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Abstract. The European climatological high-resolution gauge-adjusted radar precipitation dataset, EURAD-
CLIM, addresses the need for an accurate (sub)daily precipitation product covering 78 % of Europe at a high
spatial resolution. A climatological dataset of 1 and 24 h precipitation accumulations on a 2 km grid is derived
for the period 2013 through 2020. The starting point is the European Meteorological Network (EUMETNET)
Operational Program on the Exchange of Weather Radar Information (OPERA) gridded radar dataset of 15 min
instantaneous surface rain rates, which is based on data from, on average, 138 ground-based weather radars.
First, methods are applied to further remove non-meteorological echoes from these composites by applying
two statistical methods and a satellite-based cloud-type mask. Second, the radar composites are merged with
the European Climate Assessment & Dataset (ECA&D) with potentially ∼ 7700 rain gauges from National
Meteorological and Hydrological Services (NMHSs) in order to substantially improve its quality. Characteris-
tics of the radar, rain gauge and satellite datasets are presented, as well as a detailed account of the applied
algorithms. The clutter-removal algorithms are effective while removing few precipitation echoes. The useful-
ness of EURADCLIM for quantitative precipitation estimation (QPE) is confirmed by comparison against rain
gauge accumulations employing scatter density plots, statistical metrics and a spatial verification. These show
a strong improvement with respect to the original OPERA product. The potential of EURADCLIM to derive
pan-European precipitation climatologies and to evaluate extreme precipitation events is shown. Specific atten-
tion is given to the remaining artifacts in and limitations of EURADCLIM. Finally, it is recommended to further
improve EURADCLIM by applying algorithms to 3D instead of 2D radar data and by obtaining more rain gauge
data for the radar–gauge merging. The EURADCLIM 1 and 24 h precipitation datasets are publicly available at
https://doi.org/10.21944/7ypj-wn68 (Overeem et al., 2022a) and https://doi.org/10.21944/1a54-gg96 (Overeem
et al., 2022b).
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1 Introduction

Accurate surface precipitation information at high spa-
tiotemporal resolutions is needed for many scientific do-
mains and applications, such as agriculture, water manage-
ment, weather prediction and climate monitoring, but this
is often lacking. EUMETNET (the European Meteorolog-
ical Network) is a network of 31 National Meteorological
and Hydrological Services (NMHSs), and one of its pro-
grams is OPERA (Operational Program on the Exchange
of Weather Radar Information). In OPERA, expertise on
operational ground-based weather radars is exchanged, and
pan-European radar products have been developed, which
are disseminated in near real time (Huuskonen et al., 2014;
OPERA, 2022). While the EUMETNET OPERA ground-
based weather radar composite provides strong coverage at
the kilometer scale, it generally underestimates precipitation
by tens of percent. The spatial variability of this bias indi-
cates that its quality is inhomogeneous in time and space.
Moreover, many smaller areas suffer from severe overesti-
mation due to non-meteorological echoes (clutter), mainly
due to signal interference (Saltikoff et al., 2016), obstacles in
the vicinity of radars and refraction of the radar beam (e.g.,
Gourley et al., 2007; Fabry, 2015; Overeem et al., 2020).
A long list of possible sources of error can negatively af-
fect radar precipitation estimates (Doviak and Zrnić, 1993;
Fabry, 2015; Rauber and Nesbitt, 2018; Ryzhkov and Zrnic,
2019), e.g., hardware-related errors such as electronic cali-
bration and antenna-pointing offsets (Frech et al., 2017) and
severe underestimation due to rain-induced attenuation along
the radar beam for X- or C-band radars (e.g., Hitschfeld
and Bordan, 1954; Tabary et al., 2009; Jacobi and Heis-
termann, 2016; Overeem et al., 2021). Another source of
error is caused by, for instance, changes in the vertical
profile of reflectivity, where the height of the radar sam-
pling volume increases with increasing range from the radar,
hence becoming less representative of the reflectivity at the
ground (Hazenberg et al., 2013). In contrast, rain gauges of-
ten provide accurate local quantitative precipitation estima-
tion (QPE), but their network densities are usually too sparse
to capture the spatial precipitation variability, especially at
the subdaily timescale (Van de Beek et al., 2012). Gridded
precipitation datasets based on interpolated gauge accumula-
tions and covering large parts of Europe provide at best daily
accumulations at 0.1 and 0.25◦ grids (Cornes et al., 2018).

A common practice on a national level is to combine
the best of two worlds by merging radar with rain gauge
data (e.g., Holleman, 2007; Goudenhoofdt and Delobbe,
2016; Nelson et al., 2016; Fabry et al., 2017; Bližňák et al.,
2018; Winterrath et al., 2018; Barton et al., 2020). For Eu-
rope, Park et al. (2019) developed an operational gauge-
adjusted OPERA-based radar rainfall product for the Euro-
pean Rainfall-InduCed Hazard Assessment (ERICHA) sys-
tem. This is used to compute flash-flood hazard for Europe

for the next 6 h for the European Flood Awareness System
(EFAS).

Here, we present an open climatological OPERA-based
radar precipitation product over the period 2013–2020, called
EURADCLIM (EUropean RADar CLIMatology). It covers
∼ 8× 106 km2 of Europe, which is about 78 % of the ge-
ographical Europe and covers a variety of climates from
Mediterranean to temperate, mountain, continental and arc-
tic. Some differences with the study by Park et al. (2019),
who developed a (near-)real-time dataset, are that additional
algorithms to remove non-meteorological echoes are applied,
and data from many more rain gauges are available after
waiting 1.5 years (at most ∼ 7700 instead of at most a few
thousand). In addition, for each 1 h interval that is adjusted,
the corresponding gauge data are used to compute a spatial
adjustment factor field for that hour instead of applying such
a field based on radar and gauge data from the last 7 rainy
days, as is the case in the Park et al. (2019) dataset. In EU-
RADCLIM, non-meteorological echoes are further removed
by applying an open-source statistical filter, taking into ac-
count large gradients and the sizes of contiguous echoes
(Gabella and Notarpietro, 2002; Wradlib, 2021). The Gabella
clutter filter does not depend on auxiliary data. Here, it is
applied to archived data, but it could be applied in (near)
real time. Hence, evaluation of its performance to remove
non-meteorological echoes is also relevant for the existing
gridded OPERA products. Next, a climatological satellite
cloud-type product is employed to identify areas with semi-
transparent clouds or without clouds and to set rain rates to
0 mm h−1 in those areas. Finally, for each year a static clut-
ter mask is computed based on outliers in annual precipi-
tation. For these locations, 1 h radar precipitation accumu-
lations are replaced by spatially interpolated values. Merg-
ing these radar precipitation accumulations with those from
rain gauges results in EURADCLIM, which can be seen as
the continental European analog of a climatological radar
precipitation dataset developed for the United States (Fabry
et al., 2017). Having 24 h accumulations can, for instance, be
useful for evaluation of extreme precipitation events, evalua-
tion of EURADCLIM against (manual) rain gauge accumu-
lations and climatological analyses. Moreover, the ETCCDI
climate indices require daily precipitation amounts for cli-
mate monitoring (https://www.wcrp-climate.org/etccdi, last
access: 23 March 2023). In addition, a drawback of the grid-
ded E-OBS dataset is that the underlying rain gauges are ag-
gregated over daily measurement intervals that are not homo-
geneous over Europe. The unique nature of EURADCLIM
improves upon this aspect. Hence, the EURADCLIM dataset
is not only available as 1 h, but also as 24 h accumulations.

The outline of this paper is as follows: first, characteristics
of the employed radar, rain gauge and satellite datasets, such
as data availability and coverage, are described (Sect. 2).
Next, the three algorithms to remove non-meteorological
echoes and the radar–gauge merging algorithm are pre-
sented (Sect. 3). This is followed by a step-by-step evalua-
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tion of the datasets after each processing step, including the
EURADCLIM dataset, against rain gauge data (Sect. 4.1–
4.2). EURADCLIM’s limitations are discussed and illus-
trated together with pan-European precipitation climatolo-
gies (Sect. 4.3). The Results section ends with extreme pre-
cipitation events derived from EURADCLIM (Sect. 4.4).
Finally, conclusions and recommendations to improve EU-
RADCLIM are provided (Sect. 5).

