Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2895-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-2895-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Last Interglacial sea-level data points from Northwest Europe
Department of Physical Geography, Utrecht University, P.O. Box 80.115,
3508TC Utrecht, the Netherlands
Víctor Cartelle
School of Earth and Environment, University of Leeds, Woodhouse Lane,
Leeds LS2 9JT, UK
current address: Flanders Marine Institute (VLIZ), InnovOcean site,
Wandelaarkaai 7, 8400 Oostende, Belgium
Robert Barnett
Department of Geography, University of Exeter, Rennes Drive, Exeter
EX4 4RJ, UK
Freek S. Busschers
TNO Geological Survey of the Netherlands, P.O. Box 80.015, 3508TA
Utrecht, the Netherlands
Natasha L. M. Barlow
School of Earth and Environment, University of Leeds, Woodhouse Lane,
Leeds LS2 9JT, UK
Related authors
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
Geert-Jan Vis, Erik van Linden, Ronald van Balen, and Kim Cohen
Proc. IAHS, 382, 201–205, https://doi.org/10.5194/piahs-382-201-2020, https://doi.org/10.5194/piahs-382-201-2020, 2020
Short summary
Short summary
In the coal mining districts of the Netherlands, Belgium and Germany, we identified 662 previously unidentified depressions at the land surface using laser elevation measurements from an aircraft. The timing of their formation based on historical maps and landowner reports, suggest that they mostly formed during the period 1920–1970, the peak of mining activity. Based on their position, density and age, we link the formation of depressions to the coal-mining activities in the region.
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Kees Nooren, Wim Z. Hoek, Tim Winkels, Annika Huizinga, Hans Van der Plicht, Remke L. Van Dam, Sytze Van Heteren, Manfred J. Van Bergen, Maarten A. Prins, Tony Reimann, Jakob Wallinga, Kim M. Cohen, Philip Minderhoud, and Hans Middelkoop
Earth Surf. Dynam., 5, 529–556, https://doi.org/10.5194/esurf-5-529-2017, https://doi.org/10.5194/esurf-5-529-2017, 2017
Short summary
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
Kim de Wit, Kim M. Cohen, and Roderik S. W. Van de Wal
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-271, https://doi.org/10.5194/essd-2024-271, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In the Holocene, deltas and coastal plains developed due to relative sea level rise (RSLR). Past coastal and inland water levels are preserved in geological indicators, like basal peats. We present a data set of 712 Holocene water-level indicators from the Dutch coastal plain, relevant for studying RSLR and regional subsidence, compiled in HOLSEA workbook format. Our new, internally consistent, expanded documentation encourages multiple data uses and to report RSLR uncertainties transparently.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Sarah A. Woodroffe, Leanne M. Wake, Kristian K. Kjeldsen, Natasha L. M. Barlow, Antony J. Long, and Kurt H. Kjær
Clim. Past, 19, 1585–1606, https://doi.org/10.5194/cp-19-1585-2023, https://doi.org/10.5194/cp-19-1585-2023, 2023
Short summary
Short summary
Salt marsh in SE Greenland records sea level changes over the past 300 years in sediments and microfossils. The pattern is rising sea level until ~ 1880 CE and sea level fall since. This disagrees with modelled sea level, which overpredicts sea level fall by at least 0.5 m. This is the same even when reducing the overall amount of Greenland ice sheet melt and allowing for more time. Fitting the model to the data leaves ~ 3 mm yr−1 of unexplained sea level rise in SE Greenland since ~ 1880 CE.
Víctor Cartelle, Natasha L. M. Barlow, David M. Hodgson, Freek S. Busschers, Kim M. Cohen, Bart M. L. Meijninger, and Wessel P. van Kesteren
Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, https://doi.org/10.5194/esurf-9-1399-2021, 2021
Short summary
Short summary
Reconstructing the growth and decay of past ice sheets is critical to understand relationships between global climate and sea-level change. We take advantage of large wind-farm datasets in the southern North Sea to investigate buried landscapes left by ice sheet advance and retreat occurring about 160 000 years ago. We demonstrate the utility of offshore wind-farm data in refining palaeo-ice sheet margin limits and providing insight into the processes influencing marginal ice sheet dynamics.
Tanya J. R. Lippmann, Michiel H. in 't Zandt, Nathalie N. L. Van der Putten, Freek S. Busschers, Marc P. Hijma, Pieter van der Velden, Tim de Groot, Zicarlo van Aalderen, Ove H. Meisel, Caroline P. Slomp, Helge Niemann, Mike S. M. Jetten, Han A. J. Dolman, and Cornelia U. Welte
Biogeosciences, 18, 5491–5511, https://doi.org/10.5194/bg-18-5491-2021, https://doi.org/10.5194/bg-18-5491-2021, 2021
Short summary
Short summary
This paper is a step towards understanding the basal peat ecosystem beneath the North Sea. Plant remains followed parallel sequences. Methane concentrations were low with local exceptions, with the source likely being trapped pockets of millennia-old methane. Microbial community structure indicated the absence of a biofilter and was diverse across sites. Large carbon stores in the presence of methanogens and in the absence of methanotrophs have the potential to be metabolized into methane.
