Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-3509-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microwave radiometry experiment for snow in Altay, China: time series of in situ data for electromagnetic and physical features of snowpack
Liyun Dai
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
National Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
Yang Zhang
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Zhiguo Ren
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
College of resources and environment, University of Chinese Academy of Sciences, Beijing, 1000101, China
Junlei Tan
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Meerzhan Akynbekkyzy
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Lin Xiao
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Shengnan Zhou
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Yuna Yan
College of resources and environment, University of Chinese Academy of Sciences, Beijing, 1000101, China
Institute of Desert Meteorology, China Meteorological Administration,
Urumqi, 830002, China
Hongyi Li
Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote
Sensing Experimental Research Station, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000,
China
Lifu Wang
Altay National Reference Meteorological station, China Meteorological
Administration, Altay, 836500, China
Related authors
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao
Earth Syst. Sci. Data, 14, 3549–3571, https://doi.org/10.5194/essd-14-3549-2022, https://doi.org/10.5194/essd-14-3549-2022, 2022
Short summary
Short summary
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation Satellite System station networks in China. It includes snow depth of 24, 12, and 2/3/6 h records, if possible, for 80 sites from 2013–2022 over northern China (25–55° N, 70–140° E). The footprint of the data set is ~ 1000 m2, and it can be used as an independent data source for validation purposes. It is also useful for regional climate research and other meteorological and hydrological applications.
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Tian Chang, Yonghong Yi, Masato Furuya, Huiru Jiang, Tao Che, Youhua Ran, Lin Liu, and Rongxing Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-5611, https://doi.org/10.5194/egusphere-2025-5611, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We combined a long-term InSAR derived surface deformation dataset with streamflow recession analysis to assess potential destruction effects of human activities on regional permafrost in the largest mining area of Qinghai-Tibet Plateau. We found that enhanced surface deformation coincides with significant recession slowdown after mining, indicating a strong signal of permafrost thaw. Our results highlight accelerated effects of human disturbance on permafrost degradation under regional warming.
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data, 17, 1329–1346, https://doi.org/10.5194/essd-17-1329-2025, https://doi.org/10.5194/essd-17-1329-2025, 2025
Short summary
Short summary
In this study, carbon flux and auxiliary meteorological data are post-processed to create an analysis-ready dataset for 34 sites across six ecosystems in the Heihe River basin. Overall, 18 sites have multi-year observations, while 16 were observed only during the 2012 growing season, totaling 1513 site months. This dataset can be used to explore carbon exchange, assess ecosystem responses to climate change, support upscaling studies, and evaluate carbon cycle models.
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025, https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Short summary
We employed the WRF-Chem model to parameterize atmospheric nitrate deposition in snow and evaluate its performance in simulating snow cover, snow depth, and concentrations of dust and nitrate using new observations from northern China. The results generally exhibit reasonable agreement with field observations in northern China, demonstrating the model's capability to simulate snow properties, including concentrations of reservoir species.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Hui Guo, Xiaoyan Wang, Zecheng Guo, Gaofeng Zhu, Tao Che, Jian Wang, Xiaodong Huang, Chao Han, and Zhiqi Ouyang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-229, https://doi.org/10.5194/tc-2022-229, 2022
Revised manuscript not accepted
Short summary
Short summary
Snow phenology is a seasonal pattern in snow cover and snowfall. In this review, we found that during the past 50 years in the Northern Hemisphere, the snow cover end date has shown a significantly advanced change trend. Eurasia contributes more to the snow phenology in the Northern Hemisphere than does North America. Snow phenology is related to climate and atmospheric circulation, and the response to vegetation phenology depends on geographical regions, temperature and precipitation gradients.
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao
Earth Syst. Sci. Data, 14, 3549–3571, https://doi.org/10.5194/essd-14-3549-2022, https://doi.org/10.5194/essd-14-3549-2022, 2022
Short summary
Short summary
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation Satellite System station networks in China. It includes snow depth of 24, 12, and 2/3/6 h records, if possible, for 80 sites from 2013–2022 over northern China (25–55° N, 70–140° E). The footprint of the data set is ~ 1000 m2, and it can be used as an independent data source for validation purposes. It is also useful for regional climate research and other meteorological and hydrological applications.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Xiaohua Hao, Guanghui Huang, Tao Che, Wenzheng Ji, Xingliang Sun, Qin Zhao, Hongyu Zhao, Jian Wang, Hongyi Li, and Qian Yang
Earth Syst. Sci. Data, 13, 4711–4726, https://doi.org/10.5194/essd-13-4711-2021, https://doi.org/10.5194/essd-13-4711-2021, 2021
Short summary
Short summary
Long-term snow cover data are not only of importance for climate research. Currently China still lacks a high-quality snow cover extent (SCE) product for climate research. This study develops a multi-level decision tree algorithm for cloud and snow discrimination and gap-filled technique based on AVHRR surface reflectance data. We generate a daily 5 km SCE product across China from 1981 to 2019. It has high accuracy and will serve as baseline data for climate and other applications.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Cited articles
Aoki, T., Hachikubo, A., and Hori, M.: Effects of snow physical parameters
on shortwave broadband albedos, J. Geophys. Res-Atmos., 108, 4616,
https://doi.org/10.1029/2003JD003506, 2003.
