Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1441-2023
https://doi.org/10.5194/essd-15-1441-2023
Data description paper
 | 
31 Mar 2023
Data description paper |  | 31 Mar 2023

EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset

Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse

Related authors

Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024,https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Measuring rainfall using microwave links: the influence of temporal sampling
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024,https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024,https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Assessing sampling and retrieval errors of GPROF precipitation estimates over the Netherlands
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024,https://doi.org/10.5194/amt-17-247-2024, 2024
Short summary
Rainfall retrieval algorithm for commercial microwave links: stochastic calibration
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022,https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Meteorology
The PAZ polarimetric radio occultation research dataset for scientific applications
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024,https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Water vapor Raman lidar observations from multiple sites in the framework of WaLiNeAs
Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant
Earth Syst. Sci. Data, 16, 5579–5602, https://doi.org/10.5194/essd-16-5579-2024,https://doi.org/10.5194/essd-16-5579-2024, 2024
Short summary
SARAH-3 – satellite-based climate data records of surface solar radiation
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024,https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024,https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024,https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary

Cited articles

Al-Sakka, H., Boumahmoud, A.-A., Fradon, B., Frasier, S. J., and Tabary, P.: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars, J. Appl. Meteorol. Clim., 52, 2328–2344, https://doi.org/10.1175/JAMC-D-12-0236.1, 2013. a
Allen, R. J. and DeGaetano, A. T.: Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme areal precipitation amounts, J. Hydrol., 315, 203–219, https://doi.org/10.1016/j.jhydrol.2005.03.028, 2005. a
Barnes, S. L.: A technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409, 1964. a
Barton, Y., Sideris, I., Raupach, T., Gabella, M., Germann, U., and Martius, O.: A multi-year assessment of sub-hourly gridded precipitation for Switzerland based on a blended radar–Rain-gauge dataset, Int. J. Climatol., 40, 5208–5222, https://doi.org/10.1002/joc.6514, 2020. a
Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based cloud property data record CLAAS-2, Earth Syst. Sci. Data, 9, 415–-434, https://doi.org/10.5194/essd-9-415-2017, 2017. a
Download
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Altmetrics
Final-revised paper
Preprint