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Abstract. Economic statistics are frequently produced at an administrative level such as the subnational di-
vision. However, these measures may lack sufficient local variation for effective analysis of local economic
development patterns and exposure to natural hazards. Agricultural gross domestic product (GDP) is a critical
indicator for measurement of the primary sector, on which more than 2.5 billion people depend for their liveli-
hoods, and it provides a key source of income for the entire household (FAO, 2021). Through a data-fusion
method based on cross-entropy optimization, this paper disaggregates national and subnational administrative
statistics of agricultural GDP into a global gridded dataset at approximately 10 x 10 km for the year 2010 using
satellite-derived indicators of the components that make up agricultural GDP, i.e., crop, livestock, fishery, hunting
and forestry production. To illustrate the use of the new dataset, the paper estimates the exposure of areas with at
least one extreme drought during 2000 to 2009 to agricultural GDP, which amounts to around USD 432 billion
of agricultural GDP circa 2010, with nearly 1.2 billion people living in those areas. The data are available on the

World Bank Development Data Hub (https://doi.org/10.57966/0j71-8d56; IFPRI and World Bank, 2022).

1 Introduction

According to the Food and Agriculture Organization (FAO)
of the United Nations, at least 2.5 billion people depend on
the agricultural sector for their livelihood, and it provides a
key source of employment and income for poor and vulner-
able people (FAO, 2013, 2019, 2021). However, economic
statistics of the agricultural sector are frequently produced
at a national or lower administrative level and may not ade-
quately capture local variation in production activities. Fur-
thermore, a geographic unit of interest, such as the natural
area of a river basin, may not align with political administra-
tive boundaries, limiting the ability to conduct a comprehen-
sive overlay analysis of the area. Lastly, local conditions can
pose challenges to measurement across the world. Around 5
billion hectares of land is dedicated to agriculture, but col-
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lecting and reporting data across the world can be challeng-
ing, especially in areas affected by fragility, conflict and vio-
lence, which can result in incomplete or outdated geographic
coverage.

Detailed agricultural data are critical to examining a wide
range of agricultural issues, including technology and land
use (e.g., Bella and Irwin, 2002; Luijten, 2003; Staal et al.,
2002; Samberg et al., 2016), exposure to natural hazards
(e.g., Murthy et al., 2015), evaluation of forest restoration op-
portunities (Shyamsundar et al., 2022) as part of nature-based
climate solutions (Griscom et al., 2017) and patterns and pro-
ductivity of economic development (e.g., Nelson, 2002; El-
horst and Strijker, 2003; Gollin et al., 2014; Reddy and Dutta,
2018). Carrdo et al. (2016) examine the exposure of people
and economic activity to drought using measures of physical
elements (e.g., cropland and livestock). Rentschler and Sal-
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hab (2020) find that low- and middle-income countries have
89 % of the global flood-exposed population, and poor peo-
ple account for almost 600 million who are directly exposed
to the risk of intense flooding. Vesco et al. (2021) examine
linkages between climate variability and agricultural produc-
tion as well as conflict. They find that climate variability con-
tributes to an increase in the spatial concentration of agricul-
tural production within countries. Furthermore, in countries
with a high share of agricultural employment in the national
workforce, they find that this combined effect increases the
likelihood of conflict onset. To better target rural develop-
ment strategies for economic growth and poverty reduction
as well as conserve the natural resource base for long-term
sustainable development, we need to accurately delineate the
spatial distribution of agricultural resources and production
activities (Wood et al., 1999).

One method to address the case where administrative
boundaries and geographic areas of interest are not aligned
is to use the gridded (raster) data format. It provides an inter-
mediate and consistent unit for disaggregation and aggrega-
tion (e.g., UNISDR, 2011). Data-disaggregation methods can
use detailed data to inform estimates of aggregated data from
large areas at the local level (e.g., see the review in Pratesi
et al., 2015). Several spatial data products from global mod-
els are available to estimate population at a local level (see
the review in Leyk et al., 2019).

Previous evidence-based risk analyses take advantage of
global data of hazards to estimate exposure of populations
and economic activity (e.g., Gunasekera et al., 2015, 2018;
Ward et al., 2020; Rentschler and Salhab, 2020). Gross do-
mestic product (GDP) is a critical economic indicator in the
measurement and monitoring of an economy in a country
that is typically only available at national and occasionally
subnational levels. Regional indicators play a key role in the
necessary variation to forecast regional GDP (Lehmann and
Wohlrabe, 2015) and food security (Andree et al., 2020).
Previous efforts to estimate local GDP use high-resolution
spatial auxiliary information such as luminosity or popula-
tion data to provide local variation. Methods by Nordhaus
(2006), the World Bank and UNEP (2011), Kummu et al.
(2018) and Murakami and Yamagata (2019) took advantage
of gridded population data, which is the result of a model
disaggregating the most detailed level of population data into
grids. However, income is not evenly distributed among peo-
ple or infrastructure (Berg et al., 2018). In fact, the divide be-
tween the rich and poor is even widening in our time (Dabla-
Norris et al., 2015). The method used in the World Bank and
UNEP (2011) stratifies the population by rural and urban,
yet the definition of these geographic areas can vary based
on the selection of the population model (Leyk et al., 2019).
These measurements matter in application to stylized facts
such as the strong negative correlation of the level of urban-
ization with the size of its agricultural sector (Roberts et al.,
2017). Also, the strong assumption of uniform distribution
of labor in agriculture is another key concern (Gollin et al.,
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2014). Uneven agricultural productivity across different re-
gions or locations can lead to a non-uniform distribution of
labor within the sector, which has implications for the accu-
racy and effectiveness of models based on rural per capita
allocation. Other methods used land cover such as vegetation
and built-up indices but did not however incorporate types
of agriculture like cropland and livestock (Gunasekera et al.,
2015; Goldblatt et al., 2019).

Other methods to estimate GDP at a local level take advan-
tage of nighttime light datasets. Doll et al. (2006) and Elvidge
etal. (2009) found nighttime lights to provide a uniform, con-
sistent and independent estimate for economic activity, and
several other studies (e.g., Chen and Nordhaus, 2011; Hen-
derson et al., 2012; Ghosh et al., 2010; Bundervoet et al.,
2015; Wang et al., 2019; Eberenz et al., 2020; Wang and
Sun, 2021) utilized this striking correlation between lumi-
nosity and economic activities to estimate economic output
on the ground. While night light is a good reflection of eco-
nomic activities in manufacturing and urban areas, nighttime
light data may not capture the agricultural activity as they
require areas to emit light. Bundervoet et al. (2015) suggest
that agricultural indicators rather than rural population could
improve the estimation of GDP given the importance of agri-
culture in many of the economies in their sample of Africa.
Gibson et al. (2021) find that nighttime light data are a poor
predictor of economic activity in low-population-density ru-
ral areas.

In this paper, we present a high-resolution gridded agri-
cultural GDP (corresponding to the “agriculture, forestry,
and fishing, value added” in World Development Indicators,
henceforth AgGDP) dataset that is produced through a spa-
tial allocation model by distributing national and subnational
statistics to 5arcmin grids based on satellite-derived infor-
mation of constituents of AgGDP, including forestry, hunt-
ing and fishing, as well as cultivation of crops and livestock
production.! Our main contribution is to construct a global
dataset of gridded AgGDP. This entails a massive effort of
data collection and integration. We extend and apply the
cross-entropy framework developed in the Spatial Produc-
tion Allocation Model (SPAM) for crops that pioneered the
use of cross-entropy optimization in spatial allocation (You
and Wood, 2003; You et al., 2014, 2018; Yu et al., 2020). We
construct and integrate global datasets of the components of
AgGDRP as priors and then reconcile the values with the re-
gional accounts statistics using cross-entropy optimization.
As an illustration of the novel dataset, we assess the exposure
of economic activity to natural hazards with a focus on Ag-
GDP. Significant progress has been made to measure physi-
cal assets such as built-up areas along with its importance in
population models (Rubinyi et al., 2021) and estimate haz-
ards in order to quantify the exposure to natural hazards (e.g.,

1Agriculture, forestry and fishing correspond to ISIC divisions
1-3 and include forestry, hunting and fishing as well as cultivation
of crops and livestock production.
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Gunasekera et al., 2015; UNDRR, 2019). However, the de-
tailed spatial distribution of AgGDP is less known. So, we
apply these data to inform efforts quantifying the population
and AgGDP at risk of drought and water scarcity, highlight-
ing a linkage to a subset of agricultural activities as well as
an association with population.

The rest of this paper is structured as follows. The next sec-
tion provides a detailed description of the methodology and
data. Then, we present the model results, uncertainty and val-
idation. Afterwards, we demonstrate one possible application
by analyzing AgGDP exposure to natural hazards. Finally,
we provide concluding remarks.

2 Methodology and data

Following the composite structure of AgGDP, we disaggre-
gate the national and subnational statistics into a global grid
through a cross-entropy allocation model. Given the limited
availability of data and the global scope of the study, we
made various efforts to adjust official statistics and create pri-
ors for different components based on the available data. Be-
low we discuss the construction of each component, AgGDP
statistics and the allocation model followed by the global nat-
ural hazard data. Given the spatial resolution and year of ref-
erence of the input data for the crop value of production,
we estimate AgGDP for the year 2010 into 5 arcmin grids
(10 x 10km) across the world.