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and
Tuller, M.: Ground, Proximal, and Satellite Remote Sensing of Soil Moisture,
Rev. Geophys., 57, 530–616, https://doi.org/10.1029/2018RG000618, 2019.
Brucker, L., Hiemstra, C., Marshall, H.-P., Elder, K., De Roo, R., Mousavi,
M., Bliven, F., Peterson, W., Deems, J., Gadomski, P., Gelvin, A., Spaete,
L., Barnhart, T., Brandt, T., Burkhart, J., Crawford, C., Datta, T.,
Erikstrod, H., Glenn, N., Hale, K., Holben, B., Houser, P., Jennings, K.,
Kelly, R., Kraft, J., Langlois, A., McGrath, D., Merriman, C., Molotch, N.,
Nolin, A., Polashenski, C., Raleigh, M., Rittger, K., Rodriguez, C., Roy,
A., Skiles, M., Small, E., Tedesco, M., Tennant, C., Thompson, A., Tian, L.,
Uhlmann, Z., Webb, R., and Wingo, M.: A first overview of snowex
ground-based remote sensing activities during the winter 2016–2017, Int.
Geosci. Remote Sen., 1391–1394,
https://doi.org/10.1109/IGARSS.2017.8127223, 2017.
Chen, T., Pan, J. M., Chang, S. L., Xiong, C., Shi, J. C., Liu, M. Y., Che, T.,
Wang, L. F., and Liu, H. R.: Validation of the SNTHERM Model Applied for snow
depth, grain size, and brightness temperature simulation at meteorological
stations in China, Remote Sens., 12, 507, https://doi.org/10.3390/Rs12030507, 2020.
Cline, D., Elder, K., Davis, B., Hardy, J., Liston, G., Imel, D., Yueh, S.,
Gasiewski, A., Koh, G., Amstrong, R., and Parsons, M.: An overview of the
NASA Cold Land Processes Field Experiment (CLPX-2002), P. Soc. Photo-Opt.
Ins., 4894, 361–372, https://doi.org/10.1117/12.467766, 2003.
Dai, L.: Microwave radiometry experiment data in Altay (2015/2016), National
Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Snow.tpdc.270886, 2020.
Dai, L. Y., Che, T., Xiao, L., Akynbekkyzy, M., Zhao, K., and Leppänen,
L.: Improving the Snow Volume Scattering Algorithm in a Microwave Forward
Model by Using Ground-Based Remote Sensing Snow Observations, IEEE T.
Geosci. Remote., 60, 4300617, https://doi.org/10.1109/TGRS.2021.3064309,
2022.
Derksen, C., Toose, P., Lemmetyinen, J., Pulliainen, J., Langlois, A.,
Rutter, N., and Fuller, M. C.: Evaluation of passive microwave brightness
temperature simulations and snow water equivalent retrievals through a
winter season, Remote Sens. Environ., 117, 236–248, https://doi.org/10.1016/j.rse.2011.09.021, 2012.
Essery, R.: A factorial snowpack model (FSM 1.0), Geosci. Model Dev., 8, 3867–3876, https://doi.org/10.5194/gmd-8-3867-2015, 2015.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung,
D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The International
Classification for Seasonal Snow on the Ground, IHP-VII Technical Documents
in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP,
Paris, 2009.
Hirahara, Y., de Rosnay, P., and Arduini, G.: Evaluation of a microwave
emissivity module for snow covered area with CMEM in the ECMWF Integrated
Forecasting System, Remote Sens., 12, https://doi.org/10.3390/rs12182946, 2020.
Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A
physical SNOWPACK model for the Swiss avalanche warning Part II: Snow
microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232x(02)00073-3, 2002.
