Articles | Volume 15, issue 5
https://doi.org/10.5194/essd-15-2117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2117-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
Konstantinos Michailos
CORRESPONDING AUTHOR
Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
now at: Department of Earth Sciences, University of Geneva, Geneva, Switzerland
György Hetényi
Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Kövesligethy Radó Seismological Observatory, Institute of Earth Physics and Space Science, Budapest, Hungary
Matteo Scarponi
Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Josip Stipčević
Department of Geophysics, Faculty of Science, University of Zagreb, Zagreb, Croatia
Irene Bianchi
Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Luciana Bonatto
Department of Physics, University of La Serena, La Serena, Región de Coquimbo, Chile
Wojciech Czuba
Department of Seismic Lithospheric Research, Institute of Geophysics Polish Academy of Sciences, Warszawa, Poland
Massimo Di Bona
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Aladino Govoni
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Katrin Hannemann
Westfälische Wilhelms Universität Münster, Institut für Geophysik, Münster, Germany
Tomasz Janik
Department of Seismic Lithospheric Research, Institute of Geophysics Polish Academy of Sciences, Warszawa, Poland
Dániel Kalmár
Kövesligethy Radó Seismological Observatory, Institute of Earth Physics and Space Science, Budapest, Hungary
MTA FI Lendület Pannon LitH2Oscope Research Group, Institute of Earth Physics and Space Science, Budapest, Hungary
Rainer Kind
Institute for Geological Sciences, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Frederik Link
Institute of Geosciences, Goethe University Frankfurt, Frankfurt, Germany
Francesco Pio Lucente
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Stephen Monna
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Caterina Montuori
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Stefan Mroczek
Institute for Geological Sciences, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Anne Paul
CNRS, IRD, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France
Claudia Piromallo
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Jaroslava Plomerová
Institute of Geophysics, Czech Academy of Sciences, Prague, Czech Republic
Julia Rewers
Department of Seismic Lithospheric Research, Institute of Geophysics Polish Academy of Sciences, Warszawa, Poland
Simone Salimbeni
Istituto Nazionale di Geofisica e Vulcanologia, Bologna, Italy
Frederik Tilmann
Institute for Geological Sciences, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Piotr Środa
Department of Seismic Lithospheric Research, Institute of Geophysics Polish Academy of Sciences, Warszawa, Poland
Jérôme Vergne
Institut Terre & Environnement de Strasbourg, University of Strasbourg, Strasbourg, France
A full list of authors appears at the end of the paper.
Related authors
No articles found.
Shiba Subedi, Nadja Valenzuela, Priyanka Dhami, Maren Böse, György Hetényi, Lauriane Chardot, Lok Bijaya Adhikari, Mukunda Bhattarai, Rabindra Prasad Dhakal, Sarah Houghton, and Bishal Nath Upreti
EGUsphere, https://doi.org/10.5194/egusphere-2025-4131, https://doi.org/10.5194/egusphere-2025-4131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
Short summary
An interactive exhibition in Pokhara, Nepal, held on the tenth anniversary of the 2015 earthquake, helped school students understand why earthquakes occur and how to protect themselves. After taking part, most felt more confident and prepared, and many planned to share safety tips with their families and friends. This ripple effect shows how hands-on learning can spread awareness, inspire action, and help entire communities build resilience for future earthquakes.
Tomasz Janik, Raimo Lahtinen, Monika Bociarska, Piotr Środa, and Dariusz Wójcik
Solid Earth, 16, 727–759, https://doi.org/10.5194/se-16-727-2025, https://doi.org/10.5194/se-16-727-2025, 2025
Short summary
Short summary
The manuscript re-analyses seismic data from the UPPLAND profile in the Fennoscandian Shield, focusing on P- and S-wave velocity models. Significant differences between prior and present models emerge in the lower crust and mantle and in the Moho depth. The new model suggests ca. 7.1 km s-1 in the lower crust and 8.05 km s-1 in the upper mantle, with Moho at 43–50 km. Two tectonic interpretations are proposed to explain these findings, emphasising the complexities of seismic data interpretation.