2 Data

2.1 OPERA radar data

The radar composite product “instantaneous surface rain
rate” was obtained from the EUMETNET OPERA Data Cen-
tre (ODC or Odyssey) from the period 2013–2020. It is
stored in Hierarchical Data Format version-5 (HDF5) files
employing the OPERA Data Information Model (ODIM)
(Michelson et al., 2019). This product has a temporal resolu-
tion of 15 min and a spatial resolution of 2 km× 2 km (Lam-
bert azimuthal equal-area projection; 2200×1900 grid cells).
As is usually the case for gridded radar precipitation prod-
ucts, the effective resolution decreases for increasing dis-
tances from radars and will become lower than 4 km2 (typi-
cally at ∼ 115 km from a radar for a beam width of 1◦). It is
based on the 3D single-site radar data from NMHSs, which
have undergone Doppler clutter filtering. The latter helps to
detect and correct for clutter in case the radial Doppler ve-
locity is (near) zero. Hence, the influence of (nearly) station-
ary targets on radar reflectivity factors is diminished while
preserving the non-stationary precipitation targets. Depend-
ing on the radar, beam-blockage correction and additional
(dual-polarization) clutter filtering have been applied by the
respective NMHS. OPERA applies algorithms to either in-
dividual radar data or the composite, concerning further re-
moval of non-meteorological echoes and, since late 2015,
beam-blockage correction and a satellite cloud mask to re-
move non-meteorological echoes (Saltikoff et al., 2019b).

The number of contributing radars, on average 138 based
on intervals with data, gradually increases over the period
2013–2020 (Fig. 1a). A variety of radars is employed, for in-
stance, different manufacturers, different frequencies (mostly
C-band, some X-band and S-band) and a mixture of single-
polarization and dual-polarization radars. The measurement
frequency of the radars is 5 min or 10 min, and data from
the last time stamp are used in the composite product, e.g.,
the 5 min file from 10:15 UTC and the 10 min file from
10:10 UTC for the 10:15 UTC OPERA composite product.
The lowest-elevation scan data from all radars are combined
to produce a composite of the gridded horizontally polarized
radar reflectivity factor (Zh) data. Before 29 September 2017
08:52 UTC, this was done via logarithmic range-weighted
averaging (dBZh) and afterwards via linear range-weighted
averaging (Zh). Finally, instantaneous surface rain rates are
retrieved from the reflectivity composites every 15 min us-

ing the Marshall–Palmer Zh−R relation (Zh = 200R1.6).
Saltikoff et al. (2019b) provide more details on the OPERA
radar data and their processing.

For each radar grid cell (pixel) and clock hour (i.e., ev-
ery hour on the hour), 1 h precipitation accumulations are
computed from the rain rates in case of full availability;
otherwise, the grid cells contain the ODIM “nodata” value,
which is “used to denote areas void of data (never radiated)”
(Michelson et al., 2019). So, 1 h accumulations are only de-
rived if all 15 min OPERA rain rates are not equal to the
nodata value and “undetect” values from the OPERA rain
rates, “used to denote areas below the measurement detec-
tion threshold (radiated but nothing detected)” (Michelson
et al., 2019), are set to 0 mm. These 1 h precipitation accumu-
lations are used to compute 24 h accumulations every clock
hour as well as annual accumulations. For each radar grid
cell, a minimum data availability of the underlying 1 h accu-
mulations of 83.3 % is required (i.e., at least 20 of 24 h or
∼ 304.2 of 365 d). Grid cells with overly low availability are
set to the OPERA nodata value. The availability of 1 and 24 h
precipitation accumulations is generally high (Fig. 1b–c). For
the large majority of the OPERA domain, the availability of
1 h precipitation accumulations is at least 95 % over the pe-
riod 2013–2020 (Fig. 2a). The distance to the nearest radar
displays quite some variability but is generally shorter than
175 km (Fig. 2c). The median and mean distances to the near-
est radar are 110 and 133 km, respectively. Some countries do
have radars, but these do not contribute to the OPERA com-
posite yet (e.g., Austria and Italy). All derived radar datasets
are kept in ODIM-HDF5 format on the default OPERA grid
of 2 km resolution.

2.2 European Climate Assessment and Dataset and
E-OBS rain gauge data

Daily precipitation series were obtained from the European
Climate Assessment and Dataset (ECA&D, https://www.
ecad.eu, last access: 23 March 2023) project (Klein Tank
et al., 2002; Klok and Klein Tank, 2008). In total, ∼ 7700
rain gauges from 29 different countries and 37 different data
providers, including non-downloadable series (i.e., included
in ECA&D for production of derived data but only accessible
through the data-owning NMHSs), are covered by OPERA
radars during (part of) the 2013–2020 period. Combined
radar–gauge data availability is at least 90 % for most regions
(Fig. 2b). This availability is the percentage of daily inter-
vals in the 8-year period at each gauge location, where the
gauge and corresponding radar accumulations are both avail-
able. Figure 2d displays the distance to the nearest gauge for
the OPERA domain if all ∼ 7700 gauges are available. The
large variability in space of the underlying rain gauge net-
work density is obvious. The median and mean distances to
the nearest rain gauge are 42 and 92 km, respectively. These
relatively long distances are mainly caused by areas above
the land surface with low rain gauge network densities and
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Figure 1. OPERA radar data availability as a function of time over the period 2013–2020. (a) Number of contributing radars to the OPERA
composite of rain rates in case data are available for at least part of the OPERA domain. Coverage of OPERA radar datasets as a function of
time for the (b) 1 and (c) 24 h precipitation accumulations. For panels (b) and (c), time intervals without data are also plotted (as 0).

above the sea. The ECA&D rain gauge dataset will be used
to evaluate the various radar precipitation datasets and will
be merged with 1 h radar accumulations.

The rain gauge data have undergone quality control by the
ECA&D team (Project team ECA&D and Royal Netherlands
Meteorological Institute KNMI, 2021) and often by NMHSs.
Given the latency in gauge data provided to ECA&D for
some networks and to prevent spatial differences in the qual-
ity of merged radar–gauge QPE, only data up to and in-
cluding 2020 are used. At the time of data production (mid-
June 2022), it was found for some countries that the density
of gauge networks from which data were available is rela-
tively sparse (Bosnia and Herzegovina, Croatia, Denmark,
Hungary, Iceland, Lithuania, Portugal, Romania, Slovakia,
Spain, Switzerland) and no data are available (e.g., Bulgaria,
Greece, Kosovo, North Macedonia) or are not complete for
the entire period (e.g., for Romania it ends on 31 Septem-
ber 2020, for Serbia it ends on 31 December 2017, it is only
a few years for Montenegro, and time series from most sta-
tions in the United Kingdom end on 31 December 2019).

The daily measurement interval of gauges is often not
exactly known to ECA&D. For instance, the metadata for
some networks are imprecise as aggregation intervals ending
at 06:00, 07:00 or 08:00 UTC are lumped together. Some-
times, additional information on the measurement interval
end time from the respective NMHS was available and se-
lected. In order to determine the exact measurement in-
terval for other gauge networks, gauge accumulations are
compared to OPERA 24 h accumulations by testing differ-
ent measurement interval end times. For each network, dis-
tributions of Pearson correlation coefficients for all gauge
locations are evaluated for each interval end time using
ridgeline plots. The measurement interval end time with
the highest correlations is selected for that given network.
The end times of the observations display a large variability
across Europe at 00:00 UTC (9 networks), 06:00 UTC (16
networks), 06:00 UTC in summer and 07:00 UTC in win-
ter (1 network), 07:00 UTC (1 network), 08:00 UTC (3 net-
works), 09:00 UTC (2 networks), 18:00 UTC (3 networks)
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Figure 2. (a) Map of the OPERA domain with the fraction of available radar composites over the period 2013–2020. (b) Map with combined
radar–gauge availability over the period 2013–2020. (c) Map of the distance to the nearest radar per grid cell assuming full availability of
radar data (note that some of the radars only contributed part of the period). (d) Map of the distance to the nearest rain gauge per grid cell
assuming full availability of radar and gauge data. This shows the best possible result. In reality, the average minimum distance will be longer
because sometimes gauge data are missing. Maps made with Natural Earth. Free vector and raster map data © https://naturalearthdata.com
(last access: 23 March 2023).

and 21:00 UTC (1 network) to 22:00 UTC in summer and
23:00 UTC in winter (1 network).

