Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1357-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating local agricultural gross domestic product (AgGDP) across the world
Yating Ru
Department of City and Regional Planning, Cornell University, Ithaca, NY, USA
Brian Blankespoor
CORRESPONDING AUTHOR
Development Data Group, World Bank, Washington, DC, USA
Ulrike Wood-Sichra
International Food Policy Research Institute (IFPRI), Washington DC, USA
Timothy S. Thomas
International Food Policy Research Institute (IFPRI), Washington DC, USA
Liangzhi You
International Food Policy Research Institute (IFPRI), Washington DC, USA
Erwin Kalvelagen
International Food Policy Research Institute (IFPRI), Washington DC, USA
Related authors
No articles found.
Susmita Dasgupta, Brian Blankespoor, and David Wheeler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-241, https://doi.org/10.5194/essd-2024-241, 2024
Preprint under review for ESSD
Short summary
Short summary
This study leverages recent advances in machine-based pattern recognition to estimate occurrence maps for over 600,000 species, using georeferenced data from the Global Biodiversity Information Facility (GBIF). A pilot application for priority-setting identifies 30 nations that host nearly 80 percent of threatened species with small ranges limited to a single country. The algorithms are designed for rapid map updates and estimating new maps as growth in GBIF species occurrence reports continues.
Hanqin Tian, Zihao Bian, Hao Shi, Xiaoyu Qin, Naiqing Pan, Chaoqun Lu, Shufen Pan, Francesco N. Tubiello, Jinfeng Chang, Giulia Conchedda, Junguo Liu, Nathaniel Mueller, Kazuya Nishina, Rongting Xu, Jia Yang, Liangzhi You, and Bowen Zhang
Earth Syst. Sci. Data, 14, 4551–4568, https://doi.org/10.5194/essd-14-4551-2022, https://doi.org/10.5194/essd-14-4551-2022, 2022
Short summary
Short summary
Nitrogen is one of the critical nutrients for growth. Evaluating the change in nitrogen inputs due to human activity is necessary for nutrient management and pollution control. In this study, we generated a historical dataset of nitrogen input to land at the global scale. This dataset consists of nitrogen fertilizer, manure, and atmospheric deposition inputs to cropland, pasture, and rangeland at high resolution from 1860 to 2019.
Qiangyi Yu, Liangzhi You, Ulrike Wood-Sichra, Yating Ru, Alison K. B. Joglekar, Steffen Fritz, Wei Xiong, Miao Lu, Wenbin Wu, and Peng Yang
Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, https://doi.org/10.5194/essd-12-3545-2020, 2020
Short summary
Short summary
SPAM makes plausible estimates of crop distribution within disaggregated units. It moves the data from coarser units such as countries and provinces to finer units such as grid cells and creates a global gridscape at the confluence between earth and agricultural-production systems. It improves spatial understanding of crop production systems and allows policymakers to better target agricultural- and rural-development policies for increasing food security with minimal environmental impacts.