Andrew Greenwood, György Hetényi, Ludovic Baron, Alberto Zanetti, Othmar Müntener, and the MOS field team
Sci. Dril., 33, 219–236, https://doi.org/10.5194/sd-33-219-2024, https://doi.org/10.5194/sd-33-219-2024, 2024
Short summary
Short summary
A set of seismic reflection surveys were conducted in May 2019 in the Ossola Valley, Western Italian Alps, to image the geologic structure below two proposed boreholes. The boreholes plan to penetrate the upper 2 km of the lower continental crust, a zone of much scientific interest. The seismic surveys have defined the valley structure to depths of 550 m, determined the dip of geological banding, and ruled out the possibility of major geologic drilling hazards that could be encountered.
Silvia Pondrelli, Simone Salimbeni, Judith M. Confal, Marco G. Malusà, Anne Paul, Stephane Guillot, Stefano Solarino, Elena Eva, Coralie Aubert, and Liang Zhao
Solid Earth, 15, 827–835, https://doi.org/10.5194/se-15-827-2024, https://doi.org/10.5194/se-15-827-2024, 2024
Short summary
Short summary
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western Alps and support a new hypothesis. Instead of a continuous mantle flow parallel to the belt, here we find a N–S mantle deformation pattern that merges first with a mantle deformed by slab steepening beneath the Central Alps and then merges with an asthenospheric flow sourced beneath the Massif Central. This new sketch supports the extinction of slab retreat beneath the Western Alps.
Katarina Zailac, Bojan Matoš, Igor Vlahović, and Josip Stipčević
Solid Earth, 14, 1197–1220, https://doi.org/10.5194/se-14-1197-2023, https://doi.org/10.5194/se-14-1197-2023, 2023
Short summary
Short summary
Presently there is no complete crustal model of the Dinarides. Using the compilations of previous studies, we have created vertically and laterally varying crustal models defined on a regular grid for the wider area of the Dinarides, also covering parts of the Adriatic Sea and the SW part of the Pannonian Basin. In addition to the seismic velocities and density, we also defined three interfaces: sedimentary deposit bottom, carbonate rock thickness and crustal thickness.
Stefania Danesi, Simone Salimbeni, Alessandra Borghi, Stefano Urbini, and Massimo Frezzotti
EGUsphere, https://doi.org/10.5194/egusphere-2022-29, https://doi.org/10.5194/egusphere-2022-29, 2022
Preprint archived
Short summary
Short summary
Clusters of low-energy seismic events, concentrated in space and time, characterized by highly correlated waveforms (cross-correlation coefficient ≥ 0.95), occur at the floating area of a major ice stream in Antarctica (David Glacier, North Victoria Land). The transient injection of fluids from the David catchment into the regional subglacial hydrographic network, observed by GRACE measurements, is indicated as the main trigger for clustered and repeated seismic occurrences.
Jaroslava Plomerová, Helena Žlebčíková, György Hetényi, Luděk Vecsey, Vladislav Babuška, and AlpArray-EASI and AlpArray working
groups
Solid Earth, 13, 251–270, https://doi.org/10.5194/se-13-251-2022, https://doi.org/10.5194/se-13-251-2022, 2022
Short summary
Short summary
We present high-resolution tomography images of upper mantle structure beneath the E Alps and the adjacent Bohemian Massif. The northward-dipping lithosphere, imaged down to ∼200 km beneath the E Alps without signs of delamination, is probably formed by a mixture of a fragment of detached European plate and the Adriatic plate subductions. A detached high-velocity anomaly, sub-parallel to and distinct from the E Alps heterogeneity, is imaged at ∼100–200 km beneath the southern part of the BM.