Andy R. Emery, David M. Hodgson, Natasha L. M. Barlow, Jonathan L. Carrivick, Carol J. Cotterill, Janet C. Richardson, Ruza F. Ivanovic, and Claire L. Mellett
Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, https://doi.org/10.5194/esurf-8-869-2020, 2020
Short summary
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
Esther Stouthamer, Gilles Erkens, Kim Cohen, Dries Hegger, Peter Driessen, Hans Peter Weikard, Mariet Hefting, Ramon Hanssen, Peter Fokker, Jan van den Akker, Frank Groothuijse, and Marleen van Rijswick
Proc. IAHS, 382, 815–819, https://doi.org/10.5194/piahs-382-815-2020, https://doi.org/10.5194/piahs-382-815-2020, 2020
Short summary
Short summary
Ongoing subsidence is a complex problem for the Netherlands. Old strategies for coping have limits. In the Dutch National Scientific Research Program on Land Subsidence (2020–2025), we will develop an integrative approach to achieve feasible, legitimate and sustainable solutions for managing the negative societal effects of land subsidence, connecting fundamental research on subsidence processes to socio-economic impact of subsidence and to governance and legal framework design.
Geert-Jan Vis, Erik van Linden, Ronald van Balen, and Kim Cohen
Proc. IAHS, 382, 201–205, https://doi.org/10.5194/piahs-382-201-2020, https://doi.org/10.5194/piahs-382-201-2020, 2020
Short summary
Short summary
In the coal mining districts of the Netherlands, Belgium and Germany, we identified 662 previously unidentified depressions at the land surface using laser elevation measurements from an aircraft. The timing of their formation based on historical maps and landowner reports, suggest that they mostly formed during the period 1920–1970, the peak of mining activity. Based on their position, density and age, we link the formation of depressions to the coal-mining activities in the region.
Kees Nooren, Kim M. Cohen, Jaap H. Nienhuis, and Wim Z. Hoek
Proc. IAHS, 382, 149–153, https://doi.org/10.5194/piahs-382-149-2020, https://doi.org/10.5194/piahs-382-149-2020, 2020
Short summary
Short summary
Coastal subsidence owing to compaction of Holocene strata affects large delta plains such as the Tabasco delta in southern Mexico (Gulf coast). Collected field-data allows for quantification of differential subsidence over several time windows and reconstruction of relative sea-level rise back to 5000 years ago. Observed differential subsidence of 1–1.5 m is mainly caused by compaction of buried strata in response to the accumulating overburden of the prograding beach-ridge complex.
Kees Nooren, Wim Z. Hoek, Tim Winkels, Annika Huizinga, Hans Van der Plicht, Remke L. Van Dam, Sytze Van Heteren, Manfred J. Van Bergen, Maarten A. Prins, Tony Reimann, Jakob Wallinga, Kim M. Cohen, Philip Minderhoud, and Hans Middelkoop
Earth Surf. Dynam., 5, 529–556, https://doi.org/10.5194/esurf-5-529-2017, https://doi.org/10.5194/esurf-5-529-2017, 2017
Short summary
Short summary
We demonstrate that the world's largest beach-ridge plain in southern Mexico was formed under an ample long-term fluvial sediment supply. The beach-ridge elevation is strongly influenced by aeolian accretion during the time when the ridge is located next to the beach. The beach-ridge elevation is negatively correlated with the progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment.