A pan-European dataset, E-OBS version 25.0e
(https://surfobs.climate.copernicus.eu/dataaccess, last
access: 23 March 2023), of gridded, daily and interpolated
ECA&D gauge accumulations (Cornes et al., 2018) is used
to compute annual precipitation accumulations. These will
be used for comparison with EURADCLIM accumulations.

2.3 Satellite cloud-type product

Information on the occurrence and type of clouds was ob-
tained from the Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI) on board the geostationary Meteosat Second-
Generation (MSG) satellites operated by the European Or-
ganisation for the Exploitation of Meteorological Satellites
(EUMETSAT). The CLoud property dAtAset using SEVIRI
edition 2 (CLAAS-2) was used, produced by EUMETSAT’s
Satellite Application Facility on Climate Monitoring (CM
SAF). CLAAS-2 (Finkensieper et al., 2016; Benas et al.,

2017) is a climate data record of cloud properties derived
from SEVIRI measurements and extending from 2004 to the
present. The CLAAS-2 cloud-type product was derived with
the MSGv2012 software package developed by the SAF on
nowcasting and very-short-range forecasting (NWC SAF).
Further details on the retrieval algorithm can be found in Der-
rien and Le Gléau (2005) and NWC SAF (2013). The tempo-
ral resolution of CLAAS-2 is 15 min. Its spatial resolution is
3 km× 3 km at the subsatellite point and around 4 km× 7 km
in the center of the OPERA domain (∼ 52◦ N). The cloud
type was converted from the CLAAS-2/SEVIRI grid to the
native OPERA radar grid of 2 km by 2 km using nearest-
neighbor resampling. This dataset is available day and night
and is used to remove non-meteorological echoes from the
OPERA radar data. Over the period 2013–2020, 99.7 % of
the 15 min intervals have valid data.
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Figure 3. Flowchart of radar and gauge data processing for EU-
RADCLIM.

3 Methodology

The flowchart in Fig. 3 provides an overview of the input
datasets, the applied processing and the output dataset EU-
RADCLIM. Three algorithms are applied to further remove
non-meteorological echoes from the OPERA radar data. Fi-
nally, the radar data are merged with the ECA&D rain gauge
data.

3.1 Gabella clutter filter

The function clutter.gabella from the open-source Python li-
brary for weather radar data processing wradlib version 1.9.0
(Heistermann et al., 2013; Mühlbauer et al., 2020) is em-
ployed to classify non-meteorological echoes. This Gabella
filter is a two-part algorithm (Gabella and Notarpietro, 2002;
Wradlib, 2021), which uses as input the radar reflectivity fac-
tors. For this, rain rates are converted to radar reflectivity fac-
tors employing Zh = 200R1.6 (beforehand undetect and no-
data values are set to 0 mm h−1). Then the Gabella filter is

used to classify grid cells using the Cartesian radar reflectiv-
ity factor data. In the first part of the filter, strong spatial gra-
dients are identified by checking for each grid cell how many
cells surrounding it in a square lattice of 5× 5 cells are less
than 6 dBZh lower than the central cell. When this number of
cells is lower than 6, the central cell is identified as clutter. In
the second part of the filter, the ratio between the area and cir-
cumference for contiguous echo regions is computed, where
these consist of cells with a value above 0 dBZh. When the
absolute value of this ratio is lower than 1.3, the central cell
is identified as clutter. Next, the original surface rain rates
are set to 0 mm h−1 in case one or two of the parts of the
Gabella filter identify clutter. Central cells that have nodata
values in the original rain rates are unaffected by the Gabella
filter, and undetect values are kept in case of no clutter. A
successful example of applying the Gabella clutter filter for
the Netherlands and surroundings is provided in Fig. 4a–b.

3.2 Satellite cloud-type mask clutter filter

A satellite cloud-type mask is employed to classify remain-
ing non-meteorological echoes. Localization errors (e.g., ad-
vection, timing differences between radar and satellite, par-
allax) are taken into account by considering all grid cells
in a square lattice of 7× 7 cells containing the central cell
for which the classification is performed. The rain rate for
this central cell is set to 0 mm h−1 when all cells in the
square lattice are either classified as cloud-free or as contain-
ing semitransparent clouds (which are assumed to be non-
raining). Concretely, these cases correspond to the following
MSGv2012 cloud-type categories: cloud-free land, cloud-
free sea, land contaminated by snow, sea contaminated by
snow/ice, high, semitransparent thin clouds, high, semitrans-
parent meanly thick clouds, and high, semitransparent thick
clouds. In case satellite data are not available for a given pixel
(category “non-processed containing no data or corrupted
data” or no file/image available), that pixel is not used as a
neighboring pixel, and the radar pixel directly beneath it will
not be labeled as clutter. Figure 4c–e illustrate the working
of this algorithm by providing a 15 min radar rain rate, be-
fore and after applying the satellite cloud-type mask, which
is also displayed. Because the satellite images are referenced
to with the start time of observation and the radar composites
are referenced to with the end time of observation, a satel-
lite image of, for example, 12:00 UTC is combined with the
radar composite of 12:15 UTC.

3.3 Static clutter filter

The 15 min radar rain rates are accumulated to 1 h and these
1 h accumulations to annual precipitation accumulations. The
function clutter.histo_cut from the open-source Python li-
brary for weather radar data processing wradlib version 1.9.0
(Heistermann et al., 2013; Mühlbauer et al., 2020; Wradlib,
2022) is employed to classify non-meteorological echoes in
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the annual precipitation accumulation. First, a histogram of
50 classes is computed from the annual precipitation from
a given year using all grid cells. Next, the class with the
largest frequency is determined. An iterative procedure de-
tects those classes with a frequency below 5 % of the fre-
quency of the class with the largest frequency (the hard-
coded default value is 1 %). The procedure stops when the
changes in the maximum annual rainfall from the remaining
classes become (smaller than) 1 mm compared to the previ-
ous iteration. The grid cells corresponding to the detected
classes become the static clutter mask. For each year a sepa-
rate static clutter mask is obtained. This algorithm identifies
areas with static clutter and may also detect areas affected
by beam blockage. Next, inverse-distance-weighted interpo-
lated values are computed for the identified grid cells (inverse
distance-weighting power of 2; maximum of four neighbors).
This value replaces the original value only in case it is lower
than the original value. The original nodata values are kept in
the output dataset. The interpolation is performed on the 1 h
precipitation accumulations. From the cleaned 1 h accumula-
tions, which are used for merging with rain gauge accumu-
lations, 24 h accumulations for every clock hour are derived.
Figure 4f–h show an example of annual precipitation accu-
mulations, the derived annual precipitation accumulations af-
ter applying the static clutter mask including interpolation
on the underlying 1 h radar precipitation composites and the
corresponding static clutter mask. The mask seems to corre-
spond mostly to areas with high annual precipitation. In the-
ory, the interpolation could decrease precipitation estimates
for areas with beam blockage. Areas with beam blockage are
not abundant, though. Also note that a beam-blockage cor-
rection has already been applied by OPERA.

3.4 Merging radar with ECA&D rain gauge data

The starting point of the merging algorithm is that radar and
rain gauge data are used from the same 1 h interval, instead
of computing adjustment factor fields based on preceding
time intervals, such as in Park et al. (2019). Since the mea-
surement interval of daily rain gauge accumulations varies
across Europe, a daily adjustment factor field would not be
entirely representative, and since the aim is to derive 1 h ad-
justed radar precipitation accumulations, ideally, 1 h adjust-
ment factor fields would be computed. To achieve this, the
daily gauge accumulations are disaggregated to 1 h accumu-
lations employing the 1 and 24 h radar accumulations from
the previous processing step. The end times of the observa-
tions, as determined in Sect. 2.2, are taken into account in the
disaggregation. It is assumed that the gauges observed pre-
cipitation only during the intervals for which radar data were
available. So, in the case of missing radar data, at most 4 h per
24 h interval, the daily gauge precipitation is only distributed
over the remaining (at least 20) hours. The threshold of 4 h
comes from the minimum required availability of 83.3 % to
aggregate 1 to 24 h radar accumulations. If this requirement

is not met for a given radar grid cell and 24 h interval, the
nodata value is assigned to the radar grid cell. Hence, if more
than 4 h of radar data at the location of a rain gauge is miss-
ing per 24 h, the disaggregation to 1 h gauge values cannot
be performed. The merging of 1 h disaggregated rain gauge
data and radar data is simply performed with all available
radar–gauge pairs. If no radar–gauge pairs are available at
all, due to either missing radar (i.e., only nodata values at
gauge locations) or rain gauge data, the merging is not per-
formed, and EURADCLIM will be a copy of the unadjusted
radar dataset. Next, to decrease the computation time of the
radar–gauge merging, only 1 h radar–gauge pairs for which
gauge precipitation exceeds 0.25 mm are used for merging.
This is expected to have a limited effect on the quality of the
merged dataset.