Cited articles
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in
global water resources driven by socio-economic and climatic changes,
Hydrolog. Sci. J., 52, 247–275, 2007. a
Anderson, W., You, L., Wood, S., Wood-Sichra, U., and Wu, W.: An analysis of
methodological and spatial differences in global cropping systems models and
maps, Global Ecol. Biogeogr., 24, 180–191, 2015. a
Andree, B. P. J., Chamorro, A., Kraay, A., Spencer, P., and Wang, D.:
Predicting food crises, World Bank Policy Research Working Paper 9412, World
Bank, Washington, DC, https://doi.org/10986/34510, 2020. a
Angrist, N., Goldberg, P. K., and Jolliffe, D.: Why Is Growth in Developing
Countries So Hard to Measure?, J. Econ. Perspect., 35, 215–42,
2021. a
Arnell, N. W.: Effects of IPCC SRES* emissions scenarios on river runoff: a global perspective, Hydrol. Earth Syst. Sci., 7, 619–641, https://doi.org/10.5194/hess-7-619-2003, 2003. a
Balk, D. L., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., and Nelson, A.:
Determining global population distribution: methods, applications and data,
Adv. Parasit., 62, 119–156, 2006. a
Bella, K. P. and Irwin, E. G.: Spatially explicit micro-level modelling of land
use change at the rural–urban interface, Agr. Econ., 27,
217–232, 2002. a
Blankespoor, B., Dasgupta, S., and Lange, G.-M.: Mangroves as a protection from
storm surges in a changing climate, Ambio, 46, 478–491, 2017. a
Block, P. J., Strzepek, K., Rosegrant, M. W., and Diao, X.: Impacts of
considering climate variability on investment decisions in Ethiopia,
Agr. Econ., 39, 171–181, 2008. a
Bruederle, A. and Hodler, R.: Nighttime lights as a proxy for human development
at the local level, PloS one, 13, e0202231, https://doi.org/10.1371/journal.pone.0202231, 2018. a
Bundervoet, T., Maiyo, L., and Sanghi, A.: Measuring National and Subnational
Economic Growth in Africa from Outer Space, with an Application to Kenya and
Rwanda, World Bank Policy Research Working Paper 7461, World Bank,
Washington, DC, https://doi.org/10.1596/1813-9450-7461, 2015. a, b, c
Carletto, C., Jolliffe, D., and Banerjee, R.: From tragedy to renaissance:
improving agricultural data for better policies, J. Dev. Stud., 51, 133–148, 2015. a
Carrão, H., Naumann, G., and Barbosa, P.: Mapping global patterns of
drought risk: An empirical framework based on sub-national estimates of
hazard, exposure and vulnerability, Global Environ. Chang., 39,
108–124, 2016. a
Center for International Earth Science Information Network – CIESIN – Columbia
University: Gridded Population of the World, Version 4 (GPWv4): Population
Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11, https://doi.org/10.7927/H4F47M65,
2017. a, b
Chen, X. and Nordhaus, W. D.: Using luminosity data as a proxy for economic
statistics, P. Natl. Acad. Sci. USA, 108, 8589–8594,
2011. a
Dabla-Norris, M. E., Kochhar, M. K., Suphaphiphat, M. N., Ricka, M. F., and
Tsounta, E.: Causes and consequences of income inequality: A global
perspective, International monetary fund, ISBN/ISSN 9781513555188/2617-6750, 2015. a
Doll, C. N., Muller, J.-P., and Morley, J. G.: Mapping regional economic
activity from night-time light satellite imagery, Ecol. Econ., 57,
75–92, 2006. a
Eberenz, S., Stocker, D., Röösli, T., and Bresch, D. N.: Asset exposure data for global physical risk assessment, Earth Syst. Sci. Data, 12, 817–833, https://doi.org/10.5194/essd-12-817-2020, 2020. a
Elhorst, J. P. and Strijker, D.: Spatial developments of EU agriculture in the
post-war period: The case of wheat and tobacco, Agr. Econ.