Related subject area
Palaeooceanography, palaeoclimatology
Coral skeletal proxy records database for the Great Barrier Reef, Australia
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
Seeing the wood for the trees: active human–environmental interactions in arid northwestern China
SISALv3: a global speleothem stable isotope and trace element database
DINOSTRAT version 2.1-GTS2020
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
Last Glacial loess in Europe: luminescence database and chronology of deposition
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
The World Atlas of Last Interglacial Shorelines (version 1.0)
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Artemisia pollen dataset for exploring the potential ecological indicators in deep time
Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array
World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios
Compilation of Last Interglacial (Marine Isotope Stage 5e) sea-level indicators in the Bahamas, Turks and Caicos, and the east coast of Florida, USA
Compilation of a database of Holocene nearshore marine mollusk shell geochemistry from the California Current System
Last interglacial sea-level proxies in the glaciated Northern Hemisphere
Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0)
High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores
DINOSTRAT: a global database of the stratigraphic and paleolatitudinal distribution of Mesozoic–Cenozoic organic-walled dinoflagellate cysts
The Southern Ocean Radiolarian (SO-RAD) dataset: a new compilation of modern radiolarian census data
Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions
A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e)
A standardized database of Marine Isotopic Stage 5e sea-level proxies on tropical Pacific islands
Last interglacial sea-level history from speleothems: a global standardized database
Last interglacial sea-level proxies in East Africa and the Western Indian Ocean
A multiproxy database of western North American Holocene paleoclimate records
A review of MIS 5e sea-level proxies around Japan
Last interglacial (MIS 5e) sea-level proxies in southeastern South America
Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics
A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change
SISALv2: a comprehensive speleothem isotope database with multiple age–depth models
The Eurasian Modern Pollen Database (EMPD), version 2
VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments
The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate
Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis
Simple noise estimates and pseudoproxies for the last 21 000 years
The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems
Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance
A database of paleoceanographic sediment cores from the North Pacific, 1951–2016
The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period
A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing
Ariella K. Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data, 16, 4869–4930, https://doi.org/10.5194/essd-16-4869-2024, https://doi.org/10.5194/essd-16-4869-2024, 2024
Short summary
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Hui Shen, Robert N. Spengler, Xinying Zhou, Alison Betts, Peter Weiming Jia, Keliang Zhao, and Xiaoqiang Li
Earth Syst. Sci. Data, 16, 2483–2499, https://doi.org/10.5194/essd-16-2483-2024, https://doi.org/10.5194/essd-16-2483-2024, 2024
Short summary
Short summary
Understanding how early farmers adapted to their environments is important regarding how we respond to the changing climate. Here, we present wood charcoal records from northwestern China to explore human–environmental interactions. Our data suggest that people started managing chestnut trees around 4600 BP and cultivating fruit trees and transporting conifers from 3500 BP. From 2500 BP, people established horticultural systems, showing that they actively adapted to the environment.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary
Short summary
Modern pollen datasets are essential for pollen-based quantitative paleoclimate reconstructions. Here we present a modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau. This dataset can be used not only for quantitative precipitation reconstructions on the central and western Tibetan Plateau, but can also be combined with other pollen datasets to improve the reliability of quantitative climate reconstructions across the entire Tibetan Plateau.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022, https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Li-Li Lu, Bo-Han Jiao, Feng Qin, Gan Xie, Kai-Qing Lu, Jin-Feng Li, Bin Sun, Min Li, David K. Ferguson, Tian-Gang Gao, Yi-Feng Yao, and Yu-Fei Wang
Earth Syst. Sci. Data, 14, 3961–3995, https://doi.org/10.5194/essd-14-3961-2022, https://doi.org/10.5194/essd-14-3961-2022, 2022
Short summary
Short summary
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to decipher the underlying causes of the long-standing disagreement on the correlation between Artemisia pollen and aridity by using the dataset to recognize the different ecological implications of Artemisia pollen types. Our findings improve the resolution of palaeoenvironmental assessment and change the traditional concept of Artemisia being restricted to arid and semi-arid environments.
Michael Sigl, Matthew Toohey, Joseph R. McConnell, Jihong Cole-Dai, and Mirko Severi
Earth Syst. Sci. Data, 14, 3167–3196, https://doi.org/10.5194/essd-14-3167-2022, https://doi.org/10.5194/essd-14-3167-2022, 2022
Short summary
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Stefan Mulitza, Torsten Bickert, Helen C. Bostock, Cristiano M. Chiessi, Barbara Donner, Aline Govin, Naomi Harada, Enqing Huang, Heather Johnstone, Henning Kuhnert, Michael Langner, Frank Lamy, Lester Lembke-Jene, Lorraine Lisiecki, Jean Lynch-Stieglitz, Lars Max, Mahyar Mohtadi, Gesine Mollenhauer, Juan Muglia, Dirk Nürnberg, André Paul, Carsten Rühlemann, Janne Repschläger, Rajeev Saraswat, Andreas Schmittner, Elisabeth L. Sikes, Robert F. Spielhagen, and Ralf Tiedemann
Earth Syst. Sci. Data, 14, 2553–2611, https://doi.org/10.5194/essd-14-2553-2022, https://doi.org/10.5194/essd-14-2553-2022, 2022
Short summary
Short summary
Stable isotope ratios of foraminiferal shells from deep-sea sediments preserve key information on the variability of ocean circulation and ice volume. We present the first global atlas of harmonized raw downcore oxygen and carbon isotope ratios of various planktonic and benthic foraminiferal species. The atlas is a foundation for the analyses of the history of Earth system components, for finding future coring sites, and for teaching marine stratigraphy and paleoceanography.
Andrea Dutton, Alexandra Villa, and Peter M. Chutcharavan
Earth Syst. Sci. Data, 14, 2385–2399, https://doi.org/10.5194/essd-14-2385-2022, https://doi.org/10.5194/essd-14-2385-2022, 2022
Short summary
Short summary
This paper includes data that have been compiled to identify the position of sea level during a warm period about 125 000 years ago that is known as the Last Interglacial. Here, we have focused on compiling data for the region of the Bahamas, Turks and Caicos, and the east coast of Florida. These data were compiled and placed within a standardized format prescribed by a new database known as WALIS, which stands for World Atlas of Last Interglacial Shorelines Database.