The radar–gauge merging algorithm is based on Barnes’
objective analysis (Barnes, 1964) but has been extended to
make it robust in the case of sparse gauge network densities
for short durations (1 h), when spatial precipitation variabil-
ity is often large. A spatial adjustment factor field Fc is com-
puted from the distance-weighted interpolation of the raw
radar precipitation accumulations (Sw,r) and the interpola-
tion of the corresponding gauge precipitation accumulations
(Sw,g), implying that it is computed for each radar grid cell,
which has the position (x,y):

Fc(x,y)=


Sw,r
Sw,g

if Sw,r > T ∨ Sw,g > T,
T
Sw,g

if Sw,r ≤ T ∨ Sw,g > T,
Sw,r
T

if Sw,r > T ∨ Sw,g ≤ T ,

1 if Sw,r ≤ T ∨ Sw,g ≤ T ,

(1)

with T a threshold value of 0.25 mm. Sw,X, with X an indi-
cator being g (gauge) or r (radar), is defined as

Sw,X =

Np∑
n=1

wnRX,n, (2)

which is computed over NP radar–gauge pairs. Rr,n and Rg,n
are the precipitation accumulations at the gauge location n
for radar and gauge, respectively. In case the value of Sw,X is
below T , it is set equal to T . This is done to prevent outliers
in the gauge-adjusted radar precipitation accumulations. The
weighting function wn depends on the distance of a grid cell
to the gauge location:

wn =
Gw (n,rs)+ v ·Gw (n,rl)

1+ v
, (3)

where Gw (n,rd) is a Gaussian function:

Gw (n,rd)=


exp

(
−4 (x−xn)2+(y−yn)2

r2d

)
−exp(−4)

1−exp(−4)
if (x− xn)2

+ (y− yn)2
≤ rd,

0
if (x− xn)2

+ (y− yn)2 > rd,

(4)
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Figure 4. Illustration of the application of all three clutter-removal steps and the rain gauge adjustment, i.e., of all processing steps in
EURADCLIM. (a)–(b) Application of the Gabella clutter filter (map data © OpenStreetMap contributors 2022. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0) and of (c)–(e) the cloud-type mask to remove non-meteorological echoes from a 15 min
OPERA composite of rain rates. For the cloud-type mask, the grey areas indicate where the cloud type does not belong to the seven categories
listed in Sect. 3.2 and for which the radar rain rates were thus left untouched. (f)–(h) Illustration of the application of the static clutter mask,
derived from the annual precipitation map, to 1 h radar precipitation composites, which are accumulated to an annual precipitation map.
(i)–(k) Application of the radar–gauge merging algorithm going from unadjusted to adjusted 1 h rainfall accumulations employing the 1 h
adjustment factor field. (c)–(k) Maps made with Natural Earth. Free vector and raster map data © https://naturalearthdata.com (last access:
23 March 2023).

and (xn,yn) is the position of gauge n. Equation (3) employs
two Gaussian functions, each with its own characteristic dis-
tance rd, for which the influence of a gauge is reduced to
0. The shorter range, rs, results in a local adjustment in the
neighborhood of gauges. The value of rs is taken as the range
of an isotropic spherical variogram model, which has been
expressed as a function of the day of year (DOY) and du-

ration (1–24 h) using a 30-year rain gauge dataset from the
Netherlands from the period 1979–2009 (Van de Beek et al.,
2012). When distances from a grid cell to gauges are longer
than rs, this short-range component does not contribute to the
adjustment. The longer range, rl, set at 500 km, is used to also
adjust when gauge network density is sparse and the near-
est gauges are far away (e.g., over the sea). The value of v
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controls the contribution of this long-range component with
respect to the short-range component. Apart from the actual
adjustment in which all selected gauges are used, leave-one-
out statistics (LOOS) are also provided. These statistics are
computed based on adjusted radar precipitation accumula-
tions computed for a given gauge location without using that
particular gauge in the adjustment. This is repeated for each
gauge location, thus allowing for an independent verification
of the gauge-adjusted radar dataset.

The algorithm can also run two adjustments consecutively
with different settings while still providing LOOS. Here, first
an adjustment is performed with v = 100000, implying a lo-
cal mean-field bias adjustment taking into account all gauges
within a radius of 500 km. The short-range component does
not play a role then. This helps to remove systematic underes-
timations as much as possible in regions with low-gauge net-
work densities. Tests indicated that underestimations could
not be effectively removed when the short-range component
also contributed. Next, v is set to 0, implying that only a
local spatial adjustment is performed on top of the already
mean-field bias-adjusted precipitation estimates. The adjust-
ment factor fields from both adjustments are combined into
one 1 h spatial adjustment factor field. The 1 h radar precip-
itation composite is divided by this adjustment factor field
to obtain the 1 h adjusted radar precipitation composite (EU-
RADCLIM). Figure 4i–k illustrate the adjustment by show-
ing an unadjusted radar composite, the adjusted radar com-
posite and the adjustment factor field. The effect of the long-
and short-range components is visible in the adjustment fac-
tor field, where the large-scale patterns belong to the long-
range component (v = 100000) and the local patterns (dots)
show the influence of the short-range component (v = 0) on
top of the long-range component.

3.5 Evaluation

The radar precipitation accumulations are evaluated against
rain gauge accumulations by means of scatter density plots,
maps with station-based spatial verification, comparison of
annual precipitation maps to those based on gridded rain
gauge data (E-OBS) and statistical metrics. In addition, maps
of the mean hourly precipitation and the relative frequency
of exceeding a threshold value of 1 h precipitation are com-
pared between different processing steps. Statistical metrics
used for evaluation are the relative bias of radar precipitation
accumulations compared to the corresponding gauge precipi-
tation accumulations, the residual standard deviation divided
by the mean gauge precipitation accumulation (i.e., the co-
efficient of variation, CV), the Pearson correlation coeffi-
cient (ρ) and the mean absolute error (MAE). Here, a resid-
ual is defined as the radar precipitation accumulation minus
the gauge precipitation accumulation. Results are provided
for all radar–gauge pairs as well as for the subset where the
gauge exceeds thresholds of 1.0, 10.0 and 20.0 mm d−1. Note
that representativeness errors can be significant when com-

paring radar and gauge accumulations (Kitchen and Blackall,
1992), especially for shorter durations, such as 1 h, and in the
case of larger differences in measurement volumes. The grid
cell size of 4 km2 is relatively large. Radars measure aloft,
and rain gauges measure at the Earth’s surface, but only over
a small area. Hence, differences between radar and gauge ac-
cumulations can be partly attributed to representativeness er-
rors.

4 Results

The radar precipitation datasets are assessed by first sys-
tematically evaluating the influence of the clutter-removal
algorithms on QPE, followed by an evaluation of the per-
formance of the EURADCLIM precipitation estimates. EU-
RADCLIM’s pan-European precipitation climatologies are
shown, and EURADCLIM’s limitations are discussed. Fi-
nally, extreme precipitation events derived from EURAD-
CLIM are presented.

4.1 Evaluation of clutter-removal algorithms

Maps of mean hourly precipitation over the period 2013–
2020 (Fig. 5a–b) show that the Gabella clutter filter removes
and reduces many non-meteorological echoes, e.g., sea clut-
ter at the North Sea, rings around Denmark, a radial pattern
around Estonia and spokes caused by interference over Slo-
vakia. Also, areas belonging to the highest precipitation class
become smaller in Romania and southern France. Additional
reductions are less pronounced when the cloud-type mask
is applied (Fig. 5b–c). A clear reduction in interferences in
eastern Spain stands out, and areas falling into higher precip-
itation classes become smaller in Romania. The static clut-
ter mask is effective in (strongly) reducing many of the re-
maining non-meteorological echoes (Fig. 5c–d). When us-
ing a shorter color scale (not shown), it becomes visible
that for some areas values may still be too high, and then
the area in Europe known for the highest annual precipi-
tation, the coastal area of Norway, also shows a strong re-
duction, which may point to unwarranted classification of
non-meteorological echoes. This can be seen more clearly
in Fig. A1c.