Gregor Rajh, Josip Stipčević, Mladen Živčić, Marijan Herak, Andrej Gosar, and the AlpArray Working Group
Solid Earth, 13, 177–203, https://doi.org/10.5194/se-13-177-2022, https://doi.org/10.5194/se-13-177-2022, 2022
Short summary
Short summary
We investigated the 1-D velocity structure of the Earth's crust in the NW Dinarides with inversion of arrival times from earthquakes. The obtained velocity models give a better insight into the crustal structure and show velocity variations among different parts of the study area. In addition to general structural implications and a potential for improving further work, the results of our study can also be used for routine earthquake location and for detecting errors in seismological bulletins.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Monika Bociarska, Julia Rewers, Dariusz Wójcik, Weronika Materkowska, Piotr Środa, and the AniMaLS Working Group
Geosci. Instrum. Method. Data Syst., 10, 183–202, https://doi.org/10.5194/gi-10-183-2021, https://doi.org/10.5194/gi-10-183-2021, 2021
Short summary
Short summary
This paper describes a seismic dataset acquired by network of broadband sensors in Poland and technical issues related to data acquisition. We describe a new azimuth-transfer device for precise sensor orientation and apply methods for data-based orientation checking. We analyse the seismic noise level and discuss effect of geology at sites on character of seismic data and noise. We show data examples and describe methods of seismic data interpretation for studies of lithospheric structure.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Jiří Kvapil, Jaroslava Plomerová, Hana Kampfová Exnerová, Vladislav Babuška, György Hetényi, and AlpArray Working Group
Solid Earth, 12, 1051–1074, https://doi.org/10.5194/se-12-1051-2021, https://doi.org/10.5194/se-12-1051-2021, 2021
Short summary
Short summary
This paper presents a high-resolution 3-D shear wave velocity (vS) model of the Bohemian Massif crust imaged from high-density data and enhanced depth sensitivity of tomographic inversion. The dominant features of the model are relatively higher vS in the upper crust than in its surrounding, a distinct intra-crustal interface, and a velocity decrease in the lower part of the crust. The low vS in the lower part of the crust is explained by the anisotropic fabric of the lower crust.
Shiba Subedi, György Hetényi, and Ross Shackleton
Geosci. Commun., 3, 279–290, https://doi.org/10.5194/gc-3-279-2020, https://doi.org/10.5194/gc-3-279-2020, 2020
Short summary
Short summary
We study the impact of an educational seismology program on earthquake awareness and preparedness in Nepal. We see that educational activities implemented in schools are effective at raising awareness levels and in improving adaptive capacities and preparedness for future earthquakes. Knowledge also reached the broader community though social learning, leading to broadscale awareness. The result observed in this study is encouraging for the continuation and expansion of the program.
Cited articles
Allen, R. V.: Automatic earthquake recognition and timing from single traces,
B. Seismol. Soc. Am., 68, 1521–1532, 1978. a
AlpArray Seismic Network: Eastern Alpine Seismic Investigation (EASI) –
AlpArray Complimentary Experiment, AlpArray Working Group. Other/Seismic Network [data set], https://doi.org/10.12686/ALPARRAY/XT_2014, 2014. a
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary
component, AlpArray Working Group. Other/Seismic Network [data set], https://doi.org/10.12686/alparray/z3_2015, 2015. a
Artemieva, I. M. and Thybo, H.: EUNAseis: A seismic model for Moho and crustal
structure in Europe, Greenland, and the North Atlantic region,
Tectonophysics, 609, 97–153, https://doi.org/10.1016/j.tecto.2013.08.004, 2013. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett.,
81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a
Bianchi, I. and Bokelmann, G.: Seismic signature of the Alpine indentation,
evidence from the Eastern Alps, J. Geodynam., 82, 69–77,
https://doi.org/10.1016/j.jog.2014.07.005, 2014. a
Bianchi, I., Ruigrok, E., Obermann, A., and Kissling, E.: Moho topography beneath the European Eastern Alps by global-phase seismic interferometry, Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, 2021. a, b
Blundell, D. J., Freeman, R., Mueller, S., and Button, S.: A continent revealed: The European Geotraverse, structure and dynamic evolution, Cambridge University Press, 1992. a
Cassidy, J. F.: Numerical experiments in broadband receiver function
analysis, B. Seismol. Soc. Am., 82, 1453–1474,
https://doi.org/10.1785/BSSA0820031453, 1992. a, b
Chamberlain, C. J., Hopp, C. J., Boese, C. M., Warren‐Smith, E., Chambers,
D., Chu, S. X., Michailos, K., and Townend, J.: EQcorrscan: Repeating and
Near‐Repeating Earthquake Detection and Analysis in Python, Seismol.