Rev., 4, 63–72, 2003. a
Elvidge, C. D., Erwin, E. H., Baugh, K. E., Ziskin, D., Tuttle, B. T., Ghosh,
T., and Sutton, P. C.: Overview of DMSP nightime lights and future
possibilities, in: 2009 Joint Urban Remote Sensing Event, 1–5, IEEE,
https://doi.org/10.1109/URS.2009.5137749, 2009. a
Eurostat: Manual on Regional Accounts,
https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/KS-GQ-13-001 (last access: 1 July 2020),
2013. a
Falkenmark, M.: Fresh water: Time for a modified approach, Ambio, 15, 192–200,
1986. a
Falkenmark, M.: Growing water scarcity in agriculture: future challenge to
global water security, Philos. T. Roy. Soc. A, 371, 20120410,
https://doi.org/10.1098/rsta.2012.0410, 2013. a
FAO: World Food and Agriculture Statistical yearbook, 2013. a
FAO: Global Administrative Unit Layers (GAUL) Dataset,
http://www.fao.org/geonetwork/srv/en/metadata.show#Fid=12691 (last access: 31 January 2019),
2015. a
FAO: World Food and Agriculture Statistical pocketbook, 2019. a
FAO: FAOSTAT Database, http://www.fao.org/faostat (last access: 31 January 2019), 2020. a
FAO: Impact of disasters and crises on agriculture and food security, 2021,
https://doi.org/10.4060/cb3673en, 2021. a, b
Ghazoul, J. and Evans, J.: Sustainable Forest Management | Causes of
Deforestation and Forest Fragmentation, in: Encyclopedia of Forest Sciences,
edited by: Burley, J., Elsevier, Oxford, 1367–1375,
https://doi.org/10.1016/B0-12-145160-7/00018-1, 2004. a
Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C.,
and Anderson, S.: Shedding light on the global distribution of economic activity,
Open Geography Journal, 3, https://doi.org/10.2174/1874923201003010147, 2010. a, b
Gibson, J., Olivia, S., Boe-Gibson, G., and Li, C.: Which night lights data
should we use in economics, and where?, J. Dev. Econ.,
149, 102602, https://doi.org/10.1016/j.jdeveco.2020.102602, 2021. a
Goldblatt, R., Heilmann, K., and Vaizman, Y.: Can medium-resolution satellite
imagery measure economic activity at small geographies? Evidence from Landsat
in Vietnam, World Bank Policy Research Working Paper 9088, World Bank,
Washington, DC, https://doi.org/10.1596/1813-9450-9088, 2019. a
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., and Woodbury, P.: Natural climate solutions, P. Natl. Acad.
Sci. USA, 114, 11645–11650, 2017. a
Gunasekera, R., Daniell, J., Pomonis, A., Arias, R., Ishizawa, O., and Stone,
H.: Methodology Note on the Global RApid post-disaster Damage Estimation
(GRADE) approach, World Bank and GFDRR Technical Report, World Bank and
GFDRR, Washington, DC, 2018. a
Herrero, M. and Thornton, P. K.: Livestock and global change: emerging issues
for sustainable food systems, P. Natl. Acad.
Sci. USA, 110, 20878–20881, 2013. a
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, 2005. a
Hosch, G., Soule, B., Schofield, M., Thomas, T., Kilgour, C., and Huntington,
T.: Any Port in a Storm: Vessel Activity and the Risk of IUU-Caught Fish
Passing through the World’s Most Important Fishing Ports,
Journal of Ocean and Coastal Economics, 6, https://doi.org/10.15351/2373-8456.1097, 2019. a, b, c
Hossain, M. K., Alam, M. K., and Miah, M. D.: Forest restoration and
rehabilitation in Bangladesh, Keep Asia Green, 3, 21–66, 2008. a
IFPRI and World Bank: Global Gridded Agricultural Gross Domestic Product
(AgGDP) [data set], https://doi.org/10.57966/0j71-8d56, 2022. a, b, c
Joglekar, A. K. B., Wood-Sichra, U., and Pardey, P. G.: Pixelating crop
production: Consequences of methodological choices, PLOS ONE, 14,
e0212281, https://doi.org/10.1371/journal.pone.0212281, 2019. a
Kelleher, K., Willmann, R., and Arnason, R.: The sunken billions: the economic
justification for fisheries reform, The World Bank and FAO, https://doi.org/10.1596/978-0-8213-7790-1, 2009. a
Kummu, M., Ward, P. J., de Moel, H., and Varis, O.: Is physical water scarcity
a new phenomenon? Global assessment of water shortage over the last two
millennia, Environ. Res. Lett., 5, 034006, https://doi.org/10.1088/1748-9326/5/3/034006, 2010. a
Kummu, M., Taka, M., and Guillaume, J. H.: Gridded global datasets for gross
domestic product and Human Development Index over 1990–2015, Sci.
