Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-955-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-955-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Greenland Firn Compaction Verification and Reconnaissance (FirnCover) dataset, 2013–2019
Michael J. MacFerrin
CORRESPONDING AUTHOR
Cooperative Institute for Research in Environmental Sciences (CIRES),
University of Colorado Boulder, Boulder, CO, USA
C. Max Stevens
Department of Earth and Space Sciences, University of Washington,
Seattle, WA, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland,
College Park, MD, USA
Baptiste Vandecrux
Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Edwin D. Waddington
Department of Earth and Space Sciences, University of Washington,
Seattle, WA, USA
Waleed Abdalati
Cooperative Institute for Research in Environmental Sciences (CIRES),
University of Colorado Boulder, Boulder, CO, USA
Related authors
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025, https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary
Short summary
Here we present Earth TOPOgraphy (ETOPO) 2022, the latest iteration of NOAA's global seamless topographic–bathymetric dataset. ETOPO 2022 is a significant upgrade regarding resolution and accuracy from previous ETOPO releases and is freely available in multiple data formats and resolutions for all uses (public or private), excepting navigation.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
The Cryosphere, 19, 3655–3680, https://doi.org/10.5194/tc-19-3655-2025, https://doi.org/10.5194/tc-19-3655-2025, 2025
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) are increasing with an increase in extreme melt events and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
Josephine Yolanda Lindsey-Clark, Aslak Grinsted, Baptiste Vandecrux, and Christine Schøtt Hvidberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-2516, https://doi.org/10.5194/egusphere-2025-2516, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present a new method to improve estimates of snowfall across Greenland, a crucial factor in predicting sea-level rise. Current climate models often misrepresent snowfall patterns, resulting in significant long-term errors. By using two million observations, our method corrects model errors and produces more accurate snowfall maps. The improved maps can help to reduce uncertainty in sea-level rise projections and enhance understanding of Greenland’s proximity to critical melting thresholds.
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025, https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary
Short summary
Here we present Earth TOPOgraphy (ETOPO) 2022, the latest iteration of NOAA's global seamless topographic–bathymetric dataset. ETOPO 2022 is a significant upgrade regarding resolution and accuracy from previous ETOPO releases and is freely available in multiple data formats and resolutions for all uses (public or private), excepting navigation.
Alamgir Hossan, Andreas Colliander, Baptiste Vandecrux, Nicole-Jeanne Schlegel, Joel Harper, Shawn Marshall, and Julie Z. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2024-2563, https://doi.org/10.5194/egusphere-2024-2563, 2024
Short summary
Short summary
We used L-band observations from the SMAP mission to quantify the surface and subsurface liquid water amounts (LWA) in the percolation zone of the Greenland ice sheet. The algorithm is described, and the validation results are provided. The results demonstrate the potential for creating an LWA data product across GrIS, which will advance our understanding of ice sheet physical processes for better projection of Greenland’s contribution to global sea level rise.
Marissa E. Dattler, Brooke Medley, and C. Max Stevens
The Cryosphere, 18, 3613–3631, https://doi.org/10.5194/tc-18-3613-2024, https://doi.org/10.5194/tc-18-3613-2024, 2024
Short summary
Short summary
We developed an algorithm based on combining models and satellite observations to identify the presence of surface melt on the Antarctic Ice Sheet. We find that this method works similarly to previous methods by assessing 13 sites and the Larsen C ice shelf. Unlike previous methods, this algorithm is based on physical parameters, and updates to this method could allow the meltwater present on the Antarctic Ice Sheet to be quantified instead of simply detected.