Res. Lett., 89, 173–181, https://doi.org/10.1785/0220170151, 2018. a
Colavitti, L. and Hetényi, G.: A new approach to construct 3-D crustal
shear-wave velocity models: method description and application to the Central
Alps, Acta Geod. Geophys., 57, 529–562,
https://doi.org/10.1007/s40328-022-00394-4, 2022. a, b, c
Crameri, F.: Scientific colour maps, Zenodo [data set], https://doi.org/10.5281/zenodo.5501399, 2021. a
Department of Earth and Environmental Sciences, Geophysical Observatory, University of Munchen: BayernNetz, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/BW, 2001. a
Diehl, T., Kissling, E., Husen, S., and Aldersons, F.: Consistent phase
picking for regional tomography models: Application to the greater Alpine
region, Geophys. J. Int., 176, 542–554,
https://doi.org/10.1111/j.1365-246X.2008.03985.x, 2009. a
Di Stefano, R., Bianchi, I., Ciaccio, M. G., Carrara, G., and Kissling, E.:
Three-dimensional Moho topography in Italy: New constraints from receiver
functions and controlled source seismology, Geochem. Geophys.
Geosyst., 12, 1–15, https://doi.org/10.1029/2011GC003649, 2011. a
EIDA: European Integrated Data Archive, EIDA [data set], http://www.orfeus-eu.org/data/eida/, last access: October 2022. a
Federal Institute for Geosciences and Natural Resources BGR: German Regional
Seismic Network (GRSN), BGR [data set], https://doi.org/10.25928/MBX6-HR74, 1976. a
Geological Survey-Provincia Autonoma di Trento: Trentino Seismic Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/ST, 1981. a
Gurrola, H., Minster, J. B., and Owens, T.: The Use of Velocity Spectrum For
Stacking Receiver Functions and Imaging Upper Mantle Discontinuities,
Geophys. J. Int., 117, 427–440,
https://doi.org/10.1111/j.1365-246X.1994.tb03942.x, 1994. a
Gurrola, H., Baker, G. E., and Minster, J. B.: Simultaneous time‐domain
deconvolution with application to the computation of receiver functions,
Geophys. J. Int., 120, 537–543,
https://doi.org/10.1111/j.1365-246X.1995.tb01837.x, 1995. a
Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological-geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158, https://doi.org/10.1016/j.earscirev.2010.06.002,
2010. a
Helffrich, G.: Extended-Time Multitaper Frequency Domain Cross-Correlation
Receiver-Function Estimation, B. Seismol. Soc. Am., 96, 344–347, https://doi.org/10.1785/0120050098, 2006. a
Hetényi, G., Ren, Y., Dando, B., Stuart, G. W., Hegedűs, E.,
Kovács, A. C., and Houseman, G. A.: Crustal structure of the Pannonian
Basin: The AlCaPa and Tisza Terrains and the Mid-Hungarian Zone,
Tectonophysics, 646, 106–116, https://doi.org/10.1016/j.tecto.2015.02.004, 2015. a
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F.,
Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling,
E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul, A.,
Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter, J.,
Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann, F.,
Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V., and
Živčić, M.: The AlpArray Seismic Network: A Large-Scale
European Experiment to Image the Alpine Orogen, Surv. Geophys., 39,
1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018a. a, b, c, d