Hannah M. Palmer, Veronica Padilla Vriesman, Roxanne M. W. Banker, and Jessica R. Bean
Earth Syst. Sci. Data, 14, 1695–1705, https://doi.org/10.5194/essd-14-1695-2022, https://doi.org/10.5194/essd-14-1695-2022, 2022
Short summary
Short summary
Shells of coastal marine organisms can serve as archives of past ocean and climate change. Here, we compiled a database of all available oxygen and carbon isotope values of nearshore marine molluscs from the northeast Pacific coast of North America through the Holocene including both modern collected shells and shells analyzed from midden sites. This first-of-its-kind database can be used to answer archaeological and oceanographic questions in future research.
April S. Dalton, Evan J. Gowan, Jan Mangerud, Per Möller, Juha P. Lunkka, and Valery Astakhov
Earth Syst. Sci. Data, 14, 1447–1492, https://doi.org/10.5194/essd-14-1447-2022, https://doi.org/10.5194/essd-14-1447-2022, 2022
Short summary
Short summary
The last interglacial (LIG; 130 to 115 ka) is a useful analogue for improving predictions of future changes to sea level. Here, we describe the location and characteristics of 82 LIG marine sites from the glaciated Northern Hemisphere (Russia, northern Europe, Greenland and North America). Sites are located in a variety of settings, including boreholes, riverbank exposures and along coastal cliffs.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Tobias Erhardt, Matthias Bigler, Urs Federer, Gideon Gfeller, Daiana Leuenberger, Olivia Stowasser, Regine Röthlisberger, Simon Schüpbach, Urs Ruth, Birthe Twarloh, Anna Wegner, Kumiko Goto-Azuma, Takayuki Kuramoto, Helle A. Kjær, Paul T. Vallelonga, Marie-Louise Siggaard-Andersen, Margareta E. Hansson, Ailsa K. Benton, Louise G. Fleet, Rob Mulvaney, Elizabeth R. Thomas, Nerilie Abram, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 14, 1215–1231, https://doi.org/10.5194/essd-14-1215-2022, https://doi.org/10.5194/essd-14-1215-2022, 2022
Short summary
Short summary
The datasets presented alongside this manuscript contain high-resolution concentration measurements of chemical impurities in deep ice cores, NGRIP and NEEM, from the Greenland ice sheet. The impurities originate from the deposition of aerosols to the surface of the ice sheet and are influenced by source, transport and deposition processes. Together, these records contain detailed, multi-parameter records of past climate variability over the last glacial period.
Peter K. Bijl
Earth Syst. Sci. Data, 14, 579–617, https://doi.org/10.5194/essd-14-579-2022, https://doi.org/10.5194/essd-14-579-2022, 2022
Short summary
Short summary
Using microfossils to gauge the age of rocks and sediments requires an accurate age of their first (origination) and last (extinction) appearances. But how do you know such ages can then be applied worldwide? And what causes regional differences? This paper investigates the regional consistency of ranges of species of a specific microfossil group, organic-walled dinoflagellate cysts. This overview helps in identifying regional differences in the stratigraphic ranges of species and their causes.
Kelly-Anne Lawler, Giuseppe Cortese, Matthieu Civel-Mazens, Helen Bostock, Xavier Crosta, Amy Leventer, Vikki Lowe, John Rogers, and Leanne K. Armand
Earth Syst. Sci. Data, 13, 5441–5453, https://doi.org/10.5194/essd-13-5441-2021, https://doi.org/10.5194/essd-13-5441-2021, 2021
Short summary
Short summary
Radiolarians found in marine sediments are used to reconstruct past Southern Ocean environments. This requires a comprehensive modern dataset. The Southern Ocean Radiolarian (SO-RAD) dataset includes radiolarian counts from sites in the Southern Ocean. It can be used for palaeoceanographic reconstructions or to study modern species diversity and abundance. We describe the data collection and include recommendations for users unfamiliar with procedures typically used by the radiolarian community.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Peter M. Chutcharavan and Andrea Dutton
Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, https://doi.org/10.5194/essd-13-3155-2021, 2021
Short summary
Short summary
This paper summarizes a global database of fossil coral U-series ages for the Last Interglacial period and was compiled as a contribution to the World Atlas of Last Interglacial Shorelines. Each entry contains relevant age, elevation and sample metadata, and all ages and isotope activity ratios have been normalized and recalculated using the same decay constant values. We also provide two example geochemical screening criteria to help users assess sample age quality.