Anja Rutishauser, Kirk M. Scanlan, Baptiste Vandecrux, Nanna B. Karlsson, Nicolas Jullien, Andreas P. Ahlstrøm, Robert S. Fausto, and Penelope How
The Cryosphere, 18, 2455–2472, https://doi.org/10.5194/tc-18-2455-2024, https://doi.org/10.5194/tc-18-2455-2024, 2024
Short summary
Short summary
The Greenland Ice Sheet interior is covered by a layer of firn, which is important for surface meltwater runoff and contributions to global sea-level rise. Here, we combine airborne radar sounding and laser altimetry measurements to delineate vertically homogeneous and heterogeneous firn. Our results reveal changes in firn between 2011–2019, aligning well with known climatic events. This approach can be used to outline firn areas primed for significantly changing future meltwater runoff.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Tyler J. Fudge, Raphael Sauvage, Linh Vu, Benjamin H. Hills, Mirko Severi, and Edwin D. Waddington
Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024, https://doi.org/10.5194/cp-20-297-2024, 2024
Short summary
Short summary
We use the oldest Antarctic ice core to estimate the rate of diffusion of sulfuric acid. Sulfuric acid is a marker of past volcanic activity and is critical in developing ice core timescales. The rate of diffusion is uncertain and is important to know, both for selecting future ice core locations and interpreting ice core records. We find the effective diffusivity of sulfate is 10 times smaller than previously estimated, indicating that the sulfuric acid signals will persist for longer.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Brooke Medley, Thomas A. Neumann, H. Jay Zwally, Benjamin E. Smith, and C. Max Stevens
The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022, https://doi.org/10.5194/tc-16-3971-2022, 2022
Short summary
Short summary
Satellite altimeters measure the height or volume change over Earth's ice sheets, but in order to understand how that change translates into ice mass, we must account for various processes at the surface. Specifically, snowfall events generate large, transient increases in surface height, yet snow fall has a relatively low density, which means much of that height change is composed of air. This air signal must be removed from the observed height changes before we can assess ice mass change.
Nicolaj Hansen, Peter L. Langen, Fredrik Boberg, Rene Forsberg, Sebastian B. Simonsen, Peter Thejll, Baptiste Vandecrux, and Ruth Mottram
The Cryosphere, 15, 4315–4333, https://doi.org/10.5194/tc-15-4315-2021, https://doi.org/10.5194/tc-15-4315-2021, 2021
Short summary
Short summary
We have used computer models to estimate the Antarctic surface mass balance (SMB) from 1980 to 2017. Our estimates lies between 2473.5 ± 114.4 Gt per year and 2564.8 ± 113.7 Gt per year. To evaluate our models, we compared the modelled snow temperatures and densities to in situ measurements. We also investigated the spatial distribution of the SMB. It is very important to have estimates of the Antarctic SMB because then it is easier to understand global sea level changes.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Short summary
In the vast interior of the Greenland ice sheet, snow accumulates into a thick and porous layer called firn. Each summer, the firn retains part of the meltwater generated at the surface and buffers sea-level rise. In this study, we compare nine firn models traditionally used to quantify this retention at four sites and evaluate their performance against a set of in situ observations. We highlight limitations of certain model designs and give perspectives for future model development.
C. Max Stevens, Vincent Verjans, Jessica M. D. Lundin, Emma C. Kahle, Annika N. Horlings, Brita I. Horlings, and Edwin D. Waddington
Geosci. Model Dev., 13, 4355–4377, https://doi.org/10.5194/gmd-13-4355-2020, https://doi.org/10.5194/gmd-13-4355-2020, 2020
Short summary
Short summary
Understanding processes in snow (firn), including compaction and airflow, is important for calculating how much mass the ice sheets are losing and for interpreting climate records from ice cores. We have developed the open-source Community Firn Model to simulate these processes. We used it to compare 13 different firn compaction equations and found that they do not agree within 10 %. We also show that including firn compaction in a firn-air model improves the match with data from ice cores.
Vincent Verjans, Amber A. Leeson, Christopher Nemeth, C. Max Stevens, Peter Kuipers Munneke, Brice Noël, and Jan Melchior van Wessem
The Cryosphere, 14, 3017–3032, https://doi.org/10.5194/tc-14-3017-2020, https://doi.org/10.5194/tc-14-3017-2020, 2020
Short summary
Short summary
Ice sheets are covered by a firn layer, which is the transition stage between fresh snow and ice. Accurate modelling of firn density properties is important in many glaciological aspects. Current models show disagreements, are mostly calibrated to match specific observations of firn density and lack thorough uncertainty analysis. We use a novel calibration method for firn models based on a Bayesian statistical framework, which results in improved model accuracy and in uncertainty evaluation.