2.1 Construction of components

For each pixel, we construct an estimated value of production
based on high-spatial-resolution information on the five com-
ponents that serve as priors in the modeling process: crop,
livestock, forestry, fishing and hunting. Given the lack of in-
formation on the hunting component, we disaggregate the
forestry component into two parts: timber and non-timber
products of forestry. The non-timber products of forestry in-
clude an even distribution of hunting. The construction of the
five components is described below in four subsections: crop,
livestock, forestry (timber and non-timber) and fishing.

2.1.1  Crop value of production

The prior for the crop component in the gridded AgGDP is
generated by multiplying the quantity of production from the
global SPAM 2010 version 1 dataset? (You et al., 2018) with
producer prices at the country level from the Food and Agri-
culture Organization Corporate Statistical Database (FAO-
STAT) (FAO, 2016) for each crop and then summed together.
As for the producer prices, ideally, we need subnational-level
figures since prices for agricultural products can vary greatly
within countries and their subdivisions, but such a dataset is

2 Available at https://www.mapSPAM.info (last access: 31 Jan-
uary 2019).
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not available globally. Therefore, we use the FAOSTAT na-
tional producer prices and take the average of 2009-2011 in
order to mitigate the potential impact of temporal variation.
However, due to missing data for certain countries, crops and
years, this average may be based on a smaller time period
or the closest year available. As mentioned earlier, SPAM
is a cross-entropy model, which calculates a plausible allo-
cation of crop areas and production to approximately 10 km
pixels, based on agricultural statistics at national and sub-
national levels, combined with gridded layers of cropland,
irrigated areas, population density and potential crop areas
and yields (Yu et al., 2020). SPAM’s output distinguishes be-
tween 42 crops (33 individual crops, 9 aggregated crops) that
together add up to practically all cultivated crops in a coun-
try with four parameters, i.e., production, yield, physical area
and harvest area.

For aggregated SPAM crops (such as other cereals, other
pulses, vegetables or fruits), we computed their prices by tak-
ing the weighted average of their components as follows:

X jprice ;jprod;

Pricejygs = L Vj e Jagg, (D

X jprod;
where Jagg is the aggregated crop group, j is any crop that
belongs to Jagg, Pricey,g, is the price of the aggregated crop
group, price; is the price of crop j and prod; is the produc-
tion of j.

For each grid, the value of crop production is thus

Cropval; = X jprod; ;price;, Vjthat grow in pixel 7, 2)

where Cropval; is the value of total crop production in pixel
i, prod; ; is the production of crop j in pixel i and price; is
the price of crop j. A map of the global gridded crop produc-
tion value as a prior is shown in Fig. 1.

2.1.2 Livestock production

Livestock accounts for an estimated 40 % of the global value
of agriculture output and plays an important role in ensur-
ing the livelihood and food security of over one-sixth of the
world’s population (FAO, 2018). However, it is still under
rapid expansion as the global demand for animal-sourced
products such as meat, milk, eggs and hides continues to
grow (Herrero and Thornton, 2013). While species and quan-
tities of livestock raised vary among regions and husbandry
farmers, there are five primary species — cattle, sheep, goats,
pigs, and chicken — that prevail worldwide and provide es-
sential products for human consumption.

We calculate the prior for the component of livestock pro-
duction in gridded AgGDP based on the distribution maps of
the above five primary species from the Gridded Livestock
of the World (Robinson et al., 2014; Gilbert et al., 2018) and
FAOSTAT’s value of production of livestock products (in-
cluding meat, milk, eggs, honey and wool) (FAO, 2020). Due
to data limitations, distribution maps for other animals such

Earth Syst. Sci. Data, 15, 1357-1387, 2023
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Crop production value prior (USD ca. 2010)

Low production / NA

I 5,000-9,999

10,000 - 49,999

50,000 - 99,999
100,000 - 499,999 [ 5,000,000 - 9,999,999
500,000 - 999,999 [JJf] >= 10,000,000

D 1,000,000 - 4,999,999

Figure 1. The assembled crop production value used as a prior in the cross-entropy model (FAO, 2016; Yu et al., 2020).

as ducks, horses, camels and bees are not available. How-
ever, the FAOSTAT livestock production values include a
more comprehensive list of animals and their products. By
distributing FAOSTAT values to grids in proportion to the
five primary livestock species, we assume that other animals
included in FAOSTAT have a similar spatial distribution to
the five primary livestock species. This assumption is gener-
ally valid but may not be accurate in special areas such as
deserts, where camels are an important source of livestock
products. To facilitate comparison, the animal-specific den-
sity numbers are converted to one animal type by using In-
ternational Livestock Units as conversion factors (Eurostat,
2018) as shown in Table 1. The conversion factors reflect
biomass differences between different animals.> Then the
densities of the animal-equivalent values are multiplied by
the total area of each 5 arcmin pixel to get the count of an-
imals per grid, which is used to calculate the share of ani-
mal counts and is then multiplied by the FAOSTAT value of
production to obtain the livestock production prior for each
pixel.
Isnum;

Isval; = 1sval,

Vi€ X, 3
Y xIsnum; ! )

where Isval; is the total value of livestock production in pixel
i, Isval, is the value of livestock production (meat, milk,
eggs, honey and wool) that is reported at the national level,
Isnum; is the total number of equivalent animals in pixel i

3The uniform conversion factors may oversimplify local varia-
tion in livestock patterns. Future work may consider using country-
specific values of livestock products from FAOSTAT.
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Table 1. Conversion factors for different livestock types. Source:
Eurostat (2018).

Livestock type  Conversion factor

Cattle 1
Pig 0.3
Goat 0.1
Sheep 0.1
Chicken 0.01

and X is a set including all pixels that fall within the bound-
ary of a nation.

A map of global gridded livestock production value as a
prior is shown in Fig. 2.

2.1.8 Forestry production and hunting

People have utilized forest resources for a long time through-
out history for their livelihood and various other purposes
(Hossain et al., 2008). To date, over a billion people still rely
on forest resources for food security and income generation
to some extent (FAO, 2018). In the world’s least-developed
regions, 34 countries depend on fuel wood to provide more
than 70 % of energy, of which 13 nations require 90 % of en-
ergy (FAO, 2018).

The contribution of forest production to AgGDP can be
classified into two broad types: wood (logging) products and
non-wood forest products. Wood (logging) products are the
most-exploited commodities in the forestry sector. The trees

https://doi.org/10.5194/essd-15-1357-2023
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Livestock production value prior (USD ca. 2010)

Low production / NA

I 500- 999

1,000 - 4,999

5,000 - 9,999
10,000 - 49,999
50,000 - 99,999 [l >= 1,000,000

100,000 - 499,999
500,000 - 999,999

Figure 2. The assembled livestock production value used as a prior in the cross-entropy model. Sources: Robinson et al. (2014); Gilbert

et al. (2018); Eurostat (2018).

are harvested for fuel wood and industrial roundwood, which
is processed into a variety of products, including lumber, ply-
wood, furniture and paper products. Non-wood forest prod-
ucts are defined by the FAO.* It is estimated that millions
of households around the world depend on non-wood for-
est products for their livelihood. Some 80 % of people in the
developing world use these products in their everyday lives
(Sorrenti, 2016).

For a complete assessment of forest production priors, this
study takes both wood and non-wood products into consider-
ation. The gridded non-wood forest products dataset used in
this study was jointly developed by Resources for the Future
and the World Bank (Siikamiki et al., 2015) through an ap-
proach of meta-regression modeling, which integrates over
100 estimates at various locations from a literature review
and multifold information on ecological and socioeconomic
factors. The value of non-wood forest products is resampled
to the 5 arcmin grid cell size and converted to 2010 USD for
consistency with other AgGDP components. As part of non-
timber products, we include hunting with an even distribution
across units and time given the lack of information.

The value of wood products prior per pixel is calculated
based on forest loss from year 2010 to year 2011 exclud-

4These products are “goods of biological origin other than
wood derived from forests, other wooded land and trees outside
forests”, including foods (nuts, fruits, mushrooms, etc.), food ad-
ditives (herbs, spices, sweeteners, etc.), fibers (for construction, fur-
niture, clothing, etc.) and plant and animal products with chemical,
medical, cosmetic or cultural value.

https://doi.org/10.5194/essd-15-1357-2023

ing loss due to fire, with an assumption that the forests were
mainly cut down for timber production. The Moderate Res-
olution Imaging Spectroradiometer (MODIS) Land Cover
map (Friedl et al., 2010) for year 2011 is overlaid on top
of that for year 2010 to detect the area that has changed from
forest to non-forest. Howeyver, forest loss due to fire needs to
be removed because it does not result in timber production in
most cases.® Thus, fire information for year 2010 is obtained
from the NASA Fire Information for Resource Management
System (FIRMS) (NASA, 2018), and areas that experienced
forest fires are eliminated. After the identification of the for-
est area change in each pixel, the value of wood production at
the national level is taken from an FAO-led project (Lebedys
and Li, 2014) and proportionally disaggregated to arrive at a
pixel-wise value of wood products as follows:

Woodval; = (forestval, — nonwoodval,)

forestloss; .
——VieX, 4
Y xforestloss;

5The measurement is limited to detection of land cover change
from satellites and might not fully account for selective harvesting
or forest degradation. The area of forest is considered homogeneous
and of equal production value. Also, it could result in upward bias
when trees are cut down for plantation replanting and not used in
further processing of timber production.

6Still, sometimes wood harvests may occur after forest fires, and
therefore the elimination could underestimate the area harvested for
wood products.
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where Woodval; is the value of wood products in pixel i,
forestval, is the value of forest products reported at the na-
tional level, nonwoodval, is the value of non-wood products
at the national level which is derived from Siikamiki et al.
(2015), forestloss; is the area of forest loss excluding loss
to fire in pixel i and X is a set including all pixels that fall
within the boundary of a nation.