Hetényi, G., Plomerová, J., Bianchi, I.,
Kampfová Exnerová, H., Bokelmann, G., Handy, M. R., and
Babuška, V.: From mountain summits to roots: Crustal structure of the
Eastern Alps and Bohemian Massif along longitude 13.3∘ E,
Tectonophysics, 744, 239–255, https://doi.org/10.1016/j.tecto.2018.07.001,
2018b. a, b, c, d, e, f, g, h, i, j, k, l, m
Hetényi, G., Plomerová, J., Bielik, M., Bokelmann, G., Csicsay, K., Czuba, W., Meier, T., Šroda, P., Wéber, Z., Wesztergom, V., and Žlebčíková, H.: Pannonian-Carpathian-Alpine Seismic Experiment, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/ZJ_2019, 2019. a, b, c
Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Computing in Science
& Engineering, 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
International Federation of Digital Seismograph Networks: SI: Province Südtirol, FDSN [data set], https://www.fdsn.org/networks/detail/SI/, October 2022. a
Istituto Nazionale di Geofisica e Vulcanologia, INGV: Rete Sismica Nazionale
(RSN), INGV [data set], https://doi.org/10.13127/SD/X0FXNH7QFY, 2005. a
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS: North-East Italy Seismic Network, FDSN [data set], https://doi.org/10.7914/SN/OX, 2016. a
Jozi Najafabadi, A., Haberland, C., Le Breton, E., Handy, M. R., Verwater,
V. F., Heit, B., and Weber, M.: Constraints on Crustal Structure in the
Vicinity of the Adriatic Indenter (European Alps) From Vp and Vp / Vs Local
Earthquake Tomography , J. Geophys. Res.-Sol. Ea., 127,
1–22, https://doi.org/10.1029/2021jb023160, 2022. a
Kalmár, D., Hetényi, G., and Bondár, I.: Moho depth analysis
of the eastern Pannonian Basin and the Southern Carpathians from receiver
functions, J. Seismol., 23, 967–982,
https://doi.org/10.1007/s10950-019-09847-w, 2019. a
Kalmár, D., Hetényi, G., Balázs, A., and Bondár, I.:
Crustal Thinning From Orogen to Back‐Arc Basin: The Structure of the
Pannonian Basin Region Revealed by P‐to‐S Converted Seismic Waves,
J. Geophys. Res.-Sol. Ea., 126, 1–24,
https://doi.org/10.1029/2020JB021309, 2021. a
Kennett, B. L. N. and Engdahl, E. R.: Traveltimes for global earthquake
location and phase identification, Geophys. J. Int., 105,
429–465, https://doi.org/10.1111/j.1365-246X.1991.tb06724.x, 1991. a
Kind, R., Schmid, S. M., Yuan, X., Heit, B., Meier, T., and the AlpArray and AlpArray-SWATH-D Working Groups: Moho and uppermost mantle structure in the Alpine area from S-to-P converted waves, Solid Earth, 12, 2503–2521, https://doi.org/10.5194/se-12-2503-2021, 2021. a
Kosarev, G., Kind, R., Sobolev, S. V., Yuan, X., Hanka, W., and Oreshin, S.:
Seismic Evidence for a Detached Indian Lithospheric Mantle Beneath Tibet,
Science, 283, 1306–1309, https://doi.org/10.1126/science.283.5406.1306, 1999. a, b
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C.,
and Wassermann, J.: ObsPy: A bridge for seismology into the scientific
Python ecosystem, Computational Science and Discovery, 8, 0–17,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015. a
Kummerow, J., Kind, R., Oncken, O., Giese, P., Ryberg, T., Wylegalla, K., and
Scherbaum, F.: A natural and controlled source seismic profile through the
Eastern Alps: TRANSALP, Earth Planet. Sc. Lett., 225, 115–129,
https://doi.org/10.1016/j.epsl.2004.05.040, 2004. a, b