Cited articles
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E.
R.: In situ measurements of Antarctic snow compaction compared with
predictions of models, J. Geophys. Res.-Earth Surf., 115, F03011,
https://doi.org/10.1029/2009JF001306, 2010.
Bader, H.: Sorge's Law of Densification of Snow on High Polar Glaciers, J.
Glaciol., 2, 319–323, https://doi.org/10.3189/s0022143000025144,
1954.
Benson, C. S.: Stratigraphic studies in the snow and firn of the Greenland
Ice Sheet, U.S. Snow, Ice and Permafrost Research Establishment, Research
Report 70, 1962.
Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L. S., Stroeve, J. C.,
Rogers, J. C., Steffen, K., Haran, T., and Wang, S. H.: Greenland ice sheet
surface mass balance variability (1988–2004) from calibrated polar MM5
output, J. Climate, 19, 2783–2800,
https://doi.org/10.1175/JCLI3738.1, 2006.
Braithwaite, R. J., Laternser, M., and Pfeffer, W. T.: Variations of
near-surface firn density in the lower accumulation area of the Greenland
ice sheet, Pakitsoq, West Greenland, J. Glaciol., 40, 477–485,
https://doi.org/10.1017/S002214300001234X, 1994.
Brown, J., Bradford, J., Harper, J., Pfeffer, W. T., Humphrey, N., and
Mosley-Thompson, E.: Georadar-derived estimates of firn density in the
percolation zone, western Greenland ice sheet, J. Geophys. Res.-Earth Surf.,
117, 1–14, https://doi.org/10.1029/2011JF002089, 2012.
Csatho, B. M., Schenk, A. F., van der Veen, C. J., Babonis, G., Duncan, K.,
Rezvanbehbahani, S., van den Broeke, M. R., Simonsen, S. B., Nagarajan, S.,
and van Angelen, J. H.: Laser altimetry reveals complex pattern of Greenland
Ice Sheet dynamics, P. Natl. Acad. Sci. USA, 111, 18478–18483,
https://doi.org/10.1073/pnas.1411680112, 2014.
Fausto, R. S., van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., Andersen, S. B., Colgan, W., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., Nielsen, S., Pedersen, A. Ø., Shields, C. L., Solgaard, A. M., and Box, J. E.: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, 2021.
Goujon, C., Barnola, J. M., and Ritz, C.: Modelling the densification of
polar firn including heat diffusion: Application to close-off
characteristics and gas isotopic fractionation for Antarctica and Greenland
sites, J. Geophys. Res.-Atmos., 108, 4792,
https://doi.org/10.1029/2002JD003319, 2003.
Hamilton, G. S. and Whillans, I. M.: Local rates of ice-sheet thickness
change in Greenland, Ann. Glaciol., 35, 79–83,
https://doi.org/10.3189/172756402781817383, 2002.
Hamilton, G. S., Whillans, I. M., and Morgan, P. J.: First point measurements
of ice-sheet thickness change in Antarctica, Ann. Glaciol., 27, 125–129,
https://doi.org/10.3189/1998AoG27-1-125-129, 1998.
Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J., and Fettweis, X.:
Greenland ice-sheet contribution to sea-level rise buffered by meltwater
storage in firn, Nature, 491, 240–243, https://doi.org/10.1038/nature11566,
2012.
Heilig, A., Eisen, O., MacFerrin, M., Tedesco, M., and Fettweis, X.: Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling, The Cryosphere, 12, 1851–1866, https://doi.org/10.5194/tc-12-1851-2018, 2018.
Heilig, A., Eisen, O., Schneebeli, M., MacFerrin, M., Stevens, C. M., Vandecrux, B., and Steffen, K.: Relating regional and point measurements of accumulation in southwest Greenland, The Cryosphere, 14, 385–402, https://doi.org/10.5194/tc-14-385-2020, 2020.