Data, 5, 180004, https://doi.org/10.1038/sdata.2018.4, 2018. a, b
Lamarche, C., Santoro, M., Bontemps, S., d'Andrimont, R., Radoux, J.,
Giustarini, L., Brockmann, C., Wevers, J., Defourny, P., and Arino, O.:
Compilation and validation of SAR and optical data products for a complete
and global map of inland/ocean water tailored to the climate modeling
community, Remote Sensing, 9, 36, https://doi.org/10.1111/geer.12042, 2017. a, b
Lehmann, R. and Wohlrabe, K.: Forecasting GDP at the regional level with many
predictors, Ger. Econ. Rev., 16, 226–254, 2015. a
Levine, R. S., Yorita, K. L., Walsh, M. C., and Reynolds, M. G.: A method for
statistically comparing spatial distribution maps,
Int. J. Health Geogr., 8, 1–7, 2009. a
Leyk, S., Gaughan, A. E., Adamo, S. B., de Sherbinin, A., Balk, D., Freire, S., Rose, A., Stevens, F. R., Blankespoor, B., Frye, C., Comenetz, J., Sorichetta, A., MacManus, K., Pistolesi, L., Levy, M., Tatem, A. J., and Pesaresi, M.: The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use, Earth Syst. Sci. Data, 11, 1385–1409, https://doi.org/10.5194/essd-11-1385-2019, 2019. a, b, c
Li, T., Pullar, D., Corcoran, J., and Stimson, R.: A comparison of spatial
disaggregation techniques as applied to population estimation for South East
Queensland (SEQ), Australia, Applied GIS, 3, 1–16, 2007. a
Li, X., Zhou, Y., Zhao, M., and Zhao, X.: A harmonized global nighttime light
dataset 1992–2018, Sci. Data, 7, 1–9, 2020. a
Luijten, J.: A systematic method for generating land use patterns using
stochastic rules and basic landscape characteristics: results for a Colombian
hillside watershed, Agr. Ecosyst. Environ., 95, 427–441,
2003. a
Mathiesen, À. M.: Fisheries: feeding humanity in 2030. Conference
presentation at Our Ocean 2018,
http://www.fao.org/fi/static-media/ADG/MathiesenOurOceanConference2018.pdf, last access: 20 December 2018. a
Murakami, D. and Yamagata, Y.: Estimation of gridded population and GDP
scenarios with spatially explicit statistical downscaling, Sustainability,
11, 2106, https://doi.org/10.3390/su11072106, 2019. a
Murthy, C., Laxman, B., and Sai, M. S.: Geospatial analysis of agricultural
drought vulnerability using a composite index based on exposure, sensitivity
and adaptive capacity, Int. J. Disast. Risk Re., 12,
163–171, 2015. a
NASA: MODIS Collection 6 NRT Hotspot/Active Fire Detections MCD14DL,
NASA, https://doi.org/10.5067/FIRMS/MODIS/MCD14DL.NRT.006, 2018. a, b
Nelson, A.: Travel time to major cities: A global map of Accessibility, Ispra:
European Commission, figshare, https://doi.org/10.6084/m9.figshare.7638134, 2008. a
Nelson, G. C.: Introduction to the special issue on spatial analysis for
agricultural economists, Agr. Econ., 27, 197–200, 2002. a
NOAA: Version 4 DMSP-OLS Global Radiance Calibrated Nighttime Lights,
https://ngdc.noaa.gov/eog/dmsp/download/radcal.html (last access: 20 February 2014), 2011. a
Nordhaus, W. D.: Geography and macroeconomics: New data and new findings,
P. Natl. Acad. Sci. USA, 103, 3510–3517, 2006. a
Openshaw, S.: The modifiable areal unit problem, Quantitative geography: A
British view, 60–69, 1981. a
Pesaresi, M. and Freire, S.: GHS-SMOD-GHS settlement grid, Luxembourg, EUR, 29788, 290498, 2019. a
Pratesi, M., Salvati, N., Giusti, C., and Marchetti, S.: Spatial disaggregation
and small-area estimation methods for agricultural surveys: solutions and
perspectives, Technical Report Series GO-07-2015, FAO Global Office of the
Global Strategy, 2015. a
Reddy, T. K. and Dutta, M.: Impact of Agricultural Inputs on Agricultural GDP
in Indian Economy, Theoretical Economics Letters, 8, 1840–1853, 2018. a
