Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-3947-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-3947-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Permafrost changes in the northwestern Da Xing'anling Mountains, Northeast China, in the past decade
Xiaoli Chang
School of Earth Science and Spatial Information Engineering, Hunan
University of Science and Technology, Xiangtan, Hunan 411201, China
State Key Laboratory of Frozen Soils Engineering, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou
730000, China
Huijun Jin
State Key Laboratory of Frozen Soils Engineering, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou
730000, China
School of Civil Engineering, Institute of Cold-Regions Science and
Engineering, and Northeast-China Observatory and Research-Station of
Permafrost Geo-Environment (Ministry of Education), Northeast Forestry
University, Harbin 150040, China
Ruixia He
CORRESPONDING AUTHOR
State Key Laboratory of Frozen Soils Engineering, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou
730000, China
Yanlin Zhang
School of Earth Science and Spatial Information Engineering, Hunan
University of Science and Technology, Xiangtan, Hunan 411201, China
Xiaoying Li
Key Laboratory of Sustainable Forest Ecosystem Management (Ministry of
Education) and College of Forestry, Northeast Forestry University, Harbin
150040, China
Xiaoying Jin
State Key Laboratory of Frozen Soils Engineering, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou
730000, China
State Key Laboratory of Frozen Soils Engineering, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou
730000, China
Related authors
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Shuai Huang, Xiangbing Kong, Xue Yang, Xiaoying Jin, Shanzhen Li, Lin Yang, Yaodan Zhang, Kai Gao, Hongwei Wang, Xiaoying Li, Ruixia He, Lanzhi Lü, Guodong Cheng, and Huijun Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-4544, https://doi.org/10.5194/egusphere-2025-4544, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Permafrost in Northeast China is rapidly degrading due to climate warming and land use changes, threatening ecosystems and infrastructure. We developed a physics-informed machine learning framework that integrates climate and land cover data with physical models to predict permafrost evolution. Results show that up to 97 % of near-surface permafrost may disappear by 2100 under high emissions, while forests and mountains provide partial resilience.
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Raul-David Şerban, Huijun Jin, Mihaela Şerban, Giacomo Bertoldi, Dongliang Luo, Qingfeng Wang, Qiang Ma, Ruixia He, Xiaoying Jin, Xinze Li, Jianjun Tang, and Hongwei Wang
Earth Syst. Sci. Data, 16, 1425–1446, https://doi.org/10.5194/essd-16-1425-2024, https://doi.org/10.5194/essd-16-1425-2024, 2024
Short summary
Short summary
A particular observational network for ground surface temperature (GST) has been established on the northeastern Qinghai–Tibet Plateau, covering various environmental conditions and scales. This analysis revealed the substantial influences of the land cover on the spatial variability in GST over short distances (<16 m). Improving the monitoring of GST is important for the biophysical processes at the land–atmosphere boundary and for understanding the climate change impacts on cold environments.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Cited articles
Ala-Aho, P., Autio, A., Bhattacharjee, J., Isokangas, E., Kujala, K.,
Marttila, H., Menberu, M., Meriö, L. J., Postila, H., Rauhala, A.,
Ronkanen, A. K., Rossi, P. M., Saari, M., Haghighi, A. T., and Kløve, B.:
What conditions favor the influence of seasonally frozen ground on
hydrological partitioning? A systematic review, Environ. Res.
Lett., 16, 043008, https://doi.org/10.1088/1748-9326/abe82c, 2021.
Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E., and Quinton,
W. L.: Forests on thawing permafrost: fragmentation, edge effects, and net
forest loss, Glob. Change Biol., 20, 824–834, https://doi.org/10.1111/gcb.12349, 2014.
Beer, C., Zimov, N., Olofsson, J., Porada, P., and Zimov, S.: Protection of
Permafrost Soils from Thawing by Increasing Herbivore Density, Sci.
Rep., 10, 4170, https://doi.org/10.1038/s41598-020-60938-y, 2020.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4,
2019.
Briggs, M. A., Walvoord, M. A., McKenzie, J. M., Voss, C. I., Day-Lewis, F.
D., and Lane, J. W.: New permafrost is forming around shrinking Arctic
lakes, but will it last?, Geophys. Res. Lett., 41, 1585–1592,
https://doi.org/10.1002/2014GL059251, 2014.