Herron, M. M. and Langway, C. C.: Firn densification: an empirical model,
J. Glaciol., 25, 373–385,
https://doi.org/10.1017/S0022143000015239, 1980.
Horlings, A. N., Christianson, K., Holschuh, N., Stevens, C. M., and Waddington,
E. D.: Effect of horizontal divergence on estimates of firn-air content, J.
Glaciol., 67, 287–296, https://doi.org/10.1017/jog.2020.105, 2021.
Howat, I. M., Negrete, A., and Smith, B. E.: The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, 2014.
Hubbard, B., Philippe, M., Pattyn, F., Drews, R., Young, T. J., Bruyninx, C.,
Bergeot, N., Fjøsne, K., and Tison, J. L.: High-resolution distributed
vertical strain and velocity from repeat borehole logging by optical
televiewer: Derwael Ice Rise, Antarctica, J. Glaciol., 66, 523–529,
https://doi.org/10.1017/jog.2020.18, 2020.
Hulbe, C. L. and Whillans, I. M.: Evaluation of strain rates on Ice Stream B,
Antarctica, obtained using GPS phase measurements, Ann. Glaciol., 20,
254–262, https://doi.org/10.3189/1994AoG20-1-254-262, 1994.
Humphrey, N. F., Harper, J. T., and Pfeffer, W. T.: Thermal tracking of
meltwater retention in Greenland's accumulation area, J. Geophys. Res., 117,
F01010, https://doi.org/10.1029/2011JF002083, 2012.
IPCC: Climate Change 2013: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G. K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324, 2013.
Joughin, I., Smith, B., Howat, I., and Scambos, T.: MEaSUREs Multi-year
Greenland Ice Sheet Velocity Mosaic, Version 1,
Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed
Active Archive Center, https://doi.org/10.5067/QUA5Q9SVMSJG, 2016.
Koenig, L. and Montgomery, L.: Surface Mass Balance and Snow Depth on Sea
Ice Working Group (SUMup) snow density subdataset, Greenland and Antartica,
1950–2018, Arctic Data Center [data set], https://doi.org/10.18739/A26D5PB2S, 2019.
Kuipers Munneke, P., Ligtenberg, S. R. M., Noël, B. P. Y., Howat, I. M., Box, J. E., Mosley-Thompson, E., McConnell, J. R., Steffen, K., Harper, J. T., Das, S. B., and van den Broeke, M. R.: Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014, The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, 2015.
Li, J. and Zwally, H. J.: Response times of ice-sheet surface heights to
changes in the rate of Antarctic firn compaction caused by accumulation and
temperature variations, J. Glaciol., 61, 1037–1047,
https://doi.org/10.3189/2015JoG14J182, 2015.
Ligtenberg, S. R. M., Helsen, M. M., and van den Broeke, M. R.: An improved semi-empirical model for the densification of Antarctic firn, The Cryosphere, 5, 809–819, https://doi.org/10.5194/tc-5-809-2011, 2011.
Lundin, J. M. D., Stevens, C. M., Arthern, R., Buizert, C., Orsi, A., Ligtenberg, S. R. M., Simonsen, S. B., Cummings, E., Essery, R., Leahy, W., Harris, P., Helsen, M. M., and Waddington, E. D.: Firn Model Intercomparison Experiment (FirnMICE), J. Glaciol., 63, 401–422, https://doi.org/10.1017/jog.2016.114, 2017.
MacFerrin, M., Machguth, H., van As, D., Charalampidis, C., Stevens, C. M.,
Heilig, A., Vandecrux, B., Langen, P. L., Mottram, R., Fettweis, X., van den Broeke,
M. R., Pfeffer, W. T., Moussavi, M. S., and Abdalati, W.: Rapid
expansion of Greenland's low-permeability ice slabs, Nature, 573,
403–407, https://doi.org/10.1038/s41586-019-1550-3, 2019.
MacFerrin, M., Stevens, C. M., and Vandecrux, B.: The Greenland Firn Compaction
Verification and Reconnaissance (FirnCover) Dataset, 2013–2019, Arctic Data
Center [data set], https://doi.org/10.18739/A25X25D7M, 2021.