Rentschler, J. and Salhab, M.: People in harm's way: Flood exposure and poverty
in 189 countries, World Bank Policy Research Working Paper 9447, World Bank,
Washington, DC, https://doi.org/10.1596/1813-9450-9447, 2020. a, b
Rentschler, J., Salhab, M., and Jafino, B. A.: Flood exposure and poverty in
188 countries, Nat. Commun., 13, 3527, https://doi.org/10.1038/s41467-022-30727-4, 2022. a
Roberts, M., Blankespoor, B., Deuskar, C., and Stewart, B.: Urbanization and
development: Is latin america and the caribbean different from the rest of
the world?, World Bank Policy Research Working Paper 8019, World Bank,
Washington, DC, https://doi.org/10.1596/1813-9450-8019, 2017. a, b
Robinson, T. P., Wint, G. W., Conchedda, G., Van Boeckel, T. P., Ercoli, V.,
Palamara, E., Cinardi, G., D'Aietti, L., Hay, S. I., and Gilbert, M.: Mapping
the global distribution of livestock, PloS one, 9, e96084, https://doi.org/10.1371/journal.pone.0096084, 2014. a, b, c
Rubinstein, R. Y. and Kroese, D. P.: The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation, and machine
learning, 133, Springer, ISBN 978-1-4419-1940-3, 2004. a
Rubinyi, S., Blankespoor, B., and Hall, J. W.: The utility of built environment
geospatial data for high-resolution dasymetric global population modeling,
Computers, Environment and Urban Systems, 86, 101594, https://doi.org/10.1016/j.compenvurbsys.2021.101594, 2021. a, b
Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M., and West, P. C.:
Subnational distribution of average farm size and smallholder contributions
to global food production, Environ. Res. Lett., 11, 124010, https://doi.org/10.1088/1748-9326/11/12/124010,
2016. a
Shyamsundar, P., Cohen, F., Boucher, T. M., Kroeger, T., Erbaugh, J. T.,
Waterfield, G., Clarke, C., Cook-Patton, S. C., Garcia, E., Juma, K., Kaur, S., Leisher, C., Miller, D. C., Oester, K., Saigal, S., Siikamaki, J., Sills, E. O., Thaung, T., Trihadmojo, B., Veiga, F., Vincent, J. R., Yi, Y., and Zhang, X. X.:
Scaling smallholder tree cover restoration across the tropics, Global Environ. Chang., 76, 102591, https://doi.org/10.1016/j.gloenvcha.2022.102591, 2022. a
Siikamäki, J., Santiago-Ávila, F. J., and Vail, P.: Global Assessment
of Non'Wood Forest Ecosystem Services, Working paper, Resources for the
Future, Washington, DC., https://www.wavespartnership.org/en/knowledge-center/global-assessment-non-wood-forest-ecosystem-services-spatially-explicit-meta (last access: 3 March 2023) 2015. a, b, c, d, e
Sorrenti, S.: Non-wood forest products in international statistical systems,
Non-wood Forest Products Series 22, Rome,
https://doi.org/10.1086/504291, 2016. a
Staal, S. J., Baltenweck, I., Waithaka, M., DeWolff, T., and Njoroge, L.:
Location and uptake: integrated household and GIS analysis of technology
adoption and land use, with application to smallholder dairy farms in Kenya,
Agr. Econ., 27, 295–315, 2002. a
Stanimirova, R., Arévalo, P., Kaufmann, R. K., Maus, V., Lesiv, M.,
Havlík, P., and Friedl, M. A.: Sensitivity of global pasturelands to
climate variation, Earth's Future, 7, 1353–1366, 2019. a
Thomas, T. S., You, L., Wood-Sichra, U., Ru, Y., Blankespoor, B., and
Kalvelagen, E.: Generating Gridded Agricultural Gross Domestic Product for
Brazil: A Comparison of Methodologies, World Bank Policy Research Working
Paper WPS 8985, World Bank, Wasington, D.C., https://doi.org/10.1596/1813-9450-8985, 2019. a, b, c, d
Tobler, W. R.: Smooth pycnophylactic interpolation for geographical regions,
J. Am. Stat. Assoc., 74, 519–530, 1979. a
UNDRR: Global assessment report on disaster risk reduction, United Nations
