.10
HUC_1024 0.02 0.04 0.18 0.41 0.82 0.59 0.02 0.04
HUC_1029 0.03 0.06 0.25 0.58 0.75 0.42 0.03 0.06
HUC_1304 0.00 0.00 0.26 0.33 0.74 0.67 0.00 0.00
HUC_1601 0.05 0.09 0.07 0.16 0.93 0.84 0.03 0.06
HUC_1708 0.06 0.06 0.33 0.35 0.67 0.65 0.05 0.05
HUC_1711 0.04 0.05 0.22 0.27 0.78 0.73 0.04 0.05
HUC_1805 0.06 0.07 0.27 0.30 0.73 0.70 0.05 0.06
HUC_1808 0.05 0.06 0.25 0.36 0.75 0.64 0.04 0.06

Median 0.06 0.09 0.27 0.36 0.73 0.64 0.05 0.06
Difference 0.03 0.09 −0.09 0.01
Change (%) 50.0 33.3 −12.3 20.0

Hydrologic unit code (HUC) ID F1 Error bias Mean absolute error Aggregate error bias

(Eq. 5) (Eq. 6) (Eq. 7) (Eq. 8)

WTD GNFW WTD GNFW WTD GNFW WTD GNFW

HUC_0101 0.31 0.32 0.41 0.39 0.16 0.16 0.08 0.09
HUC_0103 0.21 0.23 0.48 0.46 0.14 0.14 0.06 0.06
HUC_0106 0.14 0.18 1.11 1.03 0.11 0.11 -0.01 0.00
HUC_0203 0.15 0.17 0.53 0.51 0.09 0.09 0.03 0.03
HUC_0208 0.20 0.23 0.32 0.28 0.10 0.10 0.07 0.07
HUC_0304 0.33 0.35 0.44 0.40 0.17 0.17 0.08 0.09
HUC_0313 0.27 0.29 0.51 0.45 0.12 0.12 0.05 0.06
HUC_0501 0.09 0.11 0.12 0.10 0.09 0.09 0.07 0.08
HUC_0706 0.09 0.10 0.03 0.02 0.09 0.09 0.09 0.09
HUC_0804 0.38 0.40 0.43 0.37 0.13 0.13 0.07 0.07
HUC_1003 0.07 0.10 0.32 0.26 0.02 0.03 0.01 0.01
HUC_1015 0.06 0.26 1.46 0.85 0.03 0.02 −0.01 0.00
HUC_1016 0.11 0.19 0.17 0.11 0.15 0.15 0.12 0.13
HUC_1024 0.03 0.07 0.09 0.06 0.05 0.05 0.04 0.05
HUC_1029 0.05 0.11 0.09 0.05 0.08 0.08 0.07 0.07
HUC_1304 0.00 0.01 0.01 0.01 0.06 0.06 0.05 0.06
HUC_1601 0.05 0.11 0.68 0.50 0.02 0.02 0.00 0.01
HUC_1708 0.10 0.10 0.12 0.12 0.11 0.11 0.09 0.10
HUC_1711 0.07 0.09 0.16 0.15 0.09 0.09 0.07 0.07
HUC_1805 0.10 0.11 0.18 0.17 0.10 0.10 0.07 0.07
HUC_1808 0.08 0.11 0.15 0.12 0.02 0.02 0.01 0.01

Median 0.10 0.11 0.32 0.26 0.09 0.09 0.07 0.07
Difference 0.01 −0.06 0.00 0.00
Change (%) 10.0 −18.8 0.0 0.0
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Table 5. Calculated floodplain area for each HydroBASINS at the global scale. Our analyses found 19.7 % of the landmass occurs within a
floodplain.

HydroBASINS region Floodplain Floodplain percent
(km2) of landmass

Africa 6 990 859 23.3 %
Arctic (northern Canada and Alaska) 894 594 14.2 %
Asia 4 283 991 20.6 %
Australasia 2 649 395 23.8 %
Europe and Middle East 3 415 308 19.1 %
Greenland (excl. ice sheet) 270 813 12.6 %
North and Central America (excl. Alaska) 2 713 346 17.0 %
Siberian Russia 2 051 305 15.8 %
South America 3 368 778 18.9 %

Total 26 638389 19.7 %

Table 6. Estimated Global Wetland areal extent for each of the nine regional HydroBASINS (Lehner and Grill, 2013). As described in the
text, Global Wetland extent incorporates the CW-WTD (Tootchi et al., 2019), CCI (Herold et al., 2015), and GSW (Pekel et al., 2016) data;
lakes of ≥ 10 ha have been removed (Messager et al., 2016).