Machguth, H., Macferrin, M., Van As, D., Box, J. E., Charalampidis, C.,
Colgan, W., Fausto, R. S., Meijer, H. A. J., Mosley-Thompson, E., and Van De
Wal, R. S. W.: Greenland meltwater storage in firn limited by near-surface
ice formation, Nat. Clim. Chang., 6, 390–393,
https://doi.org/10.1038/nclimate2899, 2016.
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K.,
Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de
Berg, W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert,
L.: A high-resolution record of Greenland mass balance, Geophys. Res. Lett.,
43, 7002–7010, https://doi.org/10.1002/2016GL069666, 2016.
Miller, N. B., Shupe, M. D., Cox, C. J., Noone, D., Persson, P. O. G., and Steffen, K.: Surface energy budget responses to radiative forcing at Summit, Greenland, The Cryosphere, 11, 497–516, https://doi.org/10.5194/tc-11-497-2017, 2017.
Montgomery, L., Koenig, L., and Alexander, P.: The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland, Earth Syst. Sci. Data, 10, 1959–1985, https://doi.org/10.5194/essd-10-1959-2018, 2018.
Morris, E. M. and Wingham, D. J.: Densification of polar snow: Measurements,
modeling, and implications for altimetry, J. Geophys. Res.-Earth Surf.,
119, 349–365, https://doi.org/10.1002/2013JF002898, 2014.
Mottram, R., Simonsen, S. B., Svendsen, S. H., Barletta, V. R., Sørensen,
L. S., Nagler, T., Wuite, J., Groh, A., Horwath, M., Rosier, J., Solgaard,
A., Hvidberg, C. S., and Forsberg, R.: An Integrated View of Greenland Ice
Sheet Mass Changes Based on Models and Satellite Observations, Remote Sens.,
11, 1–26, https://doi.org/10.3390/rs11121407, 2019.
Pfeffer, W. T. and Humphrey, N. F.: Determination of timing and location of
water movement and ice-layer formation by temperature measurements in
sub-freezing snow, J. Glaciol., 42, 292–304,
https://doi.org/10.3189/S0022143000004159, 1996.
Pfeffer, W. T., Meier, M. F., and Illangasekare, T. H.: Retention of
Greenland runoff by refreezing: implications for projected future sea level
change, J. Geophys. Res., 96, 22117, https://doi.org/10.1029/91jc02502,
1991.
Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013.
Reeh, N.: A nonsteady-state firn-densification model for the percolation
zone of a glacier, J. Geophys. Res.-Earth Surf., 113, F03023,
https://doi.org/10.1029/2007JF000746, 2008.
Samimi, S., Marshall, S. J., and MacFerrin, M.: Meltwater penetration
through temperate ice layers in the percolation zone at DYE-2, Greenland Ice
Sheet, Geophys. Res. Lett., 47, e2020GL089211,
https://doi.org/10.1029/2020GL089211, 2020.
Schwander, J. and Stauffer, B.: Age difference between polar ice and the air
trapped in its bubbles, Nature, 311, 45–47,
https://doi.org/10.1038/311045a0, 1984.
Schwander, J., Sowers, T., Barnola, J. M., Blunier, T., Fuchs, A., and
Malaizé, B.: Age scale of the air in the summit ice: Implication for
glacial-interglacial temperature change, J. Geophys. Res.-Atmos., 102,
19483–19493, https://doi.org/10.1029/97jd01309, 1997.
Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J.,
Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N.,
Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li,
J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., McMillan, M.,
Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J. P., Paden, J.,
Payne, A. J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L. S.,
Scambos, T. A., Scheuchl, B., Schrama, E. J. O., Smith, B., Sundal, A. V.,
Van Angelen, J. H., Van De Berg, W. J., Van Den Broeke, M. R., Vaughan, D.