From the maps of the relative frequency of 1 h precipi-
tation exceeding 0.1 mm (Fig. 5e–f) and 5 mm (Fig. 5i–j),
it can be concluded that the Gabella filter successfully re-
moves non-meteorological echoes, especially sea clutter and
suspicious noisy areas above land. The circles and radial
patterns found for mean precipitation are not apparent, in-
dicating that these do not occur frequently. For the 0.1 mm
threshold, application of the cloud-type mask clearly reduces
the impact of interferences above Spain, and some areas be-
longing to the highest precipitation classes become smaller
or disappear, especially in eastern Europe and south of the
French Mediterranean coast. It is apparent that larger areas
above France and Germany now belong to a lower-frequency
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Figure 5. Comparison between 1 h precipitation accumulations from four datasets to study the effect of non-meteorological echo-removal
algorithms over the period 2013–2020. Results are only shown for grid cells with a minimum availability of 83.3 %. (a)–(d) Maps of mean
hourly precipitation and (e)–(l) maps of the relative frequency of exceedance of 0.1 and 5 mm in an hour. These are obtained by dividing by
the number of available values for each individual radar grid cell (i.e., not equal to “nodata” or not missing). This implies that periods with
missing radar data are not taken into account, and the number of intervals that is used will vary in space. Maps made with Natural Earth. Free
vector and raster map data © https://naturalearthdata.com (last access: 23 March 2023).

class, which could point to unwarranted classification of non-
meteorological echoes. The cloud-type mask hardly adds
value in removing non-meteorological echoes for the 5 mm
threshold, apart from reducing the frequency of the impact of
interferences (Fig. 5j–k). The static clutter mask successfully
removes non-meteorological echoes for the 0.1 mm thresh-
old (Fig. 5g–h) in eastern Europe, and for the 5 mm thresh-
old (Fig. 5k–l), the frequency of the remaining interferences
is successfully decreased over all of Europe. The fraction
in mean rainfall and the fraction in relative frequencies of
these datasets, which have undergone additional clutter re-
moval, with respect to the OPERA dataset are presented in
Appendix A.

The conclusion is that the algorithms remove many and
also severe non-meteorological echoes. To evaluate the un-
warranted removal of precipitation echoes, daily radar ac-
cumulations are compared to daily gauge accumulations in
Table 1. This independent evaluation for different thresh-
old values shows that differences in the value of MAE be-
tween the four datasets are small, the value of CV usually
decreases, and the value of ρ usually increases after each ad-
ditional processing step. The strongest improvement is found
for the Gabella clutter filter and the static clutter filter. The

relative bias in the mean daily precipitation becomes much
more negative though. The non-meteorological echoes may
have compensated for the large underestimation that is typ-
ical for mid- to high-latitude radar-only precipitation esti-
mation (Overeem et al., 2009b). Because of the general im-
provement for other statistical metrics, it is concluded that
the clutter-removal algorithms are effective and remove a few
precipitation echoes. In conclusion, the radar dataset that will
be used for merging with rain gauge data has improved con-
siderably over the dataset where no additional filtering is ap-
plied in terms of ρ and CV.

As a final check of the effectiveness of the clutter filter,
daily radar accumulations are selected when the daily gauge
accumulation is 0 mm. This results in average daily accu-
mulations of 0.5 mm when no filtering is applied, and this
decreases to 0.3 mm for the Gabella filter and to 0.2 mm
when the cloud-type mask is also applied. This confirms
the effectiveness of the algorithms in further removing non-
meteorological echoes. It remains 0.2 mm, though, when the
static clutter filter is also applied. This is likely a result of the
static clutter mask being only applied to a small part of the
OPERA domain (see, e.g., Fig. 4h), which contains a small
minority of the rain gauges. As a consequence, positive ef-
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fects are small when compared to rain gauges from the entire
OPERA domain. Moreover, in contrast to the other clutter-
filtering algorithms, values are not removed but are interpo-
lated from the surrounding values. Hence, no clear improve-
ment at the location of the gauges is found for the static clut-
ter mask.

4.2 Evaluation of EURADCLIM

In Table 1, a dependent verification of daily radar precip-
itation accumulations against rain gauges is performed to
quantify the influence of the adjustment employing gauge
data (i.e., with respect to the “Gabella+CTM+ static filter”
dataset). Results are presented for all values and for those
where gauges exceed specific thresholds. Note that all se-
lected values are used to compute the statistical metrics. A
number of conclusions can be drawn from Table 1. (1) The
severe average underestimation of precipitation of ∼ 45 %
turns into an overestimation of ∼ 11 % for EURADCLIM.
(2) For daily gauge precipitation above 1 mm the relative bias
is near zero. (3) The large underestimation for very-heavy
precipitation days (over 20 mm d−1) is reduced from ∼ 65 %
to about ∼ 10 %. (4) The value for the correlation coefficient
strongly increases from 0.59 to 0.89 based on all precipita-
tion events. (5) The values for CV strongly decrease with a
factor between 1.3 and 1.7. (6) The values for MAE decrease
to values that are between 1.7 and 3.2 times smaller. The scat-
ter density plots provide a more complete overview of the
improvement and show the much better alignment along the
1 : 1 line compared to the unadjusted dataset for daily gauge
precipitation above 1 mm (Fig. 6a–b). The quality of daily
precipitation accumulations is higher in summer (June, July,
August; Fig. 6d) than in winter (December, January, Febru-
ary; Fig. 6c). Although differences in the values of statistical
metrics are relatively small, the spread in the scatter density
plot for summer is clearly lower than in winter. The (near-
)zero precipitation values for a wide range of rain gauge val-
ues are apparent; 54 % of all data points for which the daily
gauge accumulation is above 20 mm and the corresponding
EURADCLIM radar accumulation is below 1 mm (Fig. 6b)
are located in Italy and are likely related to beam blockage or
overshooting.

For hourly precipitation, both an independent verifica-
tion via leave-one-out statistics and a dependent verifica-
tion are performed. The scatter density plots show the radar–
gauge pairs for 1 h gauge precipitation larger than 0.25 mm
(Fig. 6e–g). The remaining underestimation becomes small,
and the value for the coefficient of determination (ρ2) in-
creases with respect to the unadjusted radar dataset, espe-
cially for the dependent verification. For EURADCLIM, the
value for CV increases for the independent verification. The
second-lowest count class becomes rather wide above the
1 : 1 line. For the dependent verification the scatter density
plot is much better aligned to the 1 : 1 line, and the value
for CV becomes much lower compared to the unadjusted

dataset. The conclusion is that the quality of the EURAD-
CLIM dataset is good and much better than the dataset that
has undergone the clutter filtering but no gauge adjustment.
Note that the verification via LOOS is not entirely indepen-
dent, because the 1 and 24 h radar accumulations have been
employed to disaggregate the daily gauge accumulations to
hourly accumulations.

Next, a spatial verification per rain gauge location is per-
formed for the radar dataset before gauge adjustment and
for EURADCLIM, again for an independent verification
(LOOS) and a dependent verification (Fig. 7). The quality of
the radar composite for the unadjusted radar dataset displays
quite some variability, and there seems to be some connec-
tion with areas further away from the nearest radar (Fig. 2c).
Also, different environmental conditions, e.g., beam block-
age due to mountainous terrain, can play a role. The values
for ρ, CV and relative bias in the mean strongly improve for
the EURADCLIM dataset (dependent verification; Fig. 7c, f,
i) with respect to the unadjusted radar dataset. In addition,
the spatial variability in performance becomes much smaller.
However, for the independent verification for regions with
low gauge network densities, the value for ρ sometimes de-
creases, the value for CV often increases, the underestima-
tion becomes either less severe or turns into a large overes-
timation (Fig. 7b, e, h) with respect to the unadjusted radar
dataset. Note that the dependent verification shows the actual
performance of EURADCLIM at those locations and that
the independent verification is meant to give an impression
of the quality between those locations. In reality, results are
expected to be better for EURADCLIM than found for this
independent verification, because the distance to the nearest
gauge will be much shorter. For the LOOS results, the gauge
adjustment has been rerun for each gauge location while us-
ing all available radar–gauge pairs except the one at the con-
sidered gauge location, whereas for EURADCLIM, all avail-
able radar–gauge pairs are used.