HydroBASINS region Wetlands Wetland percent
(km2) of landmass

Africa 3 524 917 11.8 %
Arctic (northern Canada and Alaska) 1 807 830 28.6 %
Asia 5 543 333 26.6 %
Australasia 4 283 996 38.4 %
Europe and Middle East 2 465 074 13.8 %
Greenland (excl. ice sheet) 60 761 2.8 %
North and Central America (excl. Alaska) 4 107 333 25.8 %
Siberian Russia 3 578 868 27.6 %
South America 5 140 139 28.8 %

Total 30 512 251 22.6 %

likely being disproportionately lost (Van Meter and Basu,
2015; Serran et al., 2017).

Tootchi et al. (2019) – whose data constitute our base input
geospatial data layer – calculated that the global wetland ex-
tent identified from incorporating both regularly flooded wet-
land systems (surface water and precipitation-sourced) and
groundwater-driven wetland systems (e.g., Fan et al., 2013;
Hu et al., 2017b) resulted in approximately 27.5× 106 km2

of wetlands, a value towards the higher end of previously
published geospatial wetland datasets (Hu et al., 2017a). In
their synthesis, Tootchi et al. (2019) explained their values
as particularly influenced by groundwater-driven wetlands,
especially those in the tropics (10◦ N–10◦ S latitudes; Zhu et
al., 2022), following recent studies acknowledging the under-
estimation of those wetland systems (e.g., Wania et al., 2013;
Gumbricht et al., 2017).

It follows that incorporating additional higher-resolution
satellite inundation data (Pekel et al., 2016) as well as
groundwater-driven wetland system data (e.g., Fan et al.,
2013; Tootchi et al., 2019), as conducted in this study, would

similarly maintain the trend towards the higher end in global
estimates, as found by Hu et al. (2017b) and Tootchi et
al. (2019). This is meted out in the simple contrast be-
tween the proportional abundance of non-floodplain wetland
systems identified here against the 30 m NLCD data prod-
uct described above (Dewitz, 2019) across the 21 CONUS
watersheds in this study. The calculated median watershed
abundance of non-floodplain wetlands in both the Global
NFW dataset (9.4 %) and the Tootchi et al. (2019) CW-WTD
(9.1 %) dataset from our validation watersheds is nearly 5-
fold the abundance of the benchmark data from the NLCD
(Table 8). However, this is contrasted with a 7-fold underrep-
resentation of non-floodplain wetlands as derived from the
satellite-based GSW data (Table 8, Pekel et al., 2016). This
suggests that our first approximation of global non-floodplain
wetland estimates may be high, primarily due to the resolu-
tion of the input data layers. However, as we discuss below,
additional factors than just resolution are likely at play.

It is apparent that the GSW data alone are insufficient to
map non-floodplain wetlands (this study; Vanderhoof and
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Figure 6. Non-floodplain wetlands, global NFWs, are found worldwide, with a greater abundance in formerly glaciated landscapes of
northern climates (e.g., northern North America and Siberian Russia) as well as within the Amazon basin (South America). This density map
was created using the Focal Statistics tool in ArcGIS Pro 2.9.1. The basemap layer is from the ESRI World Terrain Base (2022).

Figure 7. The proportion of non-floodplain wetlands, global NFWs, within a given HydroBASINS watershed (Lehner and Grill, 2013),
ranging up to 100 %, varied globally. The impacts or effects of non-floodplain wetlands on biological, biogeochemical, and hydrological
functions will vary based on their relative abundance, location within the watershed, and hydrologic characteristics (Lane et al., 2018). The
basemap layer is from the ESRI World Terrain Base (2022).