In our analysis of the forestry sector GDP, we have utilized
the estimates provided by Lebedys and Li (2014) as the best
available source. However, it should be noted that these esti-
mates primarily capture activities within the formal forestry
sector and do not take into account the value added generated
by informal activities such as wood fuel production and non-
wood forest products. To account for non-timber forest prod-
ucts, we have utilized the estimates provided by Siikamiki
et al. (2015). Despite these efforts, it is acknowledged that
the current analysis may still underestimate the forestry sec-
tor GDP due to the lack of reliable data on fuel wood pro-
duction, which could account for half of global wood har-
vests (Ghazoul and Evans, 2004). This is a common issue as
fuel wood values are often not properly captured in official
statistics, as they are often collected for subsistence or sold in
remote rural areas in many countries (Lebedys and Li, 2014).
In future research, we intend to make efforts to acquire more
reliable data on fuel wood production to improve the accu-
racy of our estimates of the forestry sector GDP.

A map of global gridded wood forest production value as
a prior is shown in Fig. 3.

2.1.4 Fishery production

Fish makes up approximately 17 % of animal-sourced pro-
tein in the human diet worldwide (Mathiesen, 2018). The
fishery industry supports the livelihood of 12% of the
world’s population by creating 200 million jobs along its
value chain. In the global trade system, USD 80 billion worth
of fish is exported from developing countries, and it plays
a crucial role in promoting local economic development
(Kelleher et al., 2009).

We estimate both freshwater inland fishery and marine
production values using the FISHSTAT (FAO, 2009) data
with a classification based on the fish production categories.
The inland fishery production value is the result of disag-
gregating corresponding country-level statistics in proportion
to areas of inland water bodies in the 5arcmin pixel. This
is a simplified assumption and may cause overestimation in
places where there are inland water bodies but not many fish-
ery activities going on. The distribution of inland water bod-
ies is obtained from the ESA-CCI (Lamarche et al., 2017).
Thus, the value of inland fishing production in each grid is
calculated as follows:

terbody:
fishval; = freshval, WAIeTHOCy VieX, 5)

¥ xwaterbody; ’
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where fishval; is the value of fishery production in pixel i,
freshval, is the value of fresh fish production at the national
level which is aggregated from FISHSTAT, waterbody; is the
area of water bodies in pixel i and X is a set including all
pixels i that fall within the boundary of a nation x.

The value of marine fishery production is determined by its
proximity to fish landing ports and a composite indicator that
equally weighs the number of vessel visits and the total hold-
ing capacity of the fishing vessels. We use the port database
from the World Port Index (National Geospatial-Intelligence
Agency, 2019) and the number of port visits with a vessel
hold of fishing vessels from Hosch et al. (2019) to create a
composite variable as the prior based on the sum (for each
port) of the number of visits (each event in the database) and
the total vessel hold at the port. The geographic coverage
of the ports is calculated for each port using the minimum
port distance provided in Hosch et al. (2019). Any distances
greater than 150 km were considered to be 150km in this
analysis. The value of marine fishing production in each grid
is calculated as follows:

portindex;

marineval; = marineval, VieX, (6)

Y xportindex; ’

where marineval; is the value of fishery production in pixel
i, portindex; is an equally weighted composite index of the
number of visits and the total vessel hold in pixel i and X is
a set including all pixels i that fall within the boundary of a
nation x.

A map of global gridded fishery production value as a prior
is shown in Fig. 4.

2.2 AgGDP statistics and linked grids

Substantial efforts have been made to collect and organize
national and subnational statistics from a variety of sources,
including national ministries and reports. However, not ev-
ery country publishes its AgGDP figures at the subnational
(regional) level, and there exist different methods of region-
alization, including top-down, bottom-up and mixed meth-
ods (Eurostat, 2013).” Our database has 68 countries that
have subnational AgGDP data, expressed in varying domes-
tic currencies and for different years. The typical adminis-
trative level is at the state or provincial level. Table B7 lists
these countries and descriptive statistics, including the tem-

7Regional Gross Domestic Product (RGDP) can be estimated
following the production, income or expenditure approaches. How-
ever, RGDP is not typically compiled using the expenditure ap-
proach due to the scarcity of data such as interregional purchases
and sales or regional exports/imports. In the production and income
approaches, the estimate of market activities is typically from the
production approach, whereas the estimate of non-market industries
is from the income approach.

https://doi.org/10.5194/essd-15-1357-2023
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Wood forest production value prior (USD ca. 2010)

Low production / NA
10,000 - 49,999

50,000 - 99,999
100,000 - 429,990 [Jf] >= 1,000,000

I 500,000- 999,909

Figure 3. The assembled wood forest production value used as a prior in the cross-entropy model (Friedl et al., 2010; Siikamaki et al., 2015;

NASA, 2018).

Fishery production value prior (USD ca. 2010)
1,000- 4,990 [ >= 10,000

I 5.000-9,900

Low production / NA
151-999

Figure 4. The assembled fishery production value used as a prior in the cross-entropy model (FAO, 2009; Lamarche et al., 2017; Hosch

et al., 2019; National Geospatial-Intelligence Agency, 2019).

poral coverage and the number of subnational regions at an
administrative geographic level, including the NUTS level.®

To overcome discrepancies in temporal coverage and cur-
rency terms (constant and current) and to keep the data con-

8The European Union developed a standard for administrative
levels: the Classification of Territorial Units for Statistics (NUTS,
for the French nomenclature d’unités territoriales statistiques).

https://doi.org/10.5194/essd-15-1357-2023

sistent and comparable for countries across the world, shares
from subnational statistics are calculated and then applied to
a national total to derive a calibrated number at the subna-
tional level. The national totals are obtained from the pub-
licly available World Development Indicators (WDIs) (World
Bank, 2019) and averaged over 3 years around 2010. For a
few countries that do not report their national AgGDP in the
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WDI database, sums of all AgGDP components are used as
proxies.

The World Bank compiles these national accounts data
following the International Standard Industrial Classifica-
tion (ISIC) divisions 1-3 that include agriculture, forestry
and fishing. Given the challenges of compiling national ac-
counts data across the world, limitations include the exclu-
sion of unreported economic activity in the informal or sec-
ondary economy. In particular, agricultural output in devel-
oping countries may not be reported due to issues such as
natural losses or self-consumption and may not be exchanged
for money. Despite best efforts, agricultural production may
be estimated indirectly, leading to approximations that are
different than the true values.

The calibrated statistics are then linked to grids through a
shapefile of the Global Administrative Unit Layers (GAUL)
that maintains global geographic layers with a consistent and
comprehensively unified coding system (FAO, 2015). Then,
we overlay the GAUL administrative boundaries on the grid
network to assign the corresponding codes of the administra-
tive units to each grid.'” For areas where subnational Ag-
GDPs have different administrative areas than GAUL, the
GAUL areas are merged or split to match the subnational
AgGDP areas.

2.3 Spatial allocation model

After constructing all the components, we define a spatial al-
location model in a cross-entropy framework following You
et al. (2014) to allocate administrative statistics to 5 arcmin
pixels.!! National and subnational AgGDP values are used as
a constraint, while the distribution of crop, livestock, fishery
and forestry production (hunting is included in non-timber
products of forestry) is used to create priors for estimating
pixel-level AgGDP. In actuality, the priors that we have con-
structed do not encompass all elements of AgGDP, and the
national and subnational AgGDP statistics include a broader
range of production values. However, the priors account for
most variation between pixels, and thus their shares can serve
as appropriate proxies in the AgGDP disaggregation model.
Lastly, measurement units are unified using deflators and ex-
change rates.!?

9See https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS
(last access: 31 January 2019) for more details on metadata and
limitations.

10For presentation purposes, a country may refer to a sovereign
country or other political area such as a dependency or disputed
area.

LY\ comprehensive presentation of the cross-entropy method is
in Rubinstein and Kroese (2004).

12The currency varies by source. Crops are in local currency.
Livestock are in International USD 2004-2006. Fish are in USD
2009. Non-timber forest products are in USD 2012, and timber (for-
est) products are in USD 2011.
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The first step is to transform all real-value parameters into
corresponding probabilities. Let S; be the share of the total
AgGDP allocated to pixel i within a country x. AgGDP; , is
the AgGDP allocated to pixel i in country x, and X is a set
including all pixels that fall within the boundary of a nation.
Therefore,

AgGDP, ,

= DS yicx 7
TxAgGDP, ™

i
Let PreAgGDP; be the pre-prior allocation of the AgGDP
share from our best estimate. The first approximation can be

done by summing all five calculated pixel-level components
of AgGDP:

PreAgGDP; = Crop; + Livestock; 4 Forestry;
+ Fishing; 4- Hunting;, (8)

where we assume hunting occurs in areas with equal proba-
bility.

Theoretically, the sum of these components should be
close to the official values obtained from the World Devel-
opment Indicators. However, it should be noted that due to
limitations in the available data, we have some components
in output values (crop, livestock and fishery), whereas others
in value added are added (forestry and hunting). This may re-
sult in discrepancies and inconsistencies. Overall, we make
sure that the official AgGDP values are guaranteed to be no
less than the sum of all five components of AgGDP.