Finally, for some gauge locations, large differences are
found. For instance, for two nearby stations in Poland, a large
overestimation and a large underestimation are found. Also,
the values for CV are high. This may point to erroneous rain
gauge data. For other regions, radar beam blockage could
play a role.

4.3 EURADCLIM radar precipitation climatologies and
their limitations

Despite the efforts by NMHSs and OPERA to remove
non-meteorological echoes and the three additional clutter-
removal algorithms employed to derive EURADCLIM, non-
meteorological echoes can still be persistent for some areas
(Fig. 5h). Two cases with strong artifacts are shown in Fig. 8
for the original OPERA surface rain rates. For the first case,
the entire radar domain of a Spanish radar has very high rates,
which seems to be caused by a constant signal source that
lasted the first 7 h of 29 April 2018 (Fig. 8a). Since this oc-
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Table 1. Evaluation of radar daily precipitation accumulations against the ECA&D rain gauge network over the period 2013–2020 at their
default measurement interval for all radar–gauge pairs and for those above a threshold value. The mean daily precipitation and the threshold
value are based on the gauge data. Relative bias, Pearson correlation coefficient, mean absolute error, coefficient of variation and number of
radar–gauge pairs are provided, respectively.

Threshold value (mm) Mean daily Rel. bias ρ MAE CV No. of pairs
precipitation (%) (mm)

No filtering:
2.41 −25.3 0.11 1.85 8.40 18 929 781

1.0 7.41 −42.7 0.17 4.50 2.44 5 964 696
10.0 19.52 −55.3 0.22 11.88 0.85 1 298 998
20.0 32.05 −61.4 0.25 20.69 0.56 401 047

Gabella clutter filter:
2.41 −38.8 0.19 1.61 5.06 18 929 756

1.0 7.41 −47.9 0.42 4.34 1.15 5 964 694
10.0 19.52 −57.6 0.35 11.91 0.63 1 298 998
20.0 32.05 −63.0 0.29 20.86 0.50 401 047

Gabella+CTM clutter filter:
2.41 −42.0 0.21 1.58 4.47 18 929 782

1.0 7.41 −49.5 0.45 4.40 1.11 5 964 696
10.0 19.52 −58.5 0.35 12.06 0.62 1 298 998
20.0 32.05 −63.7 0.29 21.07 0.50 401 047

Gabella+CTM+ static clutter filter:
2.41 −44.9 0.59 1.55 2.02 18 929 673

1.0 7.41 −51.0 0.59 4.39 0.96 5 964 669
10.0 19.52 −59.9 0.41 12.16 0.57 1 298 998
20.0 32.05 −65.2 0.32 21.30 0.47 401 047

EURADCLIM:
2.41 10.8 0.89 0.89 1.18 18 929 782

1.0 7.41 −0.1 0.88 1.88 0.58 5 964 696
10.0 19.52 −7.1 0.78 4.03 0.42 1 298 998
20.0 32.05 −10.2 0.73 6.75 0.36 401 047

curs over an entire radar domain, the algorithms can only
partly remove and reduce these echoes caused by failures
of radar processing (unless entirely cloud-free or only semi-
transparent clouds). This is much reduced by the gauge ad-
justment, although 24 h precipitation accumulations of more
than 50 mm are still found in EURADCLIM (Fig. 8b). For
the second case (Fig. 8c) with strong artifacts from a French
radar, the 1 h precipitation accumulations are substantially
reduced by the EURADCLIM algorithms (Fig. 8d). Again,
this reduction is primarily caused by the gauge adjustment.
Still, Fig. 8b, d indicate that EURADCLIM sometimes con-
tains substantial artifacts.

Now that the quality of EURADCLIM has been quanti-
fied, precipitation climatologies are derived to show its po-
tential (Fig. 9). A map of mean hourly precipitation over the
period 2013–2020 is shown in Fig. 9a. There are still some
signatures of beam blockage (e.g., Austria, Italy and north-
western Spain in Fig. 9a), probably caused by obstacles near
radar sites, and of non-meteorological echoes, such as inter-
ferences (e.g., Bosnia and Herzegovina and eastern Spain in

Fig. 9a, f, g). The highest precipitation values are found in the
coastal areas of Norway and in some mountainous areas (e.g.,
the Alps, Bosnia and Herzegovina, Croatia, Ireland, Norway,
Scotland and Wales). The seasonality of mean hourly pre-
cipitation is visualized in Fig. 9b–e. In western Europe, pre-
cipitation is highest in fall and winter. The Mediterranean
areas are typically dry in winter and summer and relatively
wet in spring and fall. The high seasonal precipitation in the
Alps in summer is apparent. Relative frequencies exceeding
0.1 mm are displayed in Fig. 9f, revealing that 1 h precipita-
tion is most frequent in Denmark, Ireland, large parts of the
United Kingdom, parts of Norway and a patchy band from
France to Switzerland and Germany and parts of eastern Eu-
rope. The southern part of Spain has the lowest frequency of
1 h precipitation exceeding 0.1 mm. The relative frequency
exceeding 5 mm (Fig. 9g) shows that more extreme precipi-
tation occurs most often in parts of southern Europe and parts
of Ireland and the United Kingdom. It is difficult to tell to
what extent non-meteorological echoes play a role here. For
instance, some of the localized areas with high frequencies
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Figure 6. Scatter density plots of (a)–(d) daily and (e)–(g) 1 h radar precipitation accumulations against rain gauges over the period 2013–
2020. For daily accumulations the gauge accumulations at their default measurement interval are employed, whereas for 1 h accumulations
the disaggregated clock-hourly gauge precipitation accumulations are employed. Results are shown for the unadjusted dataset that has
undergone all clutter-filtering steps and for the gauge-adjusted EURADCLIM dataset. For EURADCLIM, independent verification is done
via leave-one-out statistics (LOOS), when indicated. Otherwise, the verification is dependent.

exceeding 5 mm may be related to obstacles near radar sites.
This becomes even more apparent for downpours of more
than 25 mm in 1 h (Fig. 9h), where large areas are found
with at least 13 occurrences in 8 years, sometimes present
over a large part of a radar domain. These large values at the
edge of radar coverage are suspicious, especially when no
nearby rain gauges are available, such as east of the island
of Corsica (France). When comparing the mean daily pre-
cipitation and relative frequencies exceeding 0.1 and 5 mm
to those from the unadjusted radar data in Fig. 5, it is clear
that these strongly increase after the gauge adjustment. This
can also lead to non-meteorological echoes becoming more
pronounced (e.g., interferences in eastern Spain in Fig. 9f
compared to Fig. 5h).

An additional comparison is presented in Appendix B,
where the eight EURADCLIM annual precipitation accumu-
lations are compared to those from the gridded rain gauge
dataset E-OBS. Generally, precipitation patterns agree, but
many local differences can be found. At far range from radars
and rain gauges, a decrease in annual precipitation is found
(e.g., above the sea). Artifacts in radar accumulations, es-
pecially spokes caused by interference, result in overesti-
mation in some regions. The E-OBS data are based on all
days, whereas EURADCLIM has some missing data, and es-
pecially the first ∼ 3 weeks of 2013 do not have data. Note
that E-OBS has a grid of 0.1◦, which is much coarser than
the 2 km radar grid. More importantly, the underlying gauge
network density can be sparse, whereas EURADCLIM pro-
vides full coverage. Hence, differences between EURAD-
CLIM and E-OBS are expected, and Appendix B is meant
as an illustration and sanity check for both datasets.

4.4 EURADCLIM extreme precipitation events

Figure 10 shows EURADCLIM’s precipitation estimates for
three extreme precipitation events meant to illustrate EU-
RADCLIM’s potential: a widespread event across Europe
showing the associated precipitation pattern of an extratropi-
cal cyclone with locally more than 60 mm in 24 h (Fig. 10a),
an extreme event in eastern Europe with at least 120 mm in
24 h (Fig. 10b) and a very-extreme event in southern France
with at least 350 mm locally in 24 h, with at least 80 mm in
the last hour (Fig. 10c–d). These events illustrate that EU-
RADCLIM can capture extreme precipitation events across
Europe, which can especially be valuable for regions where
climatological radar precipitation datasets do not exist or are
not open and where the affected area spans multiple coun-
tries.