Lane, 2019). Though useful as a satellite-based input data
layer, the GSW data by themselves appear inadequate for
identifying non-floodplain wetlands because they rely on sur-
face water inundation and ignore saturated wetland systems
and those driven by groundwater discharge and upwelling
(Winter et al., 1998). Fan et al. (2013) found that ground-

water drivers of aquatic system state were important and un-
derrepresented in global datasets. Relying on surface water
inundation captured during satellite overflights depends not
only on an unobstructed view of the water body (e.g., not
obscured by trees) but also fortuitous timing regarding inun-
dation status. For example, in an analysis of non-floodplain
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Table 7. Global NFW data further described by HydroBASINS region.

HydroBASINS region Global NFW Count of global Global NFW percent Global NFW median
extent (km2) NFWs (no.) of landmass area (km2)

Africa 1 611 225 2 698 465 5.4 % 0.138
Arctic (northern Canada and Alaska) 1 371 937 5 956 081 21.7 % 0.018
Asia 2 924 900 4 564 172 14.0 % 0.049
Australasia 850 402 1 448 315 7.6 % 0.054
Europe and Middle East 1 475 355 3 740 961 8.3 % 0.054
Greenland (excl. ice sheet) 21 747 180 726 1.0 % 0.018
North and Central America (excl. Alaska) 2 608 158 5 740 066 16.4 % 0.025
Siberian Russia 2 255 689 4 864 577 17.4 % 0.063
South America 2 891 604 3 572 294 16.2 % 0.096

Total 16 011 018 32 765 657 11.9 % 0.039

wetlands of the CONUS as derived by distance from an
aquatic system, Lane and D’Amico (2016) reported that just
over 50 % of the non-floodplain wetlands were classified as
seasonally or temporarily flooded – meaning that cloud-free
and unobscured overflights would only potentially identify
these systems at certain inundated times of the year. Addi-
tionally, Lane and D’Amico (2016) identified another 6 %
of CONUS non-floodplain wetlands as saturated (i.e., wet-
lands with saturated substrates but with surface water seldom
present). These wetlands would not be identified by the GSW
data (Pekel et al., 2016), resulting in a further underrep-
resentation of the global resource. Similarly, Hamunyela et
al. (2022), analyzing ∼ 150 000 km2 in southeastern Africa,
found that the GSW data underestimated surface water ex-
tent (i.e., omission errors) by nearly 65 %. Vanderhoof and
Lane (2019) found approximately 42 % omission rates when
contrasting the GSW data to surface water extent in non-
floodplain wetlands, ranging from 0.2–17.6 ha in area in the
Midwestern United States. While the GSW data constitute
an outstanding dataset that is continuing to be managed and
updated, the GSW data and their derived products have lim-
itations in their stand-alone utility in global non-floodplain
wetland analyses.

While solely using satellite-based surface water data prod-
ucts omits groundwater-driven and saturated wetlands and
likely results in non-floodplain wetland underestimations,
our Global Wetland data incorporated the finer-resolution
CCI (Herold et al., 2015) and GSW (Pekel et al., 2016) prod-
ucts into the base map from Tootchi et al. (2019), substan-
tially improving wetland identification (see Table 3). These
improvements, as indicated by performance indices increas-
ing from 10 %–50 % in the derived Global NFW data (see
Table 4), support the inclusion of these higher-resolution
satellite-based data (Herold et al., 2015; Pekel et al., 2016)
with groundwater datasets (Fan et al., 2013), especially when
focused on smaller and non-floodplain wetland systems.
Similarly, at a coarser scale of 1 km, there was a difference
in mean absolute error value of 0.09 (see Table 4) between

the Global NFW data and the benchmark NLCD. This∼ 9 %
difference between the two datasets at a 1 km resolution (the
former originating at 500 m and the latter at 30 m) further
suggests substantive potential utility in these global non-
floodplain wetland data for effective natural resource man-
agement and decision-making.

5 Implications

Non-floodplain wetlands remain vulnerable waters (Creed et
al., 2017; Gardner, 2023), despite the fact that the hydrolog-
ical, biogeochemical, and biological functions performed by
non-floodplain wetlands are increasingly noted in the litera-
ture (e.g., Leibowitz, 2003; Creed et al., 2017; Lane et al.,
2018, 2023b), incorporated into eco-hydrological models by
the scientific community (e.g., Fossey and Rousseau, 2016;
Golden et al., 2017, 2021; Leibowitz et al., 2023), and con-
sidered by policy makers (e.g., Biggs et al., 2017; Drenkhan
et al., 2023). Their global fate has important implications
for watershed-scale resilience to changing climatic condi-
tions (McKenna et al., 2017; Lane et al., 2023b) affecting
the measured benefits humans receive from biogeochemical
processing, stormwater attenuation, and drought mitigation
functions provided by non-floodplain wetlands.