Langston, C. A.: Corvallis, Oregon, crustal and upper mantle receiver
structure from teleseismic P and S waves, B. Seismol. Soc. Am., 67, 713–724, https://doi.org/10.1785/BSSA0670030713, 1977. a, b
Laske, G., Masters, G., Ma, Z., and Pasyanos, M.: Update on CRUST1.0 – A
1-degree global model of Earth's crust,
EGU General Assembly 2013, 7–12 April 2013, Vienna, Austria, EGU2013-2658, Geophys. Res. Abstr., 15, 2658, 2013. a
Levin, V. and Park, J.: P-SH conversions in a flat-layered medium with
anisotropy of arbitary orientation, Geophys. J. Int., 131,
253–266, https://doi.org/10.1111/j.1365-246X.1997.tb01220.x, 1997. a
Ligorría, J. P. and Ammon, C. J.: Iterative deconvolution and
receiver-function estimation, B. Seismol. Soc. Am., 89, 1395–1400, https://doi.org/10.1785/BSSA0890051395, 1999. a, b, c
Lombardi, D., Braunmiller, J., Kissling, E., and Giardini, D.: Moho depth and
Poisson's ratio in the Western-Central Alps from receiver functions,
Geophys. J. Int., 173, 249–264,
https://doi.org/10.1111/j.1365-246X.2007.03706.x, 2008. a, b, c
Lu, Y., Stehly, L., Brossier, R., and Paul, A.: Imaging Alpine crust using
ambient noise wave-equation tomography, Geophys. J. Int.,
222, 69–85, https://doi.org/10.1093/gji/ggaa145, 2020. a
MedNet Project Partner Institutions: Mediterranean Very Broadband Seismographic Network (MedNet), Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set], https://doi.org/10.13127/SD/FBBBTDTD6Q, 1990. a
Meier, U., Curtis, A., and Trampert, J.: Global crustal thickness from neural
network inversion of surface wave data, Geophys. J. Int.,
169, 706–722, https://doi.org/10.1111/j.1365-246X.2007.03373.x, 2007. a
Michailos, K.: rfmpy (rfmpy-v0.0.1-alpha), Zenodo [code], https://doi.org/10.5281/zenodo.7937575, 2023. a
Michailos, K., Smith, E. G. C., Chamberlain, C. J., Savage, M. K., and Townend, J.: Variations in seismogenic thickness along the central Alpine Fault, New Zealand, revealed by a decade's relocated microseismicity, Geochem. Geophys. Geosyst., 20, 470–486, https://doi.org/10.1029/2018GC007743, 2019. a
Michailos, K., Carpenter, N. S., and Hetényi, G.: Spatio-Temporal
Evolution of Intermediate-Depth Seismicity Beneath the Himalayas:
Implications for Metamorphism and Tectonics, Front. Earth Sci., 9,
859, https://doi.org/10.3389/feart.2021.742700, 2021. a
Michailos, K., Hetényi, G., Scarponi, M., Stipčević, J.,
Bianchi, I., Bonatto, L., Czuba, W., Di Bona, M., Govoni, A., Hannemann, K.,
Janik, T., Kalmár, D., Kind, R., Link, F., Lucente, F. P., Monna, S.,
Montuori, C., Mroczek, S., Paul, A., Piromallo, C., Plomerová, J.,
Rewers, J., Salimbeni, S., Tilmann, F., Środa, P., and Vergne, J.:
European Alps Receiver Function Database, Zenodo [data set], https://doi.org/10.5281/zenodo.7695125,
2023. a
Mohorovičić, A.: Potres od 8.X.1909, Godišnje
izvješće Zagrebačkog meteorološkog opservatorija za
godinu 1909, 9/4, 1–56, 1910. a
Molinari, I. and Morelli, A.: EPcrust: A reference crustal model for the
European Plate, Geophys. J. Int., 185, 352–364,
https://doi.org/10.1111/j.1365-246X.2011.04940.x, 2011. a, b, c
Molinari, I., Obermann, A., Kissling, E., Hetényi, G., and Boschi, L.:
3D crustal structure of the Eastern Alpine region from ambient noise