5 Data availability

The EURADCLIM 1 and 24 h precipitation datasets are
available from the KNMI Data Platform. The dataset of
1 h precipitation is available at https://doi.org/10.21944/7ypj-
wn68 (Overeem et al., 2022a). The dataset of 24 h pre-
cipitation is available at https://doi.org/10.21944/1a54-gg96
(Overeem et al., 2022b). For each year a zip file is provided.
The data are in UTC, where the time in the unzipped file-
names is the end time of observation in UTC.

6 Code availability

The following tools, written in the Python programming lan-
guage (version 3), are publicly available at the GitHub repos-
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Figure 7. Spatial verification of 1 h precipitation accumulations against the disaggregated clock-hourly gauge precipitation accumulations
over the period 2013–2020. (a, d, g) For the unadjusted radar dataset that has undergone all clutter-filtering steps. Results from the gauge-
adjusted EURADCLIM dataset are shown for (b, e, h) an independent verification employing LOOS and for (c, f, i) a dependent verification.
Maps made with Natural Earth. Free vector and raster map data © https://naturalearthdata.com (last access: 23 March 2023).

itory EURADCLIM-tools (https://github.com/overeem11/
EURADCLIM-tools, last access: 27 March 2023; DOI:
https://doi.org/10.5281/zenodo.7473816, Overeem, 2022), to
process OPERA-based radar precipitation files: a script to
accumulate data, a script to perform climatological analyses
(e.g., to compute the mean and the relative frequency of ex-
ceedance), two scripts to visualize precipitation and one of
them with an OpenStreetMap or Google Maps as a back-
ground. This can help end-users to visualize precipitation
maps and to further explore and analyze the EURADCLIM
dataset.

7 Conclusions

We presented a climatological gauge-adjusted radar dataset
of 1 and 24 h precipitation accumulations, EURADCLIM,
covering a large part of Europe over the period 2013–2020.

Clearly, EURADCLIM will not outperform national (clima-
tological) radar precipitation datasets (e.g., Overeem et al.,
2009b; Goudenhoofdt and Delobbe, 2016; Winterrath et al.,
2018; Saltikoff et al., 2019a; KNMI, 2023). The spatiotem-
poral resolution of (the underlying) composites will often be
higher, e.g., 5 min or 10 min instead of 15 min and 1 km2 in-
stead of 4 km2. In addition, they may have undergone addi-
tional processing (e.g., based on 3D radar data) or may use
more rain gauge data. These are expected to increase the ac-
curacy of QPE with respect to EURADCLIM. However, such
national datasets often do not exist or are not freely available
for research or other purposes. Moreover, EURADCLIM al-
lows users to use a common dataset for a large part of Eu-
rope instead of using different datasets from multiple coun-
tries. EURADCLIM will also benefit from possible future
improvements in the OPERA surface rain rate product.
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Figure 8. Illustration of the remaining non-meteorological echoes in radar data for the original instantaneous OPERA rain rates and the cor-
responding 24 h or 1 h precipitation accumulations from EURADCLIM. (a)–(b) Extreme values in central Spain on 29 April 2018 01:00 UTC
(rain rate) and from 28 April 2018 07:00 UTC to 29 April 2018 07:00 UTC (24 h precipitation accumulation). The gauge adjustment helps
to lower the accumulations in EURADCLIM. (c–d) An extreme case with more than 500 mm h−1 over large parts of a French radar domain
on 28 November 2018 for 11:00 UTC. Clutter-removal algorithms hardly help, but the gauge adjustment substantially reduces the 1 h pre-
cipitation accumulations from EURADCLIM from 10:00 to 11:00 UTC. Maps made with Natural Earth. Free vector and raster map data
© https://naturalearthdata.com (last access: 23 March 2023).

Apart from the evaluation of EURADCLIM, the per-
formances of the OPERA precipitation product and three
clutter-removal algorithms were evaluated over an 8-year pe-
riod. Some of the processing steps could also be applied
in (near) real time and would help to further improve the
OPERA precipitation products. As is shown, the Gabella
clutter filter would clearly decrease non-meteorological
echoes in the OPERA product and would be directly appli-
cable. OPERA already uses a satellite cloud mask. The static
clutter mask could be applied if the annual precipitation ac-
cumulations from the previous year were used. When sub-
daily near-real-time gauge accumulations become available,
this would pave the way for merging with OPERA radar ac-
cumulations in near real time, e.g., by merging data from the
last clock hour. We think this would be a useful improvement
to the product developed by Park et al. (2019). The correc-
tion for the motion of the precipitation field from Park et al.
(2019) could be a valuable addition to EURADCLIM. More-
over, in line with Park et al. (2019), the temporal resolution

of EURADCLIM could be increased to 15 min. Finally, the
period of evaluation by Park et al. (2019) of the OPERA-
based QPE as a function of time could be extended, and this
daily monitoring could also be applied to EURADCLIM.

This first version of EURADCLIM should be seen as a
starting point. Despite the different algorithms to remove
non-meteorological echoes applied by NMHSs, OPERA and
EURADCLIM, these echoes do still pose a problem. We
claim that precipitation climatologies derived from EURAD-
CLIM have a reasonable accuracy and that extreme events
can be captured at a much higher spatiotemporal resolution
but that EURADCLIM is not directly suited yet for extreme-
value modeling at the grid cell scale, which requires records
of the most extreme events, such as annual maxima. EU-
RADCLIM may already be suitable for extreme-value mod-
eling in the case of longer durations or larger-area sizes than
the grid cell scale, such as larger hydrological catchments.
Then non-meteorological echoes may average out. We also
recommend comparing the EURADCLIM precipitation ac-
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Figure 9. (a)–(e) Maps of mean hourly precipitation over the entire period and per season over the period 2013–2020 (winter: December,
January, February; spring: March, April, May; summer: June, July, August; fall: September, October, November). (f)–(g) Relative frequencies
of exceedance of 0.1 and 5 mm, respectively, in an hour over the period 2013–2020. (h) Frequency of exceedance of 25 mm in an hour, a
downpour, over the period 2013–2020. Relative frequencies of exceedance (f–g) are obtained by dividing by the number of available values
for each individual radar grid cell (i.e., not equal to nodata or not missing). This implies that periods with missing radar data are not taken
into account, and the number of intervals that are used will vary in space. Results are only shown for grid cells with a minimum availability
of 83.3 %. Maps made with Natural Earth. Free vector and raster map data © https://naturalearthdata.com (last access: 23 March 2023).

cumulations to those from national radar datasets, specifi-
cally to assess the performance of EURADCLIM in captur-
ing extreme precipitation.

Outliers, such as presented in Fig. 8 and visible in the fre-
quency of downpours (Fig. 9h), limit the applicability of EU-
RADCLIM at the grid cell scale, especially for use in ex-
treme value modeling (e.g., Frederick et al., 1977; Durrans
et al., 2002; Allen and DeGaetano, 2005; Overeem et al.,
2009a, 2010; Marra and Morin, 2015; McGraw et al., 2019).
Here, we provide some recommendations to end-users for
dealing with these outliers.

– One way of dealing with this is to apply an algorithm
that does not take into account entire composites that
have severe artifacts over larger areas. These could
be automatically identified by radar–gauge comparison,
possibly followed by a visual inspection and selection.
For instance, the number of grid cells with a large ra-
tio between gauge and radar accumulations could be

counted. If the total count exceeds a threshold, the in-
terval can be labeled as suspicious.

– Another approach would be to set grid cells above a cer-
tain threshold to a lower (e.g., interpolated) value or al-
ways discard such a grid cell if it experienced such a
high value at least once during the period 2013–2020.
A drawback of this approach is that such a threshold is
a bit arbitrary and that it influences the statistics of ex-
treme precipitation. For example, grid cells with annual
precipitation clearly above that of local climatological
gauge records could be discarded as well as grid cells
with unlikely high values for 24 h precipitation.