Global attention to functions of non-floodplain wetlands
has increased in the United States (Marton et al., 2015;
Rains et al., 2016; Cohen et al., 2016), Europe (Biggs et
al., 2017; Nitzsche et al., 2017; Rodríguez-Rodríguez et al.,
2021), Asia (Kam, 2010; Van Meter et al., 2014), Australia
(Adame et al., 2019), Africa (Merken et al., 2015; Samways
et al., 2020), South America (Rodrigues et al., 2012; Cunha
et al., 2019), and elsewhere (see extensive review in Chen et
al., 2022). This includes analyses of non-floodplain wetlands
both as individual systems (e.g., assessing the functions of a
single wetland or wetland complex; Badiou et al., 2018) and
agglomerated, watershed-scale functioning systems (e.g., an-
swering questions on the functional contributions of all non-
floodplain wetlands at larger spatial extents; Golden et al.,
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Table 8. A comparison of the non-floodplain wetland distribution within the 21 HUCs contrasting across NLCD (the benchmark data layer,
(Dewitz, 2019), Global NFW (this study), CW-WTD (Tootchi et al., 2019), and GSW (Pekel et al., 2016) data. The CW-WTD (at 500 m)
and the Global NFW (coupling 500, 300, and 30 m data), derived from the CW-WTD, identified 5-fold the abundance of non-floodplain
wetlands, whereas the GSW data underestimated non-floodplain wetlands nearly 7-fold.

HUC ID Percent HUC as Percent HUC as Percent HUC as Percent HUC as
NLCD NFW Global NFW CW-WTD NFW GSW NFW

HUC_0101 10.4 % 19.2 % 18.9 % 0.1 %
HUC_0103 8.1 % 14.6 % 14.3 % 0.2 %
HUC_0106 8.2 % 8.0 % 7.5 % 0.3 %
HUC_0203 4.9 % 8.4 % 8.3 % 0.4 %
HUC_0208 4.7 % 12.0 % 11.5 % 4.6 %
HUC_0304 12.2 % 21.7 % 20.8 % 12.2 %
HUC_0313 8.3 % 14.4 % 13.5 % 8.2 %
HUC_0501 1.5 % 9.2 % 8.9 % 0.1 %
HUC_0706 0.7 % 9.7 % 9.5 % 0.3 %
HUC_0804 9.7 % 17.1 % 16.2 % 9.7 %
HUC_1003 0.7 % 2.1 % 1.9 % 0.2 %
HUC_1015 1.8 % 2.0 % 1.3 % 0.1 %
HUC_1016 3.6 % 16.6 % 15.5 % 2.6 %
HUC_1024 0.5 % 5.1 % 4.9 % 0.2 %
HUC_1029 0.9 % 8.4 % 7.7 % 0.4 %
HUC_1304 0.0 % 5.5 % 5.5 % 0.0 %
HUC_1601 0.7 % 1.3 % 1.0 % 0.1 %
HUC_1708 2.0 % 11.7 % 11.6 % 0.4 %
HUC_1711 1.8 % 9.4 % 9.1 % 0.2 %
HUC_1805 2.2 % 9.9 % 9.7 % 0.5 %
HUC_1808 0.3 % 1.7 % 1.6 % 0.1 %

Median 2.0 % 9.4 % 9.1 % 0.3 %

2016; Blanchette et al., 2022). Previous studies found that
non-floodplain wetlands are overwhelmingly important con-
tributors to biogeochemical and hydrological functions af-
fecting downgradient (i.e., downstream) water quality and
streamflow (e.g., McLaughlin et al., 2014; Marton et al.,
2015; Cohen et al., 2016; Rains et al., 2016; Golden et al.,
2019; Cheng et al., 2020). Hence, with the development of
this publicly available dataset, and subsequent improvements
by others, it is hoped that these important aquatic systems
will be incorporated into resource management and decision-
making across the globe.