AgGDP, = X, PreAgGDP; ©))

Then we rescale the prior AgGDP to be consistent with the
official AgGDP value:

PreAgGDP; AgGDP,
> PreAgGDP,

PriorAgGDP; = (10)
Then we calculate the prior for S; as a probability by nor-
malizing PriorAgGDP:
PriorAgGDP;

PreAlloc; = - e (11
YiexPriorAgGDP;

Finally, we formulate a cross-entropy model in the follow-
ing mathematical optimization framework:

MIN CE(S;) = %; S; log(S;) — Z; S; log(PreAlloc; ), 12)

subject to the following three conditions:

%8 =1, (13)
Y k(X AgGDP)S; = SubAgGDP, Vk, (14)
0<S; <1Vi, (15)

where i: i =1, 2, 3, ... are pixel identifiers within the al-
location unit (e.g., Brazil) and k: k=1, 2, 3, ... are iden-
tifiers for subnational geopolitical units (e.g., a state) where
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AgGDP values (SubAgGDPy) are available. The objective
function is defined as the cross-entropy of AgGDP shares and
their priors. The first constraint (Eq. 13) is the pycnophylac-
tic or volume-preserving constraint (e.g., Tobler, 1979) that
ensures the sum of all allocated AgGDP values is equal to
the total AgGDP of the country. The next Eq. (14) sets the
sum of all allocated AgGDP values within those subnational
units with available data to be equal to the corresponding
subnational AgGDP values. The last Eq. (15) is a natural
constraint for the share of AgGDP to be between 0 and 1,
which is also the probability in the cross-entropy model. The
modeling framework is flexible in that more constraints can
be added if more data are available and/or more reasonable
assumptions about how AgGDP should be spatially disag-
gregated are discovered.!3 Last but not least, we multiply the
total regional AgGDP by the probability in the cross-entropy
model to derive the final pixel-level AgGDP:

AgGDPi = EiAgGDPx Sl'. (16)

3 Results, uncertainty and validation

3.1 Results

Figure 5 illustrates the result of the cross-entropy model in a
global map of the gridded AgGDP. The global gridded Ag-
GDP for the year 2010 in 2010 USD is in gridded (raster)
format at a resolution of 5arcmin, which approximates to
10km.'* The spatial extent and quantity distribution of Ag-
GDP over the world are in agreement with general knowl-
edge of agricultural technology adoption and suitability, with
well-known agricultural nations such as India, China and the
United States standing out as regions with relatively high Ag-
GDP compared with many other areas of the world. A num-
ber of European countries also exhibit high AgGDP values,
which is likely due to the benefit of adopting mechanized
farming and technological facilitation, considering that the
shares of agricultural land and agrarian population are rela-
tively low in these well-developed places. Countries in sub-
Saharan Africa remain low in agricultural production, as in-
dicated by low-value pixels sparsely spreading over the con-
tinent. Within the continent, agricultural production activi-
ties primarily take place in geographic areas with suitability
and access to markets (e.g., land cultivation; see Berg et al.,
2018).

B3For instance, market access may play a role in determining the
spatial distribution or spatial structure of AgGDP and can be in-
cluded as a constraint in the model. However, we provide a parsi-
monious model without market access.

14The coordinate system is the standard WGS84 and is saved in
GeoTIFF format. For presentation in the paper, the coordinate sys-
tem of the maps is Eckert IV and is transformed from the geographic
coordinates in the R software. The data are publicly and freely avail-
able through the World Bank Development Data Hub website at
https://doi.org/10.57966/0j71-8d56 (IFPRI and World Bank, 2022).
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We examine the correlation of the AgGDP dataset with
two commonly used global datasets to proxy economic ac-
tivity: nighttime lights and population. Nighttime light data
are commonly used in the estimation of local human de-
velopment and economic activity (e.g., Ghosh et al., 2010;
Henderson et al., 2012; Bundervoet et al., 2015; Kummu
et al., 2018; Bruederle and Hodler, 2018). We use the sum
of the radiance-calibrated data for 2010 from the F16 satel-
lite to quantify the correlation between AgGDP and night-
time lights by geographic regions of the world defined by the
World Bank.!> We use rural population derived from Cen-
ter for International Earth Science Information Network —
CIESIN - Columbia University (2017) following methods in
Thomas et al. (2019). We use country-level data from the
World Bank World Development Indicators (World Bank,
2019). We find that the correlation of AgGDP with night
light varies across world regions, with sub-Saharan Africa
and the Other region showing lower correlation values (Ta-
ble 2). Most World Bank regions have similar patterns of cor-
relation with nighttime lights across the measures of AgGDP
and population. Likewise, World Bank income groups show
similar patterns across the measures, with the lower-middle
and upper-middle income groups having higher correlations
than the low- and high-income groups. However, notable dif-
ferences in the correlations exist between geographic levels.
The mean correlation of AgGDP with nighttime lights (NTL)
and population (pop) derived from administrative level-2
data is lower than the national level, which presents evidence
of new information from the AgGDP dataset.

Furthermore, limitations exist with these commonly used
datasets for applications of AgGDP. For nighttime lights, Li
et al. (2020) provide a cautionary note about rural applica-
tions where the presence of agricultural activities typically
takes place. A population model assumes proportional ac-
tivity to population by strata (e.g., rural), which does not
account for the type of rural of agricultural activity, and
the model requires a standard definition of rural, which can
pose challenges in global applications (e.g., stylized facts
in the urban and development economics literature Roberts
et al., 2017). Notably, the rural population dataset also has
variation in the geographic level of the input information,
which informs the estimates of population models and cur-
rency across the world, especially when dependent on the
frequency of production and the availability of a population
census. Also, the AgGDP dataset may attenuate modeling
concerns of endogeneity when using AgGDP along with pop-
ulation or nighttime lights.

ISSpeciﬁcally, we use the version 4 product from the F16 satel-
lite (20100111 to 20101209) available at https://ngdc.noaa.gov/eog/
dmsp/download_radcal.html (last access: 15 June 2016).
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Figure 5. Global gridded AgGDP circa 2010 from the cross-entropy model in 2010 USD.

Table 2. Spearman correlation of AgGDP with nighttime lights at the Admin O level (1) and Admin 2 level (2) as well as the rural populations
at the Admin O level (3) and Admin 2 level (4), grouped by World Bank region where AFR is sub-Saharan Africa, EAP is East Asia and the
Pacific, ECA is eastern Europe and central Asia, LAC is Latin America, MENA is the Middle East and North Africa, SOA is South Asia,
and Other is the category for the remaining countries (NOAA, 2011; World Bank, 2019).

AgGDP correlations by (@) 2) 3) @)
World Bank regions NTL (adm 0) NTL (adm2) POP (adm0) POP (adm 2)
AFR 0.682 0.314 0.934 0.673
EAP 0.956 0.493 0.979 0.739
ECA 0.818 0.546 0914 0.611
LAC 0.949 0.605 0.947 0.720
MENA 0.798 0.556 0.953 0.638
Other 0.896 0.669 0.909 0.697
SOA 0.929 0.547 0.929 0.716

3.2 Fitness for use and uncertainty

We provide descriptive statistics of the data and modeling
from a fitness-for-use perspective (e.g., Leyk et al., 2019).
The data are most appropriate for applications at global, con-
tinental and regional scales (You and Wood, 2006). However,
decisions regarding the use of the data at smaller spatial ex-
tents should be made with caution and with consideration of
the underlying assumptions and characteristics of the area in
question. Users should take into account factors such as area
of the grid cell of AgGDP, the number of subdivisions of Ag-
GDP from the political area (e.g., country) and assumptions
in the priors (e.g., see shares of priors in Table B8). When
input data contain multiple observations, the AgGDP dataset
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may still be suitable for use, as it is already standardized in
grid cells, which may facilitate integration with other data.
As the spatial refinement of ancillary data advances along
with greater currency, coverage and representativeness, we
expect validation possibilities to increase and inform a bet-
ter understanding of the uncertainty and the associated fit-
ness for use. Also, we intend to improve spatial and temporal
coverage when this is feasible.

The process of disaggregating the data from the source
level to the target level does impose spatial relationships and
is prone to error (Li et al., 2007) and the modifiable areal
unit problem (MAUP) (Openshaw, 1981). In previous work,
our team conducted sensitivity analyses and examined the
consequences of methodological-data choices involved in a
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cross-entropy model to disaggregate crop production statis-
tics (Joglekar et al., 2019). These analyses included eight sce-
narios that varied in allocation methods, data groupings, in-
put variables and different levels of statistics. The analysis
indicated that allocation results are most dependent on the
degree of disaggregation and the quality of the underlying
national and subnational production statistics. Therefore, we
provide more discussion in Sect. 3.2.1 (Regional accounts).
Additionally, the results are moderately sensitive to alloca-
tion methods. We previously compared three models for the
case of Brazil (Thomas et al., 2019) and found that cross-
entropy is the most appropriate method for the global study,
with relatively high accuracy and flexible data requirements
when compared with either the spatial regression or rural
population methods. Interested readers may find more details
in the Brazil paper. Lastly, the results are somewhat sensitive
to the groupings and formats of input components that serve
as priors, which we discuss in Sect. 3.2.2 (Components).