tomography, Results in Geophysical Sciences, 1–4, 100006,
https://doi.org/10.1016/j.ringps.2020.100006, 2020. a, b
Monna, S., Montuori, C., Frugoni, F., Piromallo, C., and Vinnik, L.: Moho and
LAB across the Western Alps (Europe) from P and S receiver function
analysis, J. Geophys. Res.-Sol. Ea., 127, e2022JB025141,
https://doi.org/10.1029/2022jb025141, 2022. a, b
Mooney, W. D., Laske, G., and Masters, T. G.: CRUST 5.1: A global crustal
model at 5∘ × 5∘, J. Geophys. Res.-Sol. Ea., 103, 727–747, https://doi.org/10.1029/97jb02122, 1998. a
Mroczek, S. and Tilmann, F.: Joint ambient noise autocorrelation and receiver
function analysis of the Moho, Geophys. J. Int., 225,
1920–1934, https://doi.org/10.1093/gji/ggab065, 2021. a
Mroczek, S., Tilmann, F., Pleuger, J., Yuan, X., and Heit, B.: Investigating
the Eastern Alpine–Dinaric transition with teleseismic receiver functions:
Evidence for subducted European crust, Earth Planet. Sc. Lett.,
609, 118096, https://doi.org/10.1016/j.epsl.2023.118096, 2023. a, b
Nouibat, A., Stehly, L., Paul, A., Schwartz, S., Bodin, T., Dumont, T.,
Rolland, Y., and Brossier, R.: Lithospheric transdimensional ambient-noise
tomography of W-Europe: implications for crustal-scale geometry of the
W-Alps, Geophys. J. Int., 229, 862–879,
https://doi.org/10.1093/gji/ggab520, 2022. a, b
OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and University of Trieste: North-East Italy Broadband Network, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/NI, 2002. a
Paffrath, M., Friederich, W., Schmid, S. M., Handy, M. R., and the AlpArray and AlpArray-Swath D Working Group: Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data, Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, 2021. a
Park, J. and Levin, V.: Receiver functions from multiple-taper spectral
correlation Estimates, B. Seismol. Soc. Am., 90,
1507–1520, https://doi.org/10.1785/0119990122, 2000. a
Pfiffner, O., Lehner, P., Heitzmann, P., Mueller, S., and Steck, A.: Deep
structure of the Swiss Alps, Birkhäuser, Basel, 380 pp., 1997. a
RESIF: RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France, RESIF – Réseau Sismologique et géodésique Français [data set], https://doi.org/10.15778/RESIF.FR,
1995. a
Roure, F., Polino, R., and Nicolich, R.: Early Neogene deformation beneath the
Po plain: constraints on the post-collisional Alpine evolution, edited by: Roure, F., Heitzmann, P., and Polino, R., Mémoires, Société Géologique de France, Paris, 309–322, 1990. a
Ryberg, T. and Weber, M.: Receiver function arrays: a reflection seismic
approach, Geophys. J. Int., 141, 1–11,
https://doi.org/10.1046/j.1365-246X.2000.00077.x, 2000. a, b
Sadeghi-Bagherabadi, A., Vuan, A., Aoudia, A., and Parolai, S.:
High-Resolution Crustal S-wave Velocity Model and Moho Geometry Beneath the
Southeastern Alps: New Insights From the SWATH-D Experiment, Front. Earth Sci., 9, 641113, https://doi.org/10.3389/feart.2021.641113, 2021. a
Savage, M. K., Park, J., and Todd, H.: Velocity and anisotropy structure at
the Hikurangi subduction margin, New Zealand from receiver functions,
Geophys. J. Int., 168, 1034–1050,
https://doi.org/10.1111/j.1365-246X.2006.03086.x, 2007. a