Recently, Lane et al. (2023b) identified global-scale
geospatial data of the spatial extent and spatial configuration
of vulnerable waters – non-floodplain wetlands and headwa-
ter stream systems (e.g., ephemeral, intermittent, and peren-
nial low-order waters; Strahler, 1957) – as a critical scien-
tific gap. Discounting their significance in watershed-scale
hydrology and nutrient biogeochemistry analyses – as well
as their importance in biological processes (Schofield et al.,
2018; Smith et al., 2019; Mushet et al., 2019) – affects quan-
tification of the myriad ecosystem services they provide (De
Groot, 2006; Colvin et al., 2019). For instance, Golden et
al. (2021) provide a tangible example of the functional effects
and influence of non-floodplain wetlands once incorporated

into watershed-scale hydrologic models (Fig. 8): ignoring
non-floodplain wetlands in their model resulted in projected
critical flood-stage return intervals (e.g., 50- and 100-year
floods) being reached within a given modeled time frame.
Conversely, incorporating non-floodplain wetlands and their
storage capacities into a river basin model (e.g., Rajib et
al., 2020) demonstrated that non-floodplain wetlands signifi-
cantly attenuate storm flows, for when non-floodplain wet-
lands are “. . . integrated into the model, those simulated
flood stages are not reached” (Golden et al., 2021, p. 3, em-
phasis added). The hydrological functions and concomitantly
the associated biogeochemical functions (e.g., Marton et al.,
2015) of non-floodplain wetlands demand an effective ac-
counting of their spatial extent and configuration, as demon-
strated in this novel global dataset.

6 Data availability

The data are available on the United State Envi-
ronmental Protection Agency’s Environmental Dataset
Gateway (https://doi.org/10.23719/1528331, Lane et al.,
2023a) or https://gaftp.epa.gov/EPADataCommons/ORD/
Global_NonFloodplain_Wetlands/ (last access: 24 May
2023). Here, we provide global gridded floodplain (90 m,
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GFPLain90, ∼ /Global_Floodplains), global gridded wet-
lands (30 m, Global Wetlands, ∼ /Global_Wetlands), and
global gridded non-floodplain wetlands (30 m, Global
NFWs, ∼ /Global_NFWs) for each of the 1342 Hy-
droBASINS, organized by HydroBASINS region (see, e.g.,
Table 7).

7 Global Non-Floodplain Wetlands: continuing
advancements and conclusion

Noting the challenges in accurately identifying non-
floodplain wetlands – including small size, frequent non-
perennial hydrological inundation, soil saturation rather than
overlying surface water, and canopy or cloud cover obstruct-
ing satellite or airborne detection – recommendations for
advanced analyses of non-floodplain wetland extent hinge
initially on the use of ancillary data sources. For instance,
global assessments will be improved through wall-to-wall
high-resolution digital elevation models that are used to iden-
tify depressions on the landscape (e.g., Wu et al., 2019b).
Though not all landscape depressions are non-floodplain
wetlands (or wetlands at all), analyses that include depres-
sions may find improved performance when used in combi-
nation with vegetation-based assessments or spectral analy-
ses identifying water (DeVries et al., 2017; Evenson et al.,
2018b). Similarly, emerging synthetic-aperture-radar-based
landscape classifications (e.g., Huang et al., 2018; Martinis et
al., 2022; Brown et al., 2022) and both airborne and satellite-
borne hyperspectral and advanced analyses, including li-
dar, as well as analytical capabilities (e.g., machine-learning
approaches, object-oriented classifications, Berhane et al.,
2018; topographically based models, Xi et al., 2022; see
Table B1), hold great promise for improved resolution and
performance in identifying non-floodplain wetlands (Chris-
tensen et al., 2022).