Office for Disaster Risk Reduction (UNDRR), eISBN 978-92-1-004180-5, 2019. a
UNISDR: Global Assessment Report on Disaster Risk Reduction 2011: Revealing
Risk, Redefining Development, United Nations International Strategy for
Disaster Reduction, Geneva, Switzerland,
https://www.preventionweb.net/english/hyogo/gar/2011/en/home/index.html (last access: 1 June 2021),
2011. a
Veldkamp, T. I. E., Eisner, S., Wada, Y., Aerts, J. C. J. H., and Ward, P. J.: Sensitivity of water scarcity events to ENSO-driven climate variability at the global scale, Hydrol. Earth Syst. Sci., 19, 4081–4098, https://doi.org/10.5194/hess-19-4081-2015, 2015. a, b, c, d
Vesco, P., Kovacic, M., Mistry, M., and Croicu, M.: Climate variability, crop
and conflict: Exploring the impacts of spatial concentration in agricultural
production, J. Peace Res., 58, 98–113, 2021. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: the standardized
precipitation evapotranspiration index, J. Climate, 23, 1696–1718,
2010. a
Wang, T. and Sun, F.: Spatially explicit global gross domestic product (GDP) data set consistent with the Shared Socioeconomic Pathways, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-10, 2021. a
Wang, X., Sutton, P. C., and Qi, B.: Global mapping of GDP at 1 km2 using VIIRS
nighttime satellite imagery, ISPRS Int. Geo-Inf.,
8, 580, https://doi.org/10.3390/ijgi8120580, 2019. a
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020. a
Wood, S., Sebastian, K., Nachtergaele, F., Nielsen, D., and Dai, A.: Spatial
aspects of the design and targeting of agricultural development strategies,
Environment and Production Technology Division Discussion Paper No. 44,
International Food Policy Research Institute, Washington, DC., https://ebrary.ifpri.org/digital/collection/p15738coll2/id/125789
(last access: 31 January 2019), 1999.
a
WorldPop and Center for International Earth Science Information Network
(CIESIN), Columbia University: Global High Resolution Population
Denominators Project – Funded by The Bill and Melinda Gates Foundation
(OPP1134076), WorldPop, https://doi.org/10.5258/SOTON/WP00647, 2018. a, b
You, L. and Wood, S.: Spatial allocation of agricultural production using a
cross-entropy approach, Environment and Production Technology Division
Discussion Paper No. 126, International Food Policy Research Institute,
Washington, DC., https://doi.org/10.2139/ssrn.644481, 2003. a
You, L. and Wood, S.: An entropy approach to spatial disaggregation of
agricultural production, Agr. Syst., 90, 329–347, 2006. a
Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K. B., Fritz, S., Xiong, W., Lu, M., Wu, W., and Yang, P.: A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps, Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, 2020. a, b, c, d
Zhang, Y., You, L., Lee, D., and Block, P.: Integrating climate prediction and
regionalization into an agro-economic model to guide agricultural planning,
Clim. Change, 158, 435–451, 2020. a
Short summary
Economic statistics are frequently produced at an administrative level that lacks detail to examine development patterns and the exposure to natural hazards. This paper disaggregates national and subnational administrative statistics of agricultural GDP into a global dataset at the local level using satellite-derived indicators. As an illustration, the paper estimates that the exposure of areas with extreme drought to agricultural GDP is USD 432 billion, where nearly 1.2 billion people live.
Economic statistics are frequently produced at an administrative level that lacks detail to...
Altmetrics
Final-revised paper
Preprint