Nadine Hallmann, Gilbert Camoin, Jody M. Webster, and Marc Humblet
Earth Syst. Sci. Data, 13, 2651–2699, https://doi.org/10.5194/essd-13-2651-2021, https://doi.org/10.5194/essd-13-2651-2021, 2021
Short summary
Short summary
The last interglacial (Marine Isotope Stage 5e – MIS 5e) occurred between 128 and 116 ka when sea level was about 6–8 m above its present level; sea-level changes during this period are still debated. MIS 5e represents a potential future warm-climate analogue. This paper presents an open-access database based on the review of MIS 5e coral reef records from many tropical Pacific islands. Overall, the database contains 318 age data points and 94 relative sea-level data points from 38 studies.
Oana A. Dumitru, Victor J. Polyak, Yemane Asmerom, and Bogdan P. Onac
Earth Syst. Sci. Data, 13, 2077–2094, https://doi.org/10.5194/essd-13-2077-2021, https://doi.org/10.5194/essd-13-2077-2021, 2021
Short summary
Short summary
Here we describe a global database that summarizes the current knowledge of MIS 5 sea level as captured by speleothems. We used the framework of the WALIS database to provide a standardized format which will facilitate the sea-level research community to utilize this worldwide database. This is the first speleothem database and contains all the information needed to assess former paleo relative sea levels and their chronological constraints.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, https://doi.org/10.5194/essd-13-1633-2021, 2021
Short summary
Short summary
Sea levels during the last interglacial (130 to 73 ka) are seen as possible process analogs for future sea-level-rise scenarios as our world warms. To this end we catalog previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Evan Tam and Yusuke Yokoyama
Earth Syst. Sci. Data, 13, 1477–1497, https://doi.org/10.5194/essd-13-1477-2021, https://doi.org/10.5194/essd-13-1477-2021, 2021
Short summary
Short summary
Changes in sea level during Marine Isotope Stage (MIS) 5e are comparable to modern sea levels in our global climate. Contributing to the World Atlas of Last Interglacial Shorelines (WALIS), this paper reviewed data from over 70 studies detailing sea-level markers for MIS 5e around Japan. Most sea-level markers were found as marine terraces and are often dated by comparison to dated volcanic ash or sediment layers, which has connected Japan’s landforms to global patterns of sea-level change.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer
Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, https://doi.org/10.5194/essd-12-2311-2020, 2020
Short summary
Short summary
Annually laminated lake sediments (varves) record past climate change at seasonal resolution. The VARved sediments DAtabase (VARDA) is created to utilize the full potential of varves for climate reconstructions. VARDA offers free access to a compilation and synchronization of standardized climate-proxy data, with applications ranging from reconstructing regional patterns of past climate change to validating simulations of climate models. VARDA is freely accessible at https://varve.gfz-potsdam.de
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Lukas Jonkers, Olivier Cartapanis, Michael Langner, Nick McKay, Stefan Mulitza, Anne Strack, and Michal Kucera
Earth Syst. Sci. Data, 12, 1053–1081, https://doi.org/10.5194/essd-12-1053-2020, https://doi.org/10.5194/essd-12-1053-2020, 2020
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
István Gábor Hatvani, Zoltán Kern, Szabolcs Leél-Őssy, and Attila Demény
Earth Syst. Sci. Data, 10, 139–149, https://doi.org/10.5194/essd-10-139-2018, https://doi.org/10.5194/essd-10-139-2018, 2018
Short summary
Short summary
Evenly spaced carbon and oxygen stable isotope records were produced from central European stalagmites. To mitigate the potential bias of interpolation, the variance spectra were carefully evaluated. The derived data are ready to use with conventional uni- and multivariate statistics, which are usually not prepared to handle the general characteristic of sedimentary paleoclimate records derived from geological sequences unevenly sampled in time.
Marisa Borreggine, Sarah E. Myhre, K. Allison S. Mislan, Curtis Deutsch, and Catherine V. Davis
Earth Syst. Sci. Data, 9, 739–749, https://doi.org/10.5194/essd-9-739-2017, https://doi.org/10.5194/essd-9-739-2017, 2017
Short summary
Short summary
We created a database of 2134 marine sediment cores above 30° N in the North Pacific from 1951 to 2016 to facilitate paleoceanographic and paleoclimate research. This database allows for accessibility to sedimentary sequences, age models, and proxies produced in the North Pacific. We found community-wide shifts towards multiproxy investigation and increased age model generation. The database consolidates the research efforts of an entire community into an efficient tool for future investigations.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Cited articles
Abbott, L.: The section exposed in the foundations of the new Admiralty
Offices, P. Geologist. Assoc., 12, 346–356, 1892.
Allen, L. G., Gibbard, P. L., Pettit, M. E., Preece, R. C., and Robinson, J. E.:
Late Pleistocene interglacial deposits at Pennington Marshes, Lymington,
Hampshire, southern England, P. Geologist. Assoc., 107, 39–50, 1996.