3.2.1 Regional accounts

The measurement of GDP is challenging (Angrist et al.,
2021), especially agricultural production (Carletto et al.,
2015). The level of uncertainty associated with these results
includes the thematic, spatial and temporal accuracies. We
collected regional accounts by sector from various sources
into a global database. The data are not balanced over time
or at the geographic level. The variation in the reference year
of the regional accounts data influences the temporal balance
of the database. This mismatch can influence the regional dis-
tribution of the AgGDP that may be different than the target
reference year of 2010. Given climate'® and specifically rain-
fall are important inputs to crop and livestock production and
may contribute to variation across years (Stanimirova et al.,
2019; Zhang et al., 2020), we attempt to reduce this source of
error by averaging over multiple years when data are avail-
able, which is a similar approach to You et al. (2014). How-
ever, this does not eliminate this mismatch. The availability
of data varies when grouped by World Bank income (low or
lower-middle, upper-middle and high income). The average
absolute temporal difference (ATD) defined as the mean dif-
ference in years between the reference regional accounts and
the target year (2010) is higher in the low and lower-middle
income groups. Likewise, the mean deviation of the share of
AgGDP by country over the year(s) is larger in the low- or
lower-middle income groups compared to the high-income
one.

The global regional accounts database includes national
and subnational units at various administrative levels.!” Fol-
lowing Robinson et al. (2014) in their assessment of Grid-

16For a discussion on climate yield factors, see Block et al.
(2008).

17 This also includes cases where administrative units at the same
level are merged to match the geography of the regional accounts
data.
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ded Livestock of the World (GLW) 2.0, we summarize the
average spatial resolution (ASR) of the input regional data,
which is the square root of the land area divided by the num-
ber of administrative units (see Fig. 6). We find that on av-
erage the ASR value increases from high- to low-income
groups based on World Bank 2010 classifications. Following
Yu et al. (2020), we suggest that users can view the ASR map
as an indicator of uncertainty level since the model is proven
most dependent on the ASR of statistics. A larger ASR rep-
resents more sparsity of input statistics and more uncertainty
of the gridded results.

3.2.2 Components

Another source of uncertainty is the indirect temporal inaccu-
racy propagated from the input datasets of the components,
which are modeled. We discuss all five components of Ag-
GDP: crop, livestock, forest, fish and hunting. The SPAM
model (You et al., 2014) is a result of several gridded mod-
eled datasets, including rural population density from the
Global Rural-Urban Mapping Project (GRUMP) Alpha ver-
sion (Balk et al., 2006). Likewise, the Gridded Livestock
of the World v2.0 includes rural population density in 2006
(GRUMP) along with other predictors such as precipitation
(Hijmans et al., 2005) and a modeled travel time to places
with 50 000 inhabitants circa 2000 (Nelson, 2008). Anderson
et al. (2015) find variation in their examination of global data
products of cropping system models. For livestock, we trans-
form the five major livestock types into international values
from livestock products (i.e., meat, milk, eggs, honey and
wool). The forest (non-wood products, wood products) com-
ponents rely on a remote-sensing model to estimate forest
loss. With regards to the non-timber values, limitations from
the sources present two challenges. The estimates use simple
averages from the literature that accordingly assume a prop-
erty of uniformity in the value of a hectare of forest to be
similar across the world, and the sample of forests with the
literature drawn for the study is representative of the world
(Siikaméki et al., 2015). The fishing model relies on the prox-
imity and association with ports or water bodies.'® Finally,
since we do not incorporate any information on hunting, the
result is an even distribution across units and time.

Another source of uncertainty is the geographic distribu-
tion of the components. Ideally, we would use subnational
prices; however, this was not feasible. So, the results do not
reflect this occurrence, and there is a potential misrepresenta-
tion of administrative units with high variation of prices due
to the heterogeneity of distinct urban and rural areas.

3.3 Validation

A true validation of the predictive accuracy of this model in-
volves data collection and construction of agricultural gross

18The freshwater case does not account for any variation, whereas
the marine port locations incorporate variation in vessel holds.
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Figure 6. The average spatial resolution of the regional accounts data by country (World Bank, 2019). See also the various sources in the

Appendix.

regional products in different pixels and testing those inde-
pendent observations against the predicted values. The re-
gional production data are, however, generally constructed at
the administrative level rather than the pixels, so validation
would have to be done on an aggregation of model predic-
tions. Few countries provide the required data to assess the
prediction accuracy to examine the internal validation of the
disaggregation efficiency, and the data collection would be
extremely costly and time-consuming. An evaluation of pre-
diction accuracy requires input data at a local level, which is
not available for all countries.

Multiple geographic levels of AgGDP exist for the case of
Brazil, where we conducted a pilot study and examined the
validity of various methods to disaggregate AgGDP spatially,
including cross-entropy, a rural-population-based model and
spatial regression (see Thomas et al., 2019). Administrative
divisions of Brazil consist of 558 microregions, which are
further divided into 5564 municipios. We had AgGDP data
at both the microregion and municipio levels. In order to
test the methods, we only used statistics for the 558 mi-
croregions and allocated them to gridded pixels. Then we
aggregated estimated results at the pixel level to 5564 mu-
nicipios and compared them with ground-truth data. Results
showed that the correlation between the predictions and ac-
tual values at the municipio level was 0.91 for the cross-
entropy model. Mean absolute deviation (MAD) and root
mean square error (RMSE) were 8249 and 18 347, respec-
tively, while the average of the municipio-level true values
was 28 739 (BRL 1.000). The performance of the spatial re-
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gression model was slightly better than the cross-entropy
model, but it can hardly generalize to the global work since
for many countries we only have one number at the national
level and do not have enough degrees of freedom for the
regression model. The naive rural population model had a
correlation value of 0.81 between the predictions and actual
values at the municipio level, and MAD and RMSE were
28744 and 25397, respectively. The cross-entropy model
was proven to have relatively high accuracy compared to
the naive model and better flexibility to accommodate data
scarcity in certain countries and thus was chosen as the model
for the global AgGDP dataset.

At the global scale, since we do not have AgGDP statis-
tics at lower administrative levels consistently, we are not
able to validate estimated results by aggregating to differ-
ent geographic levels like the Brazil case. In addition, due to
the volume-preserving pycnophylactic property of the cross-
entropy model that utilizes all available data from mixed lev-
els and ensures that the aggregated values conform to all the
original values, we do not have extra data for validation. All
available data have been internalized by the model to im-
prove estimation results and thus cannot serve as external
validation. Nevertheless, we compare the results from the
global cross-entropy model to that from a rural population-
based model at the grid level and examined their correlation,
which is a similar assessment to You et al. (2014) (as men-
tioned, a spatial regression model at the global scale is not
feasible due to insufficient degrees of freedom). We construct
a proportional allocation model using rural population count
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following the method in Thomas et al. (2019) for the case
of Brazil. We use the 2010 Gridded Population of the World
version 4 from Center for International Earth Science Infor-
mation Network — CIESIN — Columbia University (2017)
adjusted to the United Nation’s World Population Prospects
followed by including the rural area defined by the Global
Human Settlement grid for 2015, i.e., “Rural cluster”, “Low
Density Rural grid cell” or “Very low density rural grid cell”
(Pesaresi and Freire, 2019). We disaggregate national or sub-
national AgGDP statistics to grids in proportion to their ru-
ral population, with each rural individual receiving an equal
portion of the AgGDP. Figure 7 shows results of the rural per
capita model and the cross-entropy model together. We can
test the similarity of the two global maps. Following Levine
et al. (2009), we assume a normal distribution over the 2 mil-
lion land pixels and perform a pairwise Student’s ¢ test to test
the null hypothesis that both maps were identical. This test
allows us to examine whether the mean difference in the cor-
responding pixel value from one map to another was greater
than would be expected by chance alone. The ¢-test statis-
tic tells us that we cannot reject the null hypothesis, which
provides some evidence of similarity between the two mod-
els using all the global pixels. However, at a granular spatial
level, Fig. 8 shows variation in local correlation across the
world. We use a Spearman correlation for a 3 x 3 window
of pixels with a focus on AgGDP areas with values above
200 000, excluding the Low Agricultural GDP/NA category
where the measurement of rural population and AgGDP may
have discontinuity due to modeling inaccuracies. The lack of
similarity illustrates the difference in the spatial distribution
of agricultural production systems that are not directly cor-
related with population density within a geographic level. At
the granular spatial level, populated places and agricultural
land use are different locations to allocate AgGDP. The ru-
ral per capita model is dependent on the input geographic
level, where average spatial resolution may vary, as well as
on the quality and resolution of ancillary data like built-up
areas (e.g., Rubinyi et al., 2021).

4 lllustration of use: drought risk and water scarcity

Following previous global studies (e.g., Blankespoor et al.,
2017; Rentschler et al., 2022), we present an application of
the population exposed to a natural hazard. Specifically, we
investigate the spatial distribution of population and agri-
cultural activity with regards to drought and water scarcity.
These two indicators provide an illustrative example of dif-
ferent linkages to agricultural production. Drought highlights
the linkages to crops and livestock, whereas water scarcity
focuses attention on the distribution of a population. The
global population estimates for the year 2010 are from the
WorldPop and Center for International Earth Science Infor-
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mation Network (CIESIN), Columbia University (2018).19
For a drought index, we calculate the Standardized Precipita-
tion Evapotranspiration Index (SPEI) (Vicente-Serrano et al.,
2010), which measures the difference between observed pre-
cipitation and estimated potential evapotranspiration with a
3-month interval using the base climatology of 1980 to 2019,
which is implemented in R (Begueria and Vicente-Serrano,
2017) using climate data from Harris et al. (2020). Extra-dry
years are defined as the number of years that are less than
or equal to —2.0 during the period from 2000 to 2009. Fig-
ure Al shows the results of the SPEI. The Water Crowding
Index (WCI) is a measure of water scarcity considering the
local population as the annual water availability per capita
(Falkenmark, 1986, 2013). Veldkamp et al. (2015) model the
global WCI with return periods. We take the mean of any pix-
els of the ensemble WCI with a 10-year return period within
an AgGDP pixel. Following the literature (e.g., Arnell, 2003;
Alcamo et al., 2007; Kummu et al., 2010; Veldkamp et al.,
2015), we categorize the WCI into four categories: absolute
is less than 500 m® per capita per year, severe is less than or
equal to 1000m?> per capita per year, moderate is less than
or equal to 1700 m> per capita per year, and low is the re-
mainder (Fig. A2). Then, we evaluate water shortage events
using a threshold of 1700 m? per capita per year with a return
period of 10 years.