Brown, D. R. N., Jorgenson, M. T., Douglas, T. A., Romanovsky, V. E.,
Kielland, K., Hiemstra, C., Euskirchen, E. S., and Ruess, R. W.: Interactive
effects of wildfire and climate on permafrost degradation in Alaskan lowland
forests, J. Geophys. Res.-Biogeosc., 120, 1619–1637,
https://doi.org/10.1002/2015JG003033, 2015.
Brown, J., Hinkel, K. M., and Nelson, F. E.: The circumpolar active layer
monitoring (CALM) program: Research designs and initial results, Pol.
Geogr., 24, 166–258, https://doi.org/10.1080/10889370009377698, 2000.
Cao, B., Zhang, T., Peng, X., Mu, C., Wang, Q., Zheng, L., Wang, K., and
Zhong, X.: Thermal Characteristics and Recent Changes of Permafrost in the
Upper Reaches of the Heihe River Basin, Western China, J. Geophys. Res.-Atmos., 123, 7935–7949, https://doi.org/10.1029/2018JD028442, 2018.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Permafrost
zonation index map and statistics over the Qinghai-Tibet Plateau based on
field evidence, Permafrost Periglac., 30, 178–194,
https://doi.org/10.1002/ppp.2006, 2019.
Chang, X.: Geotemperature observation data set of Genhe River (2012–2019), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.271752, 2021.
Chen, S.-S., Zang, S., and Sun, L.: Characteristics of permafrost
degradation in Northeast China and its ecological effects: A review,
Sci. Cold Arid Reg., 12, 1–11, https://doi.org/10.3724/sp.j.1226.2020.00001,
2020.
Douglas, T. A., Hiemstra, C. A., Anderson, J. E., Barbato, R. A., Bjella, K. L., Deeb, E. J., Gelvin, A. B., Nelsen, P. E., Newman, S. D., Saari, S. P., and Wagner, A. M.: Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar, The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021, 2021.
Permafrost Subcommittee, Associate Committee on Geotechnical Research: Multi-language glossary of permafrost and related
ground-ice terms, National Snow and Ice Data Centre, Boulder, CO, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (last access: 14 January 2016), 1998
(revised 2005).
Farquharson, L. M., Romanovsky, V. E., Cable, W. L., Walker, D. A., Kokelj,
S. V., and Nicolsky, D.: Climate Change Drives Widespread and Rapid
Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic,
Geophys. Res. Lett., 46, 6681–6689, https://doi.org/10.1029/2019GL082187, 2019.
Grebenets, V. I., Tolmanov, V. A., and Streletskiy, D. A.: Active Layer
Dynamics Near Norilsk, Taimyr Peninsula, Russia, Geogr. Environ.
Sustain., 14, 55–66, https://doi.org/10.24057/2071-9388-2021-073, 2021.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Guglielmin, M.: Ground surface temperature (GST), active layer and
permafrost monitoring in continental Antarctica, Permafrost Periglac., 17, 133–143, https://doi.org/10.1002/ppp.553, 2006.
Guglielmin, M., Worland, M. R., and Cannone, N.: Spatial and temporal
variability of ground surface temperature and active layer thickness at the
margin of maritime Antarctica, Signy Island, Geomorphology, 155–156, 20–33,
https://doi.org/10.1016/j.geomorph.2011.12.016, 2012.
Guo, W., Liu, H., Anenkhonov, O. A., Shangguan, H., Sandanov, D. V.,
Korolyuk, A. Y., Hu, G., and Wu, X.: Vegetation can strongly regulate
permafrost degradation at its southern edge through changing surface
freeze-thaw processes, Agr. Forest Meteorol., 252, 10–17,
https://doi.org/10.1016/j.agrformet.2018.01.010, 2018.
He, R.-X., Jin, H.-J., Luo, D.-L., Li, X.-Y., Zhou, C.-F., Jia, N., Jin,
X.-Y., Li, X.-Y., Che, T., Yang, X., Wang, L.-Z., Li, W.-H., Wei, C.-L.,
Chang, X.-L., and Yu, S.-P.: Permafrost changes in the Nanwenghe Wetlands
Reserve on the southern slope of the Da Xing'anling-Yile'huli mountains,
Northeast China, Adv. Clim. Change Res. 12, 696–709,
https://doi.org/10.1016/j.accre.2021.06.007, 2021.
Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de
Pablo, M. Á., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I.,
Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E.,
Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin,
J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin,
N., and Miamin, V.: Active layer monitoring in Antarctica: an overview of
results from 2006 to 2015, Pol. Geogr., 44, 217–231,
https://doi.org/10.1080/1088937X.2017.1420105, 2021.
Jin, H., Li, S., Cheng, G., Shaoling, W., and Li, X.: Permafrost and
climatic change in China, Global Planet. Change, 26, 387–404,
https://doi.org/10.1016/S0921-8181(00)00051-5, 2000.
Jin, H., Yu, Q., Lü, L., Guo, D., He, R., Yu, S., Sun, G., and Li,
Y.: Degradation of permafrost in the Xing'anling Mountains, northeastern
China, Permafrost Periglac., 18, 245–258, 2007.
Jin, H., Wu, Q., and Romanovsky, V.: Degrading permafrost and its impacts,
Adv. Clim. Change Res., 12, 1–5, https://doi.org/10.1016/j.accre.2021.01.007, 2021.
Li, X., Jin, H., He, R., Huang, Y., Wang, H., Luo, D., Jin, X., Lü, L.,
Wang, L., Li, W., Wei, C., Chang, X., Yang, S., and Yu, S.: Effects of
forest fires on the permafrost environment in the northern Da Xing'anling
(Hinggan) mountains, Northeast China, Permafrost Periglac.,
30, 163–177, https://doi.org/10.1002/ppp.2001, 2019.
Li, X.-Y., Jin, H.-J., Wang, H.-W., Marchenko, S. S., Shan, W., Luo, D.-L.,
He, R.-X., Spektor, V., Huang, Y.-D., Li, X.-Y., and Jia, N.: Influences of
forest fires on the permafrost environment: A review,
Adv. Clim. Change Res., 12, 48–65, https://doi.org/10.1016/j.accre.2021.01.001, 2021.
Luo, D., Guo, D., Jin, H., Yang, S., Phillips, M. K., and Frey, B.:
Ecological Impacts of Degrading permafrost, Front. Earth Sci., 10, 967530,
https://doi.org/10.3389/feart.2022.967530, 2022.
Luo, L., Ma, W., Zhuang, Y., Zhang, Y., Yi, S., Xu, J., Long, Y., Ma, D.,
and Zhang, Z.: The impacts of climate change and human activities on alpine
vegetation and permafrost in the Qinghai-Tibet Engineering Corridor,
Ecol. Indic., 93, 24–35, https://doi.org/10.1016/j.ecolind.2018.04.067, 2018.
Mu, C., Abbott, B. W., Norris, A. J., Mu, M., Fan, C., Chen, X., Jia, L.,
Yang, R., Zhang, T., Wang, K., Peng, X., Wu, Q., Guggenberger, G., and Wu,
X.: The status and stability of permafrost carbon on the Tibetan Plateau,
Earth Sci. Rev., 211, 103433, https://doi.org/10.1016/j.earscirev.2020.103433, 2020.
Ran, Y., Li, X., and Cheng, G.: Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau, The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018, 2018.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022.
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal
state in the polar Northern Hemisphere during the international polar year
2007–2009: a synthesis, Permafrost Periglac., 21, 106–116,
https://doi.org/10.1002/ppp.689, 2010.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Schuur, E. A. G. and Mack, M. C.: Ecological Response to Permafrost Thaw and
Consequences for Local and Global Ecosystem Services, Annu. Rev.
Ecol. Evol. S., 49, 279–301,
https://doi.org/10.1146/annurev-ecolsys-121415-032349, 2018.
Serban, R., Serban, M., He, R., Jin, H., Yan, L., Xinyu, L., Wang, X., and
Li, G.: 46-Year (1973–2019) Permafrost Landscape Changes in the Hola Basin,
Northeast China Using Machine Learning and Object-Oriented Classification,
Remote Sensing, 13, 1910, https://doi.org/10.3390/rs13101910, 2021.