Amkreutz, L., Cohen, K., Hijma, M., and Odé, O.: Verdrinkend land in
kaart, in: Doggerland, verdwenen wereld in de Noordzee, edited by: Amkreutz,
L. and van der Vaart-Verschoof, S., Rijksmuseum van Oudheden/Sidestone
press, e-book ISBN 9789464260083, 33–37, 2021.
Andrews, J. T., Bowen, D. Q., and Kidson, C.: Amino acid ratios and the
correlation of raised beach deposits in south-west England and Wales,
Nature, 281, 256–258, 1979.
Andrews, J. T., Gilberston, D. D., and Hawkins, A. B.: The Pleistocene
succession of the Severn Estuary: a revised model based upon amino acid
racemisation studies, J. Geol. Soc. London, 141, 967–974, 1984.
Antoine, P., Lozouet, N. L., Chaussé, C., Lautridou, J. P., Pastre, J.
F., Auguste, P., Bahain, J.-J., Falguères, C., and Galehb, B.:
Pleistocene fluvial terraces from northern France (Seine, Yonne, Somme):
synthesis, and new results from interglacial deposits, Quaternary Sci. Rev.,
26, 2701–2723, https://doi.org/10.1016/j.quascirev.2006.01.036, 2007.
Arfai, J., Franke, D., Lutz, R., Reinhardt, L., Kley, J., and Gaedicke, C.:
Rapid quaternary subsidence in the northwestern German North Sea,
Sci. Rep.-UK, 8, 1–12, https://doi.org/10.1038/s41598-018-29638-6, 2018.
Arkell, W. J.: The Pleistocene Rocks at Trebetherick Point, North Cornwall:
Their interpretation and correlation, P. Geologist. Assoc., 54, 141–170,
https://doi.org/10.1016/S0016-7878(43)80001-8, 1943.
Bahain, J. J., Falguères, C., Laurent, M., Shao, Q., Dolo, J. M., Garcia,
T., Douville, E., Frank, N., Monnier, J. L., Hallégouët, B., Laforge,
M., Huet, B., Auguste, P., Liouville, M., Serre, F., and Gagnepain, J.: ESR
and ESR/U-series dating study of several middle Palaeolithic sites of
Pléneuf-Val-André (Brittany, France): Piégu, Les Vallées and
Nantois, Quat. Geochronol., 10, 424–429,
https://doi.org/10.1016/j.quageo.2012.02.013, 2012.
Bahnson, H., Petersen, K. S., Konradi, P., and Knudsen, K. L.:
Stratigraphy of Quaternary deposits in the Skaerumhede II boring: Lithology,
molluscs and foraminifera, Danmarks Geologiske Undersøgelse, Årbog,
1973, 27–62, 1974.
Balescu, S. and Haesaerts, P.: The Sangatte raised beach and the age of the
opening of the Strait of Dover, Geol. Mijnbouw, 63, 355–362, 1984.
Balescu, S. and Lamothe, M.: The blue emission of K-feldspar coarse grains
and its potential for overcoming TL age underestimation, Quaternary Sci.
Rev., 11, 45–51, https://doi.org/10.1016/0277-3791(92)90041-6,
1992.
Balescu, S., Packman, S. C., and Wintle, A. G.: Chronological Separation of
Interglacial Raised Beaches from Northwestern Europe Using
Thermoluminescence, Quaternary Res., 35, 91–102,
https://doi.org/10.1016/0033-5894(91)90097-O, 1991.
Barlow, N. L. M., Shennan, I., Long, A. J., Gehrels, W. R., Saher, M. H.,
Woodroffe, S. A., and Hillier, C.: Salt marshes as geological tide gauges,
Global Planet. Change, 106, 90–110, 2013.
Barlow, N. L. M., Long, A. J., Gehrels, W. R., Saher, M. H., Scaife, R. G.,
Davies, H. J., Penkman, K. E. H., Bridgland, D. R., Sparkes, A., Smart, C.
W., and Taylor, S.: Relative sea-level variability during the late Middle
Pleistocene: new evidence from eastern England, Quaternary Sci. Rev., 173,
20–39, 2017.
Barrois, C.: Note sur les traces de l'époque glaciaire en quelques
points des côtes de Bretagne,
B. Soc. Geol. Fr., 5, 535–537, 1877.
Barrois, C.: Sur les plages soulevées de la côte ouest du
Finistère, Annales de la Société Géologique du Nord, 9,
239–268, 1882.
Barrow, G.: The Geology of the Isles of Scilly, Memoirs of the Geological
Survey, England and Wales, ISBN 9781330203675, 1906.
Barthes, V., Pozzi, J. P., Vibert-Charbonnel, P., Thibal, J., and Melieres,
M. A.: High-resolution chronostratigraphy from downhole susceptibility
logging tuned by palaeoclimatic orbital frequencies,
Earth Planet. Sc. Lett., 165, 97–116, https://doi.org/10.1016/S0012-821X(98)00214-3, 1999.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary, Nat.