The Global NFW dataset is not perfect, yet it incremen-
tally advances the current understanding of the potential ex-
tent of this important aquatic resource. Limitations of the
global dataset (see also Sect. 4) include the error propagation
and imperfections of the input data layers, including the rela-
tively coarse nature of four of the main input data layers (i.e.,
the 1000 m groundwater data from Fan et al., 2013, 500 m
CW-WTD data from Tootchi et al., 2019, 500 m GIEMS-D15
data from Fluet-Chouinard et al., 2015, and 300 m CCI data
from Herold et al., 2015) relative to the target wetland size, as
clearly evident in Fig. 4. We additionally acknowledge that
omission and commission errors remain within this global
data product. For instance, our floodplain-masking process
may have inadvertently misassigned pixels derived at 500 m
into either non-floodplain or floodplain groups. Though data
were not lost when we resampled downwards to 30 m from
500 m, the topological relationships were not necessarily
maintained, adding error to the determination of floodplain
or non-floodplain pixel status (especially as it relates to those

Figure 8. Non-floodplain wetlands attenuate storm flows and de-
crease flooding hazards. In this example from Golden et al. (2021,
used by permission under Creative Commons Attribution 4.0 Li-
cense), incorporating the floodwater storage and attenuation func-
tions of non-floodplain wetlands (NFWs, here) resulted in sub-
stantive decreases in flood-stage heights (i.e., modeled stream out-
comes incorporating non-floodplain wetlands reached neither 50-
year nor 100-year flood extents). The data from Golden et al. (2021)
are from USGS Pipestem Creek gage 06469400, draining approxi-
mately 1800 km2.

pixels proximate to floodplains). Though imperfect, we sug-
gest Global NFW data should be cautiously incorporated into
hydrological, biogeochemical, and biological models to ac-
count for the important functions non-floodplain wetlands
perform.

Similarly, though this Global NFW dataset constitutes a
static data layer, land use, development, and climate changes
continue to affect the prevalence of wetlands worldwide.
Fluet-Chouinard et al. (2023) recently noted a global wetland
loss of 21 % since 1700, with rapid increases from 1950s on-
wards. Returning to the identification of wetlands and their
spatial location vis à vis floodplains, using the preponder-
ance of higher-resolution (i.e., < 30 m) and high-return in-
terval sensors will improve both the spatial and temporal ac-
curacy of these data, decreasing commission and omission
errors (e.g., Table 8) while increasing the accurate identifica-
tion of smaller aquatic features that occasional cease to hold
standing water.

The keys to quantifying the functional contributions,
ecosystem services, and watershed-scale resilience conferred
by non-floodplain wetlands through hydrological, biogeo-
chemical, and biological processes are found through, as a
first principle, identifying the spatial extent and configuration
of this disappearing and imperiled aquatic system (Creed et
al., 2017; Lane et al., 2023b). This novel geospatial dataset,
freely available (https://gaftp.epa.gov/EPADataCommons/
ORD/Global_NonFloodplain_Wetlands, last access: 24 May
2023, Lane et al., 2023a), provides for sustainable man-
agement of an important aquatic resource and advances the
global assessment of non-floodplain wetland functions by fa-
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cilitating non-floodplain wetland inclusion in both existing
models and those under development (Golden et al., 2021).

Appendix A: Abbreviations

AEB Aggregate error bias
CaMa-Flood Catchment-based Macro-scale Floodplain
CCI Climate Change Initiative
CIMA-UNEP CIMA Research Foundation – United Nations Environmental Programme
CONUS Conterminous United States
CSI Critical success index
CW-WTD Composite wetland–water table depth
DEM Digital elevation model
EB Error bias
ECMWF European Centre for Medium-Range Weather Forecasts
EPA Environmental Protection Agency
ESA European Space Agency
FA False alarm
FEMA Federal Emergency Management Agency
GDW Groundwater-driven wetlands
GFPlain Global Floodplain
GIEMS-D15 Global Inundation Extent from Multi-Satellites – Downscaled 15 arcseconds
GIS Geographic information system
GLOFRIS Global Flood Risk with Image Scenarios
GLWD Global Lakes and Wetlands Database
GNFW Global Non-floodplain wetlands
GSW Global surface water
GW Global wetlands
H Hit rate
HUC Hydrologic unit code
IPCC Intergovernmental Panel on Climate Change
JRC Joint Research Center
Lidar Light detection and ranging
MAE Mean absolute error
MERIT Multi-Error Removed Improved Terrain
ML Machine learning
NFW Non-floodplain wetland
NLCD National Land Cover Database
P Precision
RFW Regularly flooded wetland
SAR Synthetic-aperture radar
USGS United States Geological Survey
UTM Universal Transverse Mercator
WTD Water table depth

Appendix B: Supplemental tables and figures

Table B1. Emerging global land cover datasets related to surface water and wetlands.