Shiklomanov, N., Streletskiy, D., and Nelson, F.: Northern Hemisphere
Component of the Global Circumpolar Active Layer Monitoring (CALM) Program, International Conference on Permafrost (ICOP) Proceedings, 10, 377–382,
2012.
Shur, Y. and Jorgenson, M.: Patterns of Permafrost Formation and Degradation
in Relation to Climate and Ecosystems, Permafrost Periglac.,
18, 7–19, https://doi.org/10.1002/ppp.582, 2007.
Sim, T. G., Swindles, G. T., Morris, P. J., Baird, A. J., Cooper, C. L.,
Gallego-Sala, A. V., Charman, D. J., Roland, T. P., Borken, W., Mullan, D.
J., Aquino-López, M. A., and Gałka, M.: Divergent responses of
permafrost peatlands to recent climate change, Environ. Res.
Lett., 16, 034001, https://doi.org/10.1088/1748-9326/abe00b, 2021.
Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R., Allard, M.,
Clow, G. D., Yoshikawa, K., and Throop, J.: Thermal state of permafrost in
North America: a contribution to the international polar year, Permafrost Periglac., 21, 117–135, https://doi.org/10.1002/ppp.690, 2010.
Wei, Z., Jin, H., Zhang, J., Yu, S., Han, X., Ji, Y., He, R., and Chang, X.:
Prediction of permafrost changes in Northeastern China under a changing
climate, Science China Earth Sciences, 54, 924–935,
https://doi.org/10.1007/s11430-010-4109-6, 2011.
Wu, T., Xie, C., Zhu, X., Chen, J., Wang, W., Li, R., Wen, A., Wang, D., Lou, P., Shang, C., La, Y., Wei, X., Ma, X., Qiao, Y., Wu, X., Pang, Q., and Hu, G.: Permafrost, active layer, and meteorological data (2010–2020) at the Mahan Mountain relict permafrost site of northeastern Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022, 2022.
Yang, J. M.: Genhe annals (1996–2005), Inner Mongolia Culture Press, Hailar, 67–71, ISBN 9787805061580,
2007 (in Chinese).
Yang, S. and Jin, H.: δ18O and δD records of inactive ice
wedge in Yitulihe, Northeastern China and their paleoclimatic implications,
Science China Earth Sciences, 54, 119–126, https://doi.org/10.1007/s11430-010-4029-5, 2011.
Zhang, G., Nan, Z., Wu, X., Ji, H., and Zhao, S.: The Role of Winter Warming
in Permafrost Change Over the Qinghai-Tibet Plateau, Geophys. Res. Lett., 46, 11261–11269, https://doi.org/10.1029/2019GL084292,
2019.
Zhang, T., Nelson, F., and Gruber, S.: Introduction to special section:
Permafrost and Seasonally Frozen Ground Under a Changing Climate, J. Geophys. Res., 112, F02S01, https://doi.org/10.1029/2007JF000821, 2007.
Zhang, Y., Cheng, G., Jin, H., Yang, D., Flerchinger, G., Chang, X., Bense,
V., Han, X., and Liang, J.: Influences of frozen ground and climate change
on the hydrological processes in an alpine watershed: A case study in the
upstream area of the Hei'he River, Northwest China, Permafrost Periglac., 28, 420–432, 2017.
Zhang, Y., Cheng, G., Jin, H., Yang, D., Flerchinger, G., Chang, X., Wang,
X., and Liang, J.: Influences of Topographic Shadows on the Thermal and
Hydrological Processes in a Cold Region Mountainous Watershed in Northwest
China, J. Adv. Model. Earth Syst., 10, 1439–1457,
https://doi.org/10.1029/2017MS001264, 2018.
Zhang, Z., Wu, Q., Xun, X., Wang, B., and Wang, X.: Climate change and the
distribution of frozen soil in 1980–2010 in northern northeast China,
Quaternary Int., 467, 230–241, https://doi.org/10.1016/j.quaint.2018.01.015, 2018.
Zhang, Z.-Q., Wu, Q.-B., Hou, M.-T., Tai, B.-W., and An, Y.-K.: Permafrost
change in Northeast China in the 1950s–2010s, Adv. Clim. Change Res., 12, 18–28, https://doi.org/10.1016/j.accre.2021.01.006, 2021.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he,...
Special issue
Altmetrics
Final-revised paper
Preprint