Lemmetyinen, J., Kontu, A., Pulliainen, J., Vehviläinen, J., Rautiainen, K., Wiesmann, A., Mätzler, C., Werner, C., Rott, H., Nagler, T., Schneebeli, M., Proksch, M., Schüttemeyer, D., Kern, M., and Davidson, M. W. J.: Nordic Snow Radar Experiment, Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016, 2016.
Li, X., Che, T., Li, X. W., Wang, L., Duan, A. M., Shangguan, D. H., Pan, X.
D., Fang, M., and Bao, Q.: CASEarth Poles Big Data for the Three Poles, B.
Am. Meteorol. Soc., 101, E1475–E1491,
https://doi.org/10.1175/Bams-D-19-0280.1, 2020.
Löwe, H. and Picard, G.: Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres and tomography-based estimates of stickiness, The Cryosphere, 9, 2101–2117, https://doi.org/10.5194/tc-9-2101-2015, 2015.
Mabuchi, K., Sato, Y., Kida, H., Saigusa, N., and Oikawa, T.: A
biosphere-atmosphere interaction model (BAIM) and its primary verification
using grassland data, Pap. Meteorol. Geophys., 47, 115–140,
https://doi.org/10.2467/mripapers.47.115, 1997.
Naderpour, R., Schwank, M., Matzler, C., Lemmetyinen, J., and Steffen, K.:
Snow Density and Ground Permittivity Retrieved From L-Band Radiometry: A
Retrieval Sensitivity Analysis, IEEE J-Stars., 10, 3148–3161,
https://doi.org/10.1109/Jstars.2017.2669336, 2017.
Pan, X. D., Guo, X. J., Li, X., Niu, X. L., Yang, X. J., Feng, M., Che, T.,
Jin, R., Ran, Y. H., Guo, J. W., Hu, X. L., and Wu, A. D.: National Tibetan
Plateau Data Center Promoting Earth System Science on the Third Pole, B. Am.
Meteorol. Soc., 102, E2062–E78, 2021.
Roesch, A., Gilgen, H., Wild, M., and Ohmura, A.: Assessment of GCM
simulated snow albedo using direct observations, Clim. Dynam., 15, 405–418, https://doi.org/10.1007/s003820050290, 1999.
Roy, A., Picard, G., Royer, A., Montpetit, B., Dupont, F., Langlois, A.,
Derksen, C., and Champollion, N.: Brightness Temperature Simulations of the
Canadian seasonal snowpack driven by measurements of the snow specific
surface area, IEEE T. Geosci. Remote., 51, 4692–4704,
https://doi.org/10.1109/Tgrs.2012.2235842, 2013.
Royer, A., Roy, A., Montpetit, B., Saint-Jean-Rondeau, O., Picard, G.,
Brucker, L., and Langlois, A.: Comparison of commonly-used microwave
radiative transfer models for snow remote sensing, Remote Sens. Environ.,
190, 247–259, https://doi.org/10.1016/j.rse.2016.12.020, 2017.
Tedesco, M. and Kim, E. J.: Intercomparison of electromagnetic models for
passive microwave remote sensing of snow, IEEE T. Geosci. Remote, 44,
2654–2666, https://doi.org/10.1109/TGRS.2006.873182, 2006.
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012.
Zhang, P., Zheng, D., van der Velde, R., Wen, J., Zeng, Y., Wang, X., Wang, Z., Chen, J., and Su, Z.: Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset, Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, 2021.
Zheng, D., Li, X., Wang, X., Wang, Z., Wen, J., van der Velde, R., Schwank,
M., and Su, Z.: Sampling depth of L-band radiometer measurements of soil
moisture and freeze-thaw dynamics on the Tibetan Plateau, Remote Sens.
Environ., 226, 16–25, https://doi.org/10.1016/j.rse.2019.03.029, 2019.
Zheng, D., Li, X., Zhao, T., Wen, J., van der Velde, R., Schwank, M., Wang,
X., Wang, Z., and Su, Z.: Impact of soil permittivity and temperature
profile on L-Band microwave emission of frozen soil, IEEE T. Geosci.
Remote., 59, 4080–4093, https://doi.org/10.1109/TGRS.2020.3024971, 2021.
Short summary
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect ground-based passive microwave and optical remote-sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in continuously providing electromagnetic and physical features of snowpack and environment. The dataset is expected to serve the evaluation and development of microwave radiative transfer models and snow process models, along with land surface process models.
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect...
Special issue
Altmetrics
Final-revised paper
Preprint