Dataset Resolution Years of data Wetland classes Image sources Reference and website

ESA WorldCover 10 m 2020–2021 Permanent water
bodies, herbaceous
wetland, mangroves

Sentinel-1 and Sentinel-2 Zanaga et al. (2021);
https://esa-worldcover.org (last access:
24 May 2023)

ESRI Global Land Cover 10 m 2017–2022 Water, flooded
vegetation

Sentinel-2 Karra et al. (2021);
https://livingatlas.arcgis.com/landcover
(last access: 24 May 2023)

Dynamic World 10 m 2015–2023 Water, flooded
vegetation

Sentinel-2 Brown et al. (2022);
https://dynamicworld.app/ (last access:
24 May 2023)
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Table B2. Descriptive characteristics of the 21 verification basins located throughout the CONUS (see Fig. 2). The majority of the Köppen–
Geiger classification follows Beck et al. (2018). Climatological data were acquired from the PRISM Climate Group (Parameter-elevation
Regressions on Independent Slopes Model; http://prism.oregonstate.edu/, last access: 26 September 2022) using the 30-year annual normals
for each watershed. Land use data and descriptions are from the 2019 NLCD (http://www.mrlc.gov/data, last access: 26 September 2022)
and represent the land use class with the greatest areal abundance. Average elevation was derived from the USGS National Elevation Dataset
(2022b, https://www.usgs.gov/3d-elevation-program, last access: 13 January 2022). Global wetland count is the count of wetlands from
the derived Global Wetland database within each watershed after region-grouping the data using a four-direction contagion criterion (i.e.,
pixels immediately adjacent in any of the four cardinal directions are considered part of a unique, multi-pixel wetland; ArcGIS Pro v.2.9.1,
Redlands, California).

Hydrologic unit Area Köppen–Geiger Mean annual Mean annual
code ID (km2) class∗ temp (◦C) rainfall (m)

HUC_0101 18 906 Dfb 4.0 1.1
HUC_0103 15 287 Dfb 5.4 1.2
HUC_0106 10 800 Dfb 7.5 1.3
HUC_0203 12 490 Dfa 11.6 1.2
HUC_0208 47 449 Cfa 13.7 1.2
HUC_0304 47 899 Cfa 16.4 1.3
HUC_0313 52 169 Cfa 18.1 1.4
HUC_0501 30 371 Dfb 8.6 1.2
HUC_0706 22 257 Dfa 8.1 1.0
HUC_0804 53 108 Cfa 17.5 1.4
HUC_1003 51 431 BSk 5.6 0.4
HUC_1015 37 098 Dfa 8.7 0.5
HUC_1016 54 743 Dfa 6.4 0.6
HUC_1024 35 237 Dfa 10.8 0.9
HUC_1029 48 204 Dfa 13.2 1.1
HUC_1304 48 126 BSh 18.6 0.4
HUC_1601 19 463 BSk 5.7 0.5
HUC_1708 16 101 Csb 9.0 2.1
HUC_1711 35 651 Csb 8.2 2.0
HUC_1805 11 341 Csb 14.9 0.7
HUC_1808 11 789 BSk 8.4 0.4

Hydrologic unit Majority land Majority land Global wetland Average elevation
code ID use coverage (%) coverage description count (m)

HUC_0101 43 Mixed forest 2141 296
HUC_0103 43 Mixed forest 2202 300
HUC_0106 43 Mixed forest 2799 169
HUC_0203 41 Deciduous forest 2438 82
HUC_0208 41 Deciduous forest 13 934 187
HUC_0304 90 Woody wetlands 14 643 127
HUC_0313 42 Evergreen forest 27 056 147
HUC_0501 41 Deciduous forest 6310 484
HUC_0706 82 Cultivated crops 3100 300
HUC_0804 42 Evergreen forest 12 242 85
HUC_1003 71 Herbaceous 11 852 1349
HUC_1015 71 Herbaceous 8628 961
HUC_1016 82 Cultivated crops 61 482 464
HUC_1024 82 Cultivated crops 11 995 341
HUC_1029 81 Hay/pasture 23 935 297
HUC_1304 52 Shrub/scrub 1733 995
HUC_1601 52 Shrub/scrub 2642 1981
HUC_1708 42 Evergreen forest 1986 552
HUC_1711 42 Evergreen forest 6562 621
HUC_1805 52 Shrub/scrub 1208 222
HUC_1808 52 Shrub/scrub 1089 1625