The exposure to drought is not uniform across the world.
Across the world, the group of high-income countries has
lower populations and AgGDP exposed to drought in each
number of years with extremely dry conditions compared to
the countries in other income categories (Fig. 9). Areas that
are exposed to at least one extreme drought from 2000 to
2009 account for an estimated AgGDP of USD 432 billion
and a population of 1.2 billion. The top 10 countries in total
AgGDP exposure include the large economies in the agri-
culture sector such as China, India, the United States and
the Russian Federation (Table B1). However, other coun-
tries have a high share of their AgGDP exposed to extreme
drought (Table BS). The top 10 countries in 2010 popula-
tion exposed to dry areas include countries with the largest
economies in the agriculture sector as noted above, but the
list includes countries such as the Democratic Republic of
Congo, Tanzania and Uganda (Table B3).

Across the world, high-income countries have lower pop-
ulations and AgGDP in areas of absolute or severe categories
of the Water Crowding Index compared to countries in other
income categories (Fig. 10). The top 10 countries of Ag-
GDP exposed to the Water Crowding Index include large
economies in the agriculture sector such as China, India,
Pakistan, Indonesia and Nigeria (Table B4). However, sev-
eral countries have a high share of their AgGDP exposed to
the Water Crowding Index (Table B2). The top 10 countries
in 2010 population exposed to dry areas include countries

19They use a random-forest based dasymetric redistribution
method.
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Figure 7. A panel map of gridded AgGDP circa 2010 from the cross-entropy model (a) and from the rural per capita population model (b) Au-

thors’ calculation.

with the largest economies in the agriculture sector as noted
above, but the list includes countries such as Bangladesh, the
Arab Republic of Egypt and Mexico (Table B6).

5 Data availability

These data are available at the World Bank’s Development
Data Hub under https://doi.org/10.57966/0j71-8d56 (IFPRI
and World Bank, 2022).

Earth Syst. Sci. Data, 15, 1357-1387, 2023

6 Conclusions

A globally consistent dataset on local estimates of AgGDP
could benefit research and policymaking in a wide range
of areas related to nature conservation, economic develop-
ment and disaster management. However, such data have
been missing. In this paper, we made the first attempt to
create a novel global dataset that disaggregates the national
and regional accounts of the agriculture sector into 5 arcmin
grids using cross-entropy optimization based on ancillary
data of satellite-derived products. The gridded data format
provides flexibility when the map is integrated with other
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Figure 9. The total exposure of AgGDP (a) and population (b) aggregated from areas with at least one extreme drought from 2000 to 2009
measured by a 3-month SPEI (WorldPop and Center for International Earth Science Information Network (CIESIN), Columbia University,

2018; World Bank, 2019).

data sources. It can be aggregated to various levels using ad-
ministrative boundaries or other boundaries of interest, such
as natural hazard zones. Since most interventions are geo-
graphically targeted, this dataset will provide important in-
formation on local variations in agricultural production and
help identify places of policy interest. We illustrate the us-
age of this dataset through an exposure analysis of agricul-
ture production to drought risk and water scarcity and ex-
amine uneven natural hazard exposure across the world with
USD 432 billion of AgGDP and 1.2 billion people. With in-
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creasing frequency and severity of natural hazards such as
floods, droughts and cyclones, socioeconomic estimates at
the local level play an increasingly important role in inform-
ing the preparations of disaster response.

These data are the result of data collection and collabora-
tion across multiple entities to ensure the most current and
widest coverage. However, persistent challenges to data col-
lection remain, including limited geographic levels and tem-
poral lags with low frequencies. Also, the reference year and
spatial resolution of the local AgGDP estimates are limited

Earth Syst. Sci. Data, 15, 1357-1387, 2023
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Figure 10. Total AgGDP (a) and population (b) by mean Water Crowding Index, where absolute is less than 500 m3 per capita per year,
severe is less than or equal to 1000 m3 per capita per year, moderate is less than or equal to 1700 m? per capita per year, and low is the

remainder (Veldkamp et al., 2015; World Bank, 2019).

to the contemporaneous availability of the economic statis-
tics and components such as the crop production model. We
often have to consider the fitness for use while considering
the accuracy; the model has a higher ASR in areas where
we have few data. However, these same areas may benefit
from the availability of these estimates to inform policy. Pre-
dictions are dependent on the availability and quality of the
training data on which the model is based, and the modeling
process is flexible to update individual countries as the data
are available.

In the near future, we hope to update this dataset as the cur-
rency and number of countries with subnational data increase
along with updated data for different agricultural compo-
nents. We have learned that the main input for our crop com-
ponent, SPAM, now includes data for 2017 in sub-Saharan
Africa and is in the process of producing a global crop map
for 2020. Additionally, the FAO livestock distribution maps
for our livestock component have been updated to include
a greater variety of animal types for the more recent year
of 2015. We also intend to utilize annually updated satellite
imagery from MODIS Land Cover and ESA-CCI in order to
calculate more recent data for the forestry and fishery sectors.
In future work, we will also make the necessary adjustments
to include fuel wood production and exclude trees that are
cut down for plantation replanting and not used for further
timber production in the calculation of forestry sector GDP.

Earth Syst. Sci. Data, 15, 1357-1387, 2023
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Appendix A: Figures

Number of years with an extremely dry SPEI 2000 - 2009
. No years . 1 year 2 years 3 years 4 years . 5 years . 6 years

Figure A1. The number of years with at least one extreme drought from 2000 to 2009 measured by a 3-month SPEI (Harris et al., 2020;
Begueria and Vicente-Serrano, 2017).

Mean Water Crowding Index
10 years return period
(m3 per capita / year)

. Absolute . Severe Moderate . Low

Figure A2. Water Scarcity Index categories with a return period of 10 years (Veldkamp et al., 2015).
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Appendix B: Tables

Table B1. Top 10 countries with the largest total agricultural GDP
(millions of USD) exposed to dry areas with shares of agricultural

GDP and population (thousands).

Y. Ru, B. Blankespoor, et al.: Local agricultural GDP

Rank  Country AgGDP  Share of AgGDP  Population (2010)
1 China 146 000 0.26 323000
2 India 60600 0.22 255000
3 United States 21800 0.14 69 100
4 Russian Federation 14300 0.26 27100
5 Iran, Islamic Republic of 13400 0.44 40600
6 Brazil 12 600 0.14 9230
6 Pakistan 12600 0.28 42 600
7 Australia 10900 0.44 6130
8 Italy 6560 0.17 7120
9 Canada 5540 0.25 5000

Table B2. Top 10 countries of the largest share of agricultural GDP
exposed to dry areas with agricultural GDP (millions of USD) and
population (thousands).

Rank  Country Share of Ag GDP Ag GDP  Pop (2010)
1 Rwanda 1.00 1670 9850
1 Saint Vincent and the Grenadines 1.00 11.6 29.9
1 Micronesia, Federated States of 1.00 <1 <1
2 Burundi 0.97 732 8320
3 Brunei Darussalam 0.91 99.3 92.8
4 West Bank and Gaza 0.85 543 2770
5 Gambia, The 0.81 170 1420
6 Finland 0.79 4400 3950
7 Belize 0.79 126 208
8 Jordan 0.73 733 5400
Table B3. Top 10 countries of 2010 population (thousands) exposed
to dry areas with agricultural GDP (millions of USD) and share of
agricultural GDP.
Rank  Country Population (2010) AgGDP  Share of AgGDP
1 China 323000 146000 0.26
2 India 255000 60600 0.22
3 United States 69 100 21800 0.14
4 Congo, Democratic Republic of 45100 2780 0.59
5 Pakistan 42600 12600 0.28
6 Iran, Islamic Republic of 40600 13400 0.44
7 Russian Federation 27100 14300 0.26
8 Tanzania 23200 4140 0.55
9 Uganda 18700 2990 0.66
10 Thailand 17400 4930 0.15
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Table B4. Top 10 countries with the largest total agricultural GDP
exposed to WCI areas with agricultural GDP (millions of USD) and
population (thousands).

1375

Rank  Country AgGDP  Share of AgGDP  Population (2010)
1 China 436000 0.802 990 000
2 India 243000 0.925 1000000
3 Pakistan 44200 0.999 170000
4 Nigeria 38300 0.465 78000
5 Indonesia 38200 0.479 120 000
6 United States of America 37800 0.247 65000
7 Turkey 37600 0.625 43000
8 Italy 30400 0.854 42000
9 Iran, Islamic Republic of 28100 0.943 70000
10 Egypt, Arab Republic of 24400 0.947 70000

Table B5. Top 10 countries with the largest share of agricultural
GDP in countries exposed to WCI areas with agricultural GDP (mil-
lions of USD) and population (thousands).