Commun., 10, 3713–3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Bateman, M. and Catt, J.: An absolute chronology for the raised beach and
associated deposits at Sewerby, East Yorkshire, England, J. Quaternary Sci.,
11, 389–395,
1996.
Bates, M. R., Parfitt, S. A., and Roberts, M. A.: The chronology,
palaeogeography and archaeological significance of the marine Quaternary
record of the West Sussex coastal plain, southern England, U.K., Quaternary
Sci. Rev., 16, 1227–1252, https://doi.org/10.1016/S0277-3791(96)00119-9, 1997.
Bates, M. R., Keen, D. H., and Lautridou, J.-P.: Pleistocene marine and
periglacial deposits of the English Channel, J. Quaternary Sci., 18,
319–337, https://doi.org/10.1002/JQS.747, 2003.
Bates, M. R., Briant, R. M., Rhodes, E. J., Schwenninger, J.-L., and Whittaker,
J. E.: A new chronological framework for Middle and Upper Pleistocene
landscape evolution in the Sussex/Hampshire coastal corridor, UK, P.
Geologist. Assoc., 121, 369–392, https://doi.org/10.1016/j.pgeola.2010.02.004, 2010.
Beets, C. J. and Beets, D. J.: A high resolution stable isotope record of
the penultimate deglaciation in lake sediments below the city of Amsterdam,
The Netherlands, Quaternary Sci. Rev., 22, 195–207, https://doi.org/10.1016/S0277-3791(02)00089-6, 2003.
Beets, D. J., Meijer, T., Beets, C. J., Cleveringa, P., Laban, C., and Van
der Spek, A. J. F.: Evidence for a Middle Pleistocene glaciation of MIS 8
age in the southern North Sea, Quatern. Int., 133, 7–19, https://doi.org/10.1016/j.quaint.2004.10.002, 2005.
Beets, D. J., Beets, C. J., and Cleveringa, P.: Age and climate of the late
Saalian and early Eemian in the type-area, Amsterdam basin, The Netherlands,
Quaternary Sci. Rev., 25, 876–885, https://doi.org/10.1016/j.quascirev.2005.10.001, 2006.
Behre, K. E.: Pollen- und diatomeenanalytische Untersuchungen an
letzinterglazialen Kieselgurlagen der Lueneburger Heide (Schwindebeck und
Grevenhof im oberen Luhetal), Flora, 152, 325–370, 1962.
Behre, K. E., Hölzer, A., and Lemdahl, G.: Botanical macro-remains and
insects from the Eemian and Weichselian site of Oerel (northwest Germany)
and their evidence for the history of climate, Veg. Hist. Archaeobot., 14,
31–53, 2005.
Benda, L. and Schneekloth, H.: Das Eem-Interglazial von Köhlen, Krs.
Wesermünde, Geologisches Jahrbuch, 83, 699–716, 1965.
Berendsen, H. J. A., Makaske, B., Van de Plassche, O., Van Ree, M. H. M.,
Das, S., Dongen, M. V., Ploumen, S., and Schoenmakers, W.: New
groundwater-level rise data from the Rhine-Meuse delta–implications for the
reconstruction of Holocene relative mean sea-level rise and differential
land-level movements, Neth. J. Geosci., 86, 333–354, 2007.
Bigot, A.: Sur l'existence d'une station préhistorique à la Hougue
(Manche), Mémoires de la Société nationale des sciences
naturelles de Cherbourg XXV, 277–280, 1885.
Bigot, A.: Les terrasses pléistocènes du littoral du Cotentin, Livre
jubilaire de la Société géologique de France I, 133–148, 1930.
Bogemans, F., Roe, H. M., and Baeteman, C.: Incised Pleistocene valleys in
the Western Belgium coastal plain: Age, origins and implications for the
evolution of the Southern North Sea Basin,
Palaeogeogr. Palaeocl., 456, 46–59, 2016.
Bosch, J. H. A.: Toelichtingen bij de Geologische Kaart van Nederland 1:50000, Blad Assen (12 W), Blad Assen (12 O), 1990.
Bowen, D. Q.: The Pleistocene succession of the Irish Sea, P. Geologist.
Assoc., 84, 249–272, 1973.
Bowen, D. Q., Sykes, G. A., Reeves, A., Miller, G. H., Andrews, J. T., Brew,
J. S., and Hare, P. E.: Amino acid geochronology of raised beaches in south
west Britain, Quaternary Sci. Rev., 4, 279–318, 1985.
Bradley, S. L., Milne, G. A., Shennan, I., and Edwards, R.: An improved
glacial isostatic adjustment model for the British Isles, J. Quaternary
Sci., 26, 541–552, https://doi.org/10.1002/jqs.1481, 2011.
Brain, M. J.: Compaction, in: Handbook of sea-level research, edited by:
Shennan, I., Long, A. J., and Horton, B. P., John Wiley & Sons, Ltd,
Chichester, UK, 452–469, https://doi.org/10.1002/9781118452547.ch30, 2015.