Scarponi, M., Hetényi, G., Plomerová, J., Solarino, S., Baron, L.,
and Petri, B.: Joint Seismic and Gravity Data Inversion to Image
Intra-Crustal Structures: The Ivrea Geophysical Body Along the Val Sesia
Profile (Piedmont, Italy), Front. Earth Sci., 9, 671412,
https://doi.org/10.3389/feart.2021.671412, 2021. a, b, c, d
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic
map and overall architecture of the Alpine orogen, Eclogae Geologicae
Helvetiae, 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004. a
Singer, J.: Tectonics of the Bhutan Himalaya: New Insights from Seismic
Tomographic Images of the Lithosphere, PhD thesis, ETH Zurich, 2017. a
Slovenian Environment Agency: Seismic Network of the Republic of Slovenia, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/SL, 1990. a
Spada, M., Bianchi, I., Kissling, E., Agostinetti, N. P., and Wiemer, S.:
Combining controlled-source seismology and receiver function information to
derive 3-D Moho topography for Italy, Geophys. J. Int.,
194, 1050–1068, https://doi.org/10.1093/gji/ggt148, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Swiss Seismological Service (SED) At ETH Zurich: National Seismic Networks of Switzerland, ETH Zürich. Other/Seismic Network [data set],
https://doi.org/10.12686/SED/NETWORKS/CH, 1983. a
Vinnik, L. P.: Detection of waves converted from P to SV in the mantle,
Phys. Earth Planet. In., 15, 39–45,
https://doi.org/10.1016/0031-9201(77)90008-5, 1977. a
Waldhauser, F., Kissling, E., Ansorge, J., and Mueller, S.: Three-dimensional
interface modelling with two-dimensional seismic data: the Alpine
crust-mantle boundary, Geophys. J. Int., 135, 264–278,
https://doi.org/10.1046/j.1365-246X.1998.00647.x, 1998. a, b
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H., and
Tian, D.: The Generic Mapping Tools Version 6, Geochem. Geophys.
Geosyst., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019. a
Yuan, X., Ni, J., Kind, R., Mechie, J., and Sandvol, E.: Lithospheric and
upper mantle structure of southern Tibet from a seismological passive source
experiment, J. Geophys. Res.-Sol. Ea., 102,
27491–27500, https://doi.org/10.1029/97JB02379, 1997. a, b
ZAMG – Zentralanstalt für Meterologie und Geodynamik: Austrian Seismic Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/OE, 1987. a
Zhao, L., Zheng, T., Zhu, R., Wang, Q., Paul, A., Guillot, S., Aubert, C.,
Dumont, T., Schwartz, S., Solarino, S., Malusà, M. G., and Salimbeni,
S.: First seismic evidence for continental subduction beneath the Western
Alps, Geology, 43, 815–819, https://doi.org/10.1130/G36833.1, 2015.
a, b, c
Zhao, L., Paul, A., and Solarino, S.: Seismic network YP: CIFALPS temporary experiment (China-Italy-France Alps seismic transect),
RESIF - Réseau Sismologique et géodésique Français [data set],
https://doi.org/10.15778/RESIF.YP2012, 2016. a, b, c
Zhu, L.: Crustal structure across the San Andreas Fault, southern California
from teleseismic converted waves, Earth Planet. Sc. Lett., 179,
183–190, https://doi.org/10.1016/S0012-821X(00)00101-1, 2000. a, b
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
We examine the spatial variability of the crustal thickness beneath the broader European Alpine...
Altmetrics
Final-revised paper
Preprint