Rank  Country AgGDP  Share of AgGDP  Population (2010)
1 United Arab Emirates 1310 1.000 3900
1 Cyprus 346 1.000 610
1 Djibouti 28 1.000 380
1 Dominican Republic 2740 1.000 6300
1 Gambia, The 147 1.000 680
1 Haiti 1070 1.000 5900
1 Israel 3270 1.000 5600
1 Jamaica 523 1.000 1400
1 Jordan 996 1.000 5800
1 Korea, Republic of 14 600 1.000 31000

Additional countries exposed to WCI areas with a 1.00 share of AgGDP include the West Bank and Gaza,
Cyprus, Kuwait, The Gambia, Qatar, and Hong Kong (SAR, China).

Table B6. Top 10 countries of 2010 population exposed to WCI ar-
eas with agricultural GDP (millions of USD) and population (thou-

sands).
Rank  Country Population (2010) AgGDP  Share of AgGDP
1 India 1000000 243000 0.925
2 China 990000 436000 0.802
3 Pakistan 170000 44200 0.999
4 Indonesia 120000 38200 0.479
5 Bangladesh 110000 13900 0.909
6 Nigeria 78 000 38300 0.465
7 Egypt, Arab Republic of 70000 24400 0.947
7 Iran, Islamic Republic of 70000 28100 0.943
8 United States of America 65000 37800 0.247
9 Mexico 64000 14 100 0.462
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Table B7. Regional accounts descriptive statistics.

Country First Last Number of Source
year  year regions
Albania 2012 2014 12 EUROSTAT
Argentina 2004 2004 24 Instituto Nacional de Estadistica y Censos
Australia 2009 2011 8  Australian Bureau of Statistics
Austria 2012 2014 9 EUROSTAT
Belarus 2011 2013 8 BELSTAT
Belgium 2012 2014 3 EUROSTAT
Bolivia 2009 2011 9 Instituto Nacional de Estadistica
Brazil 2010 2012 31 Instituto Brasileiro de Geografia e Estatistica
Bulgaria 2012 2014 2 EUROSTAT
Canada 2009 2011 13 Statistics Canada
Chile 2013 2015 13 Banco Central De Chile
China 2009 2011 32 National Bureau of Statistics China
Colombia 2009 2011 32 Departamento Administrativo Nacional de Estadistica
Croatia 2012 2014 3 EUROSTAT
Czech Republic 2012 2014 7 EUROSTAT
Denmark 2012 2014 5 EUROSTAT
Ecuador 2006 2006 23 Banco Central De Ecuador
Estonia 2012 2014 5 EUROSTAT
Finland 2012 2014 2 EUROSTAT
France 2012 2014 22  EUROSTAT
Georgia 2009 2011 9  National Statistics Office of Georgia
Germany 2012 2014 16 EUROSTAT
Greece 2012 2014 13 EUROSTAT
Hungary 2012 2014 3 EUROSTAT
India 2011 2013 32 Central Statistics Office
Indonesia 2009 2011 31 INDO-DAPOER
Iran, Islamic Republic of 2014 2014 28  Iran Statistical Yearbook 1389
Ireland 2012 2014 2 EUROSTAT
Italy 2012 2014 20 EUROSTAT
Japan 2009 2011 47  Cabinet Office Government of Japan
Kazakhstan 2010 2012 15  Agency of Statistics of the Republic of Kazakhstan
Kenya 2017 2017 48  Kenya National Bureau of Statistics and World Bank
Korea, Republic of 2009 2011 15 Korean Statistical Information Services
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Table B7. Continued.

Country First Last Number of Source
year  year regions
Latvia 2012 2014 6 EUROSTAT
Lithuania 2012 2014 10 EUROSTAT
Malaysia 2010 2012 16  Department of Statistics Malaysia
Mali 2009 2009 9  Cellule d’ Analyse et de Prospective
Malta 2012 2014 2 EUROSTAT
Mexico 2009 2011 32 Instituto Nacional de Estadistica y Geograffa
Mongolia 2015 2017 23 Mongolian Statistical Information Service
Morocco 2005 2007 7  Ministry of Finance
Nepal 2019 2019 7  Central Bureau of Statistics Nepal
Netherlands 2012 2014 12 EUROSTAT
New Zealand 2009 2011 14 Statistics New Zealand
North Macedonia 2012 2014 8 EUROSTAT
Norway 2012 2014 19 EUROSTAT
Panama 2009 2011 9 Instituto Nacional de Estadistica y Censo
Peru 2009 2011 25 Instituto Nacional de Estadistica e informatica
Philippines 2009 2011 17  Philippine Statistics Authority
Poland 2012 2014 15 EUROSTAT
Romania 2012 2014 4  EUROSTAT
Russian Federation 2009 2011 82  Mordoviastat: Federal Service of State Statistics
Slovak Republic 2012 2014 4 EUROSTAT
Slovenia 2012 2014 2 EUROSTAT
South Africa 2009 2011 9  Statistics South Africa
Spain 2012 2014 19 EUROSTAT
Sri Lanka 2009 2011 9  Economic and Social Statistics of Sri Lanka
Sweden 2012 2014 3 EUROSTAT
Switzerland 2009 2011 25  Federal Statistical Office of Switzerland
Thailand 2009 2011 76  Office of the National Economic and Social Development Board
Tiirkiye 2009 2011 81  Turkish Statistical Institute
Ukraine 2010 2012 25  State Statistics Service of Ukraine
United Kingdom 2012 2014 4 EUROSTAT
United States 2009 2011 51 Bureau of Economic Analysis
Uruguay 2008 2008 19 Instituto Nacional de Estadistica
Vietnam 2009 2011 64  General Statistics Office of Viet Nam
Zambia 2015 2015 9  Central Statistics Office of Zambia
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Table B8. Share of priors in territory.

Country Crop Livestock Timber Non-timber  Fish
Afghanistan 0.785 0.210 0.004 0.001 0.000
Albania 0.442 0.507 0.001 0.045 0.004
Algeria 0.638 0.344 0.012 0.000 0.006
Andorra 0.002 0.241 0.671 0.085 0.001
Angola 0.976 0.012 0.003 0.002 0.007
Antigua and Barbuda 0.461 0.539 0.000 0.000 0.000
Argentina 0.577 0.364 0.037 0.010 0.012
Armenia 0.538 0.455 0.000 0.003 0.004
Australia 0.422 0.391 0.164 0.001 0.022
Austria 0.225 0.315 0.449 0.010 0.001
Azerbaijan 0.644 0.354 0.001 0.001 0.000
Bahamas, The 0.568 0.350 0.069 0.014 0.000
Bahrain 0.100 0.092 0.020 0.000 0.788
Bangladesh 0.692 0.088 0.057 0.001 0.162
Barbados 0.341 0.280 0.379 0.000 0.000
Belarus 0.527 0.439 0.018 0.014 0.002
Belgium 0.324 0.455 0.202 0.006 0.013
Belize 0.433 0.185 0.018 0.357 0.007
Benin 0.941 0.010 0.031 0.001 0.016
Bermuda (UK) 0.505 0.000 0.495 0.000 0.000
Bhutan 0.584 0.190 0.187 0.036 0.003
Bolivia 0.487 0.316 0.002 0.187 0.009
Bosnia and Herzegovina 0.545 0.293 0.012 0.138 0.012
Botswana 0.209 0.402 0.388 0.001 0.000
Brazil 0.514 0.372 0.077 0.029 0.008
British Virgin Islands (UK)  0.237 0.763 0.000 0.000 0.000
Brunei Darussalam 0.524 0.362 0.092 0.001 0.021
Bulgaria 0.608 0.293 0.034 0.058 0.007
Burkina Faso 0.623 0.266 0.098 0.000 0.013
Burundi 0.852 0.095 0.019 0.008 0.026
Cabo Verde 0.957 0.000 0.043 0.000 0.000
Cambodia 0.716 0.119 0.045 0.007 0.114
Cameroon 0.788 0.116 0.068 0.004 0.023
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Table B8. Continued.