G., Velicogna, I., Wahr, J., Whitehouse, P. L., Wingham, D. J., Yi, D.,
Young, D., and Zwally, H. J.: A reconciled estimate of ice-sheet mass
balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo
Nicholas Holschuh, F. S., Adusumilli, S., Brunt, K., Csatho, B., Harbeck,
K., Markus, T., Neumann, T., Siegfried, M. R., and Jay Zwally, H.: Pervasive
ice sheet mass loss reflects competing ocean and atmosphere processes,
Science, 368, 1239–1242,
https://doi.org/10.1126/science.aaz5845, 2020.
Steffen, C., Box, J., and Abdalati, W.: Greenland Climate Network: GC-Net,
CRREL Special Report on Glaciers, Ice Sheets and Volcanoes, tribute to M.
Meier, 96, 98–103, 1996.
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Adalgeirsdottir, G., Forsberg, R., and Hvidberg, C. S.: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density, The Cryosphere, 5, 173–186, https://doi.org/10.5194/tc-5-173-2011, 2011.
Vandecrux, B., Fausto, R. S., Langen, P. L., van As, D., MacFerrin, M.,
Colgan, W. T., Ingeman-Nielsen, T., Steffen, K., Jensen, N. S., Møller,
M. T., and Box, J. E.: Drivers of Firn Density on the Greenland Ice Sheet
Revealed by Weather Station Observations and Modeling, J. Geophys. Res.-Earth Surf., 123, 2563–2576, https://doi.org/10.1029/2017JF004597,
2018.
Vandecrux, B., MacFerrin, M., Machguth, H., Colgan, W. T., van As, D., Heilig, A., Stevens, C. M., Charalampidis, C., Fausto, R. S., Morris, E. M., Mosley-Thompson, E., Koenig, L., Montgomery, L. N., Miège, C., Simonsen, S. B., Ingeman-Nielsen, T., and Box, J. E.: Firn data compilation reveals widespread decrease of firn air content in western Greenland, The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019, 2019.
Vandecrux, B., Fausto, R. S., Van As, D., Colgan, W., Langen, P. L.,
Haubner, K., Ingeman-Nielsen, T., Heilig, A., Stevens, C. M., MacFerrin, M.,
Niwano, M., Steffen, K., and Box, J. E.: Firn cold content evolution at nine
sites on the Greenland ice sheet between 1998 and 2017, J. Glaciol.,
66, 591–602, https://doi.org/10.1017/jog.2020.30, 2020a.
Vandecrux, B., Mottram, R., Langen, P. L., Fausto, R. S., Olesen, M., Stevens, C. M., Verjans, V., Leeson, A., Ligtenberg, S., Kuipers Munneke, P., Marchenko, S., van Pelt, W., Meyer, C. R., Simonsen, S. B., Heilig, A., Samimi, S., Marshall, S., Machguth, H., MacFerrin, M., Niwano, M., Miller, O., Voss, C. I., and Box, J. E.: The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet, The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020, 2020b.
Vandecrux, B., MacFerrin, M. J., and Stevens, C. M.: FirnCover visualization
scripts (1.1), Zenodo [code], https://doi.org/10.5281/zenodo.5854253,
2022.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pohjola, V. A., Pettersson, R., and van Angelen, J. H.: Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model, The Cryosphere, 6, 641–659, https://doi.org/10.5194/tc-6-641-2012, 2012.
Velicogna, I., Sutterley, T. C., and Van Den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137,
https://doi.org/10.1002/2014GL061052, 2014.
Verjans, V., Leeson, A. A., Stevens, C. M., MacFerrin, M., Noël, B., and van den Broeke, M. R.: Development of physically based liquid water schemes for Greenland firn-densification models, The Cryosphere, 13, 1819–1842, https://doi.org/10.5194/tc-13-1819-2019, 2019.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Zwally, H. J., Li, J., Brenner, A. C., Beckley, M., Cornejo, H. G., Marzio,
J. Di, Giovinetto, M. B., Neumann, T. A., Robbins, J., Saba, J. L., Yi, D.,
and Wang, W.: Greenland ice sheet mass balance: Distribution of increased
mass loss with climate warming; 2003–07 versus 1992–2002, J. Glaciol.,
57, 88–102, https://doi.org/10.3189/002214311795306682, 2011.
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also...
Altmetrics
Final-revised paper
Preprint