∗ Köppen–Geiger class descriptions (Beck et al., 2018): BSh (arid, steppe, hot), BSk (arid, steppe, cold), Cfa (temperate, no dry
season, hot summer), Csb, (temperature, dry season, warm summer), Dfa (cold, no dry season, hot summer), and Dfb (cold, no dry
season, warm summer).
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Table B3. Floodplain performance assessment of the GFPlain90-derived floodplain and the benchmark floodplain from Woznicki et
al. (2019). The first six equations directly assess the spatial concordance and overlap between the two datasets, whereas mean absolute
error (Eq. 7) and aggregate error bias (Eq. 8) are coarser fractional analyses (i.e., the fraction of a 1 km2 cell predicted correctly) as measured
along the riverine network.

Hydrologic unit code Hit Precision False CSI F1 Error Mean absolute Aggregate
(HUC) ID rate alarm bias error error bias

(Eq. 1) (Eq. 2) (Eq. 3) (Eq. 4) (Eq. 5) (Eq. 6) (Eq. 7) (Eq. 8)

HUC_0101 0.76 0.84 0.16 0.66 0.80 0.62 0.06 −0.01
HUC_0103 0.92 0.77 0.23 0.72 0.84 3.25 0.05 0.03
HUC_0106 0.78 0.74 0.26 0.62 0.76 1.24 0.10 −0.03
HUC_0203 0.47 0.58 0.42 0.35 0.52 0.66 0.25 −0.18
HUC_0208 0.64 0.73 0.27 0.52 0.68 0.67 0.13 −0.08
HUC_0304 0.63 0.81 0.19 0.55 0.71 0.41 0.06 0.00
HUC_0313 0.62 0.72 0.28 0.50 0.67 0.62 0.09 −0.01
HUC_0501 0.77 0.85 0.15 0.68 0.81 0.59 0.04 −0.02
HUC_0706 0.86 0.79 0.21 0.69 0.82 1.62 0.04 0.02
HUC_0804 0.75 0.83 0.17 0.65 0.79 0.64 0.08 −0.02
HUC_1003 0.85 0.42 0.58 0.39 0.56 7.70 0.11 0.09
HUC_1015 0.81 0.74 0.26 0.63 0.78 1.54 0.06 0.02
HUC_1016 0.89 0.36 0.64 0.35 0.52 14.79 0.18 0.17
HUC_1024 0.90 0.88 0.12 0.80 0.89 1.19 0.03 0.00
HUC_1029 0.84 0.87 0.13 0.75 0.85 0.82 0.04 −0.01
HUC_1304 0.66 0.74 0.26 0.53 0.70 0.67 0.07 −0.01
HUC_1601 0.92 0.55 0.45 0.52 0.69 9.47 0.10 0.08
HUC_1708 0.60 0.71 0.29 0.48 0.65 0.60 0.08 −0.03
HUC_1711 0.70 0.50 0.50 0.41 0.58 2.25 0.10 −0.02
HUC_1805 0.59 0.59 0.41 0.41 0.59 1.00 0.14 −0.05
HUC_1808 0.98 0.44 0.56 0.44 0.61 82.97 0.24 0.23
Median 0.77 0.74 0.26 0.53 0.70 1.00 0.08 −0.01
Mean 0.76 0.69 0.31 0.56 0.71 6.35 0.10 0.01
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Figure B1. Comparison of floodplain extents derived from GFPlain90 (this study) and GFPlain250 (Nardi et al., 2019). The right-hand
panels are the inset area outlined in the orange box on the left panels, and the top panels represent an eastern coastal watershed (HUC_0304),
whereas the bottom panels are from a Midwestern US watershed (HUC_1024). The full extent of the riverine network is evident in the
GFPlain90 dataset, which was derived from 90 m resolution DEMs (digital elevation models) in contrast to the 250 m pixel size of the
GFPlain250. Satellite imagery sourced from ESRI (2022).
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