Country Crop Livestock Timber Non-timber  Fish
Canada 0.359 0.264 0.337 0.014 0.026
Cayman Islands (UK) 0.646 0.354 0.000 0.000 0.000
Central African Republic 0.577 0.339 0.024 0.057 0.003
Chad 0.549 0.436 0.013 0.002 0.000
Chile 0.258 0.142 0.233 0.014 0.354
China 0.565 0.276 0.093 0.001 0.065
Colombia 0.507 0.368 0.001 0.101 0.023
Comoros 0.000 0.207 0.720 0.073 0.000
Congo, Democratic Republic of  0.707 0.051 0.004 0.084 0.154
Congo, Republic of 0.732 0.181 0.056 0.001 0.030
Costa Rica 0.747 0.155 0.030 0.054 0.014
Cote d’Ivoire 0.867 0.086 0.045 0.000 0.002
Croatia 0.484 0.283 0.194 0.031 0.008
Cuba 0.896 0.056 0.000 0.046 0.002
Cyprus 0.344 0.539 0.096 0.000 0.020
Czech Republic 0.277 0.323 0.367 0.026 0.007
Denmark 0.126 0.306 0.061 0.002 0.506
Djibouti 0.199 0.801 0.000 0.000 0.000
Dominica 0.701 0.106 0.000 0.193 0.000
Dominican Republic 0.607 0.282 0.000 0.105 0.006
Ecuador 0.423 0.292 0.076 0.070 0.139
Egypt, Arab Republic of 0.567 0.367 0.011 0.000 0.055
El Salvador 0.892 0.075 0.008 0.024 0.002
Equatorial Guinea 0.544 0.109 0.320 0.006 0.021
Eritrea 0.363 0.636 0.001 0.000 0.000
Estonia 0.226 0.339 0.375 0.031 0.028
Ethiopia 0.604 0.331 0.060 0.002 0.003
Fiji 0.458 0.335 0.153 0.040 0.014
Finland 0.090 0.175 0.692 0.009 0.033
France 0.476 0.350 0.157 0.005 0.012
Gabon 0.348 0.082 0.508 0.001 0.061
Gambia, The 0.605 0.374 0.019 0.000 0.001
Georgia 0.441 0.509 0.030 0.019 0.001
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Table B8. Continued.
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Country Crop Livestock Timber Non-timber  Fish
Germany 0.254 0.417 0.307 0.016 0.006
Ghana 0.829 0.054 0.094 0.000 0.023
Gibraltar (UK) 0.011 0.013 0.004 0.000 0.972
Greece 0.711 0.216 0.046 0.007 0.020
Grenada 0.723 0.247 0.030 0.000 0.000
Guatemala 0.642 0.108 0.002 0.245 0.003
Guinea 0.747 0.141 0.079 0.023 0.011
Guinea-Bissau 0.559 0.414 0.024 0.002 0.001
Guyana 0.696 0.031 0.007 0.257 0.009
Haiti 0.794 0.123 0.000 0.082 0.000
Honduras 0.491 0.205 0.002 0.293 0.010
Hong Kong (SAR, China) 0.000 0.280 0.674 0.000 0.046
Hungary 0.537 0.335 0.111 0.010 0.006
Iceland 0.006 0.068 0.009 0.000 0.916
India 0.683 0.219 0.073 0.001 0.024
Indonesia 0.658 0.158 0.109 0.003 0.073
Iran, Islamic Republic of 0.605 0.364 0.021 0.000 0.011
Iraq 0.564 0.411 0.003 0.000 0.023
Ireland 0.091 0.787 0.093 0.000 0.028
Israel 0.523 0.395 0.074 0.000 0.009
Italy 0.463 0.310 0.207 0.006 0.014
Jamaica 0.866 0.059 0.000 0.066 0.008
Japan 0.430 0.244 0.259 0.001 0.065
Jordan 0.434 0.485 0.075 0.000 0.005
Kazakhstan 0.500 0.485 0.012 0.000 0.003
Kenya 0.555 0.380 0.031 0.001 0.033
Kiribati 0.000 0.034 0.000 0.000 0.966
Korea, Democratic People’s Republic of  0.635 0.174 0.036 0.143 0.012
Korea, Republic of 0.500 0.241 0.156 0.001 0.102
Kosovo 0.631 0.315 0.024 0.029 0.002
Kuwait 0.263 0.426 0.291 0.000 0.020
Kyrgyz Republic 0.467 0.529 0.002 0.001 0.000
Lao People’s Democratic Republic 0.735 0.164 0.046 0.017 0.038
Latvia 0.228 0.215 0.497 0.035 0.024
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Country Crop Livestock Timber Non-timber  Fish
Lebanon 0.667 0.257 0.072 0.000 0.003
Lesotho 0.303 0.597 0.092 0.007 0.001
Liberia 0.663 0.086 0.203 0.043 0.005
Libya 0.579 0.278 0.026 0.000 0.118
Liechtenstein 0.013 0.318 0.631 0.038 0.000
Lithuania 0.385 0.353 0.202 0.033 0.027
Luxembourg 0.161 0.493 0.338 0.008 0.000
Macedonia, FYR 0.681 0.255 0.002 0.061 0.001
Madagascar 0.498 0.431 0.055 0.005 0.011
Malawi 0.877 0.080 0.005 0.003 0.036
Malaysia 0.672 0.143 0.162 0.001 0.023
Maldives 0.982 0.018 0.000 0.000 0.000
Mali 0.440 0.452 0.059 0.000 0.049
Malta 0.374 0.482 0.069 0.000 0.075
Mauritania 0.226 0.771 0.003 0.000 0.001
Mauritius 0.858 0.000 0.077 0.000 0.065
Mexico 0.433 0.404 0.057 0.072 0.034
Micronesia, Federated States of  0.962 0.038 0.000 0.000 0.000
Moldova 0.630 0.319 0.001 0.045 0.005
Monaco 0.024 0.024 0.903 0.046 0.003
Mongolia 0.230 0.739 0.027 0.001 0.003
Montenegro 0.566 0.249 0.001 0.179 0.004
Montserrat (UK) 0.247 0.753 0.000 0.000 0.000
Morocco 0.615 0.351 0.022 0.000 0.012
Mozambique 0.645 0.279 0.048 0.022 0.005
Myanmar 0.805 0.108 0.016 0.010 0.061
Namibia 0.374 0.511 0.020 0.000 0.095
Nepal 0.733 0.232 0.004 0.020 0.011
Netherlands 0.257 0.547 0.147 0.004 0.045
New Caledonia (France) 0.208 0.429 0.267 0.095 0.000
New Zealand 0.124 0.671 0.157 0.000 0.048
Nicaragua 0.526 0.275 0.001 0.194 0.003
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Country Crop Livestock Timber Non-timber  Fish
Niger 0.657 0.306 0.025 0.000 0.012
Nigeria 0.865 0.094 0.015 0.001 0.026
Norway 0.087 0.292 0.229 0.008 0.383
Oman 0.575 0.290 0.135 0.000 0.000
Pakistan 0.477 0.485 0.027 0.000 0.011
Panama 0.211 0.414 0.001 0.047 0.327
Papua New Guinea 0.443 0.158 0.042 0.033 0.325
Paraguay 0.602 0.313 0.010 0.074 0.001
Peru 0.369 0.253 0.029 0.037 0.312
Philippines 0.492 0.230 0.009 0.003 0.266
Poland 0.368 0.406 0.190 0.027 0.008
Portugal 0.392 0.273 0.280 0.012 0.042
Puerto Rico (US) 0.324 0.542 0.050 0.084 0.000
Qatar 0.229 0.445 0.326 0.000 0.000
Romania 0.540 0.329 0.113 0.017 0.001
Russian Federation 0.378 0.394 0.086 0.019 0.122
Rwanda 0.894 0.069 0.029 0.003 0.004
Saint Kitts and Nevis 0.703 0.297 0.000 0.000 0.000
Saint Lucia 0.552 0.255 0.000 0.193 0.000
Saint Vincent and the Grenadines  0.642 0.239 0.000 0.119 0.000
San Marino 0.776 0.185 0.036 0.003 0.000
Sdo Tomé and Principe 0.935 0.065 0.000 0.000 0.000
Saudi Arabia 0.548 0.406 0.039 0.000 0.007
Senegal 0.756 0.084 0.085 0.000 0.074
Serbia 0.649 0.291 0.015 0.040 0.005
Seychelles 0.922 0.078 0.000 0.000 0.000
Sierra Leone 0.785 0.042 0.137 0.007 0.030
Singapore 0.072 0.145 0.607 0.000 0.176
Slovak Republic 0.289 0.228 0.453 0.029 0.001
Slovenia 0.230 0.346 0.390 0.030 0.004
Solomon Islands 0.586 0.018 0.285 0.112 0.000
Somalia 0.113 0.872 0.008 0.007 0.000
South Africa 0.417 0.375 0.152 0.000 0.057
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Country Crop Livestock Timber Non-timber  Fish
South Sudan 0.873 0.112 0.007 0.000 0.008
Spain 0.531 0.247 0.152 0.006 0.064
Sri Lanka 0.758 0.100 0.071 0.020 0.052
Sudan 0.419 0.562 0.000 0.000 0.019
Suriname 0.534 0.255 0.072 0.115 0.023
Swaziland 0.618 0.115 0.265 0.002 0.001
Sweden 0.094 0.150 0.740 0.014 0.002
Switzerland 0.182 0.401 0.410 0.007 0.000
Syrian Arab Republic 0.594 0.374 0.020 0.001 0.012
Tajikistan 0.791 0.206 0.002 0.000 0.001
Tanzania 0.798 0.038 0.051 0.006 0.106
Thailand 0.744 0.165 0.062 0.001 0.028
Timor-Leste 0.661 0.237 0.006 0.006 0.089
Togo 0.657 0.310 0.021 0.004 0.008
Tonga 0.588 0.000 0.412 0.000 0.000
Trinidad and Tobago 0.306 0.550 0.073 0.070 0.000
Tunisia 0.572 0.336 0.059 0.000 0.033
Tiirkiye 0.656 0.284 0.053 0.001 0.007
Turkmenistan 0.451 0.547 0.000 0.000 0.001
Uganda 0.637 0.090 0.086 0.002 0.185
Ukraine 0.671 0.287 0.005 0.032 0.005
United Arab Emirates 0.504 0.298 0.197 0.000 0.000
United Kingdom 0.285 0.437 0.235 0.004 0.040
United States 0.454 0.302 0.207 0.014 0.023
United States 0.954 0.036 0.000 0.000 0.010
Uruguay 0.239 0.295 0.076 0.003 0.388
Uzbekistan 0.758 0.240 0.001 0.000 0.001
Vanuatu 0.912 0.035 0.020 0.032 0.000
Vatican City 0.366 0.234 0.000 0.397 0.003
Venezuela, Bolivarian Republic of  0.569 0.364 0.015 0.028 0.025
Vietnam 0.599 0.259 0.044 0.003 0.095
West Bank and Gaza 0.231 0.752 0.015 0.000 0.002
Yemen, Republic of 0.516 0.472 0.012 0.000 0.000
Zambia 0.517 0.169 0.233 0.006 0.075
Zimbabwe 0.517 0.351 0.105 0.013 0.013
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