QPE could be further improved, especially in areas with
sparse rain gauge network density or far away from weather
radars. Some regions are far away from rain gauges, mak-
ing the merging algorithm less effective. In some cases no
merging is even carried out because of the long distance to
the nearest rain gauge (e.g., Iceland, Malta). To improve the
quality of EURADCLIM but also the OPERA near-real-time
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Figure 10. Three precipitation events that led to flooding. (a) A widespread event over Europe from 30 May 2013 14:00 UTC to 31 May 2013
14:00 UTC (24 h precipitation accumulation), which is also presented as the Supplement (Movie S1). (b) An event in eastern Europe from
14 May 2014 00:00 UTC to 15 May 2014 00:00 UTC (24 h precipitation accumulation) and (c)–(d) a very-extreme event north of Nice,
southern France, from 1 October 2020 14:00 UTC to 2 October 2020 14:00 UTC (24 h precipitation accumulation) and its last hour (1 h
precipitation accumulation). (a) Map made with Natural Earth. Free vector and raster map data © https://naturalearthdata.com (last access:
23 March 2023). (b)–(d) Map data © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License
(ODbL) v1.0.

precipitation products, we provide the following main rec-
ommendations for NMHSs, the OPERA program and EU-
RADCLIM.

– Start with the volumetric radar data, and apply al-
gorithms (Goudenhoofdt and Delobbe, 2016) such as
fuzzy-logic clutter removal (Berenguer et al., 2006;
Gourley et al., 2007; Crisologo et al., 2014; Krause,
2016; Overeem et al., 2020), attenuation correction
(Carey et al., 2000; Testud et al., 2000; Vulpiani et al.,
2012; Al-Sakka et al., 2013; Jacobi and Heistermann,
2016; Overeem et al., 2021) and the vertical profile of
reflectivity correction (Hazenberg et al., 2013). The use
of polarimetric variables would especially add value,
also in the conversion to rain rates. Moreover, differ-
ences between weather radars, e.g., polarimetric or not,
and climate would require careful local analyses and op-
timization of parameters (e.g., fuzzy-logic settings, pre-
cipitation retrieval relations for rain/snow).

– Obtain gauge data from more locations and update the
rain gauge records that overlap with the (extended)
EURADCLIM time span. Additional high-quality data
might come from, e.g., NMHSs, water and river author-
ities and other data-holding institutes. Instead of using
only daily data, ideally clock-hourly data would also be-
come available, which would avoid possible errors in-
troduced by disaggregating daily precipitation. These
are desirable given the often large spatial and tempo-
ral variability in precipitation and in sources of error in
radar QPE.

– Specifically, third-party data could be employed af-
ter appropriate quality-control (and retrieval) algo-
rithms have been applied. This also requires efforts
from NMHSs to bring these from research to oper-
ations (Garcia-Marti et al., 2023). Examples of such
third-party data sources are rain gauge data from per-
sonal weather stations (PWSs) connected to the Inter-
net (De Vos et al., 2019; Graf et al., 2021) and com-
mercial microwave link (CML) data (Messer et al.,
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2006; Leijnse et al., 2007; Overeem et al., 2016; Graf
et al., 2020, 2021). The merging of these kinds of
datasets with radar data is studied in the COST Ac-
tion OpenSense (https://opensenseaction.eu/, last ac-
cess: 23 March 2023). These data sources could poten-
tially be available in (near) real time and would give a
vast increase in the density of surface precipitation es-
timates. However, the increase over time in the number
of available third-party data challenges the aim of EU-
RADCLIM to provide a climatic perspective of hourly
rainfall.

– Develop a radar–gauge merging algorithm that takes
into account the local rain gauge network density. For
the current method, the local mean-field bias adjust-
ment followed by a spatial adjustment could then be re-
placed by a spatial adjustment where the value of the
short-range parameter rs varies seamlessly in space as
a function of network density. In addition, the value of
the short-range parameter should be based on the local
precipitation climatology instead of on the precipitation
climatology from the Netherlands. Also, other adjust-
ment methods could be evaluated (Goudenhoofdt and
Delobbe, 2009).

– Add uncertainty information to radar and gauge data,
and use this in the radar–gauge merging, for instance,
by using the OPERA quality index and additional in-
formation on the radar quality and the rain gauge net-
work density. Alternatively, it could be studied whether
a meaningful relationship can be established between
the quality of EURADCLIM and the distance to the
nearest gauge or radar. Then maps with the distance to
the nearest gauge or radar (Fig. 2c–d) could guide the
user in judging the suitability of using a certain grid cell
or region of EURADCLIM for a given application. Ide-
ally, such quality maps would be computed for each 1 h
interval, taking into account the gauges actually used in
the merging and the radar coverage and quality for that
time interval. To facilitate this, we recommend adding
the actual radar coordinates for each individual time in-
terval to the OPERA products.

– A more sophisticated approach would be to remove
more non-meteorological echoes by applying a satellite
cloud mask that employs cloud optical thickness, i.e.,
also in the case of thicker non-precipitating clouds.

– Finally, in the future, MSG will be replaced by the Me-
teosat Third Generation that allows for a more local cor-
rection due to higher spatial and temporal resolution,
provided parallax effects are accounted for.

EURADCLIM’s strategic value encompasses the follow-
ing.

– There is a much better reference for validation
of weather prediction model output (e.g., HAR-
MONIE/ECMWF) (Van der Plas et al., 2017), regional
climate model simulations (Berg et al., 2019), satellite
precipitation products (Skofronick-Jackson et al., 2018;
Sun et al., 2018) and opportunistic sensing data (e.g.,
CMLs and PWSs), which allows for improvement of
their quality control or retrieval algorithms.

– It allows for better monitoring of (trends in) precipi-
tation extremes and their spatial extent, except for the
most extreme events at the grid cell scale, such as an-
nual maxima, due to the remaining non-meteorological
echoes. This facilitates better understanding of the
drivers behind such events (e.g., the relation to dew
point temperature, atmospheric circulation, diurnal cy-
cle and clustering of showers) and climate attribution
(Lochbihler et al., 2017; Lengfeld et al., 2019). Deriv-
ing a catalog of extreme precipitation events becomes
possible, as is done for Germany by Lengfeld et al.
(2021). This is all highly relevant for anticipating future
extremes in a changing climate.

– It allows for better evaluation of extreme precipita-
tion events and their impact (e.g., landslides, flooding),
specifically, use as input for hydrological models in or-
der to improve these models, especially for flash flood
forecasting.

We expect to rerun EURADCLIM once a year over the en-
tire period, using all available ECA&D rain gauge data, and
extend it with 1 year of data. This will result in a new ver-
sion of this dataset. Hence, we invite NMHSs or other insti-
tutes to make all their rain gauge data available to ECA&D.
We encourage one to start using EURADCLIM and discover
its value and shortcomings for a variety of applications, and
we appreciate any feedback on this. It is expected that EU-
RADCLIM will be of use to various (scientific) domains and
applications and that future collaborations and funding will
lead to improved next versions of EURADCLIM.
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Appendix A: Effect of additional clutter-removal
algorithms on 1 h precipitation

Figure A1. Comparison between 1 h precipitation accumulations from three datasets to study the effect of non-meteorological echo removal
algorithms over the period 2013–2020. (a)–(c) Maps of the ratio of mean hourly precipitation with respect to the OPERA dataset and (d)–(i)
maps of the ratio of the relative frequency of exceedance of 0.1 and 5 mm in an hour with respect to the OPERA dataset. The purple areas
imply that the ratio is 1. The uncolored areas do not have data or have a relative frequency of 0 for one or both datasets. Map made with
Natural Earth. Free vector and raster map data © https://naturalearthdata.com (last access: 23 March 2023).
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Appendix B: Annual precipitation: EURADCLIM
versus E-OBS

Figure B1. Annual precipitation accumulations over the period 2013–2020 for EURADCLIM (4 km2) and interpolated rain gauge obser-
vations (E-OBS version 25.0e; release April 2022; 0.1◦× 0.1◦, which is ∼ 11 km in latitude and ∼ 4–9 km in longitude, depending on the
latitude). Coastlines are plotted in orange to ease the comparison between EURADCLIM and E-OBS, due to the coverage above open wa-
ter by radars for which E-OBS does not provide precipitation estimates. Map made with Natural Earth. Free vector and raster map data
© https://naturalearthdata.com (last access: 23 March 2023).
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Supplement. The supplemental video (Movie S1) visualizes a
widespread precipitation event on 30 and 31 May 2013 over Eu-
rope that led to flooding. The supplement related to this article
is available online at: https://doi.org/10.5194/essd-15-1441-2023-
supplement.
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