Breton, G., Cousin, R., Huault, M.-F., Lechevallier, C., and Lefebvre, D.:
Les sédiments quaternaires du quartier de l'Hotel de Ville, au Havre:
séquences marines pré-éemienne, éemienne et holocène de
l'estuaire de la Seine, Bulletin de la Société Géologique de
Normandie, 4, 15–63, 1991.
Briant, R. M., Bates, M. R., Schwenninger, J.-L., and Wenban-Smith, F.: An
optically stimulated luminescence date Middle to Late Pleistocene fluvial
sequence from the western Solent Basin, southern England, J. Quaternary
Sci., 21, 507–523, https://doi.org/10.1002/jqs.1035, 2006.
Briant, R. M., Kilfeather, A., Parfitt, S., Penkman, K., Preece, R., Roe,
H., Schwenninger, J.-L., Wenban-Smith, F., and Whittaker, J.: Integrated
chronological control on an archaeologically significant Pleistocene river
terrace sequence: the Thames-Medway, eastern Essex, England, P. Geologist.
Assoc., 123, 87–108, https://doi.org/10.1016/j.pgeola.2011.07.008, 2012.
Briant, R. M., Bates, M. R., Boreham, S., Cameron, N. G., Coope, G. R., Field,
M. H., Hatch, B. M., Holmes, J. A., Keen, D. H., Kilfeather, A. A., Penkman,
K. E. H., Simons, R. M. J., Schwenninger, J.-L., Wenban-Smith, F. F., Whitehouse
N. J., and Whittaker, J. E.: Early Ipswichian (last interglacial) sea level
rise in the channel region: Stone Point Site of Special Scientific Interest,
Hampshire, England, P. Geologist. Assoc., 130, 1–26, https://doi.org/10.1016/j.pgeola.2018.03.002, 2019.
Bridgland, D. R.: Quaternary of the Thames, Joint Nature Conservation
Committee, Chapman & Hall, London, ISBN 0412488302, 1994.
Bridgland, D. R. and d'Olier, B.: The Pleistocene evolution of the Thames
and Rhine drainage systems in the southern North Sea Basin, Geological
Society, London, Special Publications, 96, 27–45, https://doi.org/10.1144/GSL.SP.1995.096.01.04, 1995.
Bridgland, D., Currant, A., and Preece, R.: East Mersea restaurant site (TM
053136), in: The Quaternary of the Lower Reaches of the Thames: Field Guide,
edited by: Bridgland, D. R., Allen, P., and Haggart, B. A., Quaternary
Research Association, London, 271–274, ISBN 9780907780229, 1995a.
Bridgland, D. R., Keen, D. H., Green, G. P., Bowen, D. Q., and Sykes, G. A.:
Last Interglacial deposits at Folkestone, Kent, P. Geologist. Assoc., 106,
183–193, 1995b.
Bronk Ramsey, C.: Deposition models for chronological records, Quaternary
Sci. Rev., 27, 42–60, 2008.
Bungenstock, F., Freund, H., and Bartholomä, A.: Holocene relative
sea-level data for the East Frisian barrier coast, NW Germany, southern
North Sea, Neth. J. Geosci., 100, E16, https://doi.org/10.1017/njg.2021.11, 2021.
Busschers, F. S., Weerts, H. J. T., Wallinga, J., Cleveringa, P., Kasse, C.,
De Wolf, H., and Cohen, K. M.: Sedimentary architecture and optical dating
of Middle and Late Pleistocene Rhine-Meuse deposits-fluvial response to
climate change, sea-level fluctuation and glaciation, Neth. J. Geosci., 84,
25–41, 2005.
Busschers, F. S., Kasse, C., Van Balen, R. T., Vandenberghe, J., Cohen, K.
M., Weerts, H. J. T., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik,
F. P. M.: Late Pleistocene evolution of the Rhine-Meuse system in the
southern North Sea basin: imprints of climate change, sea-level oscillation
and glacio-isostacy, Quaternary Sci. Rev., 26, 3216–3248, 2007.
Busschers, F. S., Van Balen, R. T., Cohen, K. M., Kasse, C., Weerts, H. J.,
Wallinga, J., and Bunnik, F. P.: Response of the Rhine–Meuse fluvial system
to Saalian ice-sheet dynamics, Boreas, 37, 377–398, https://doi.org/10.1111/j.1502-3885.2008.00025.x, 2008.
Buylaert, J. P., Huot, S., Murray, A. S., and Van Den Haute, P.: Infrared
stimulated luminescence dating of an Eemian (MIS 5e) site in Denmark using
K-feldspar, Boreas, 40, 46–56, https://doi.org/10.1111/j.1502-3885.2010.00156.x, 2011.
Campbell, S., Andrews, J. T., and Shakesby, R. A.: Amino acid evidence for
Devensian ice, west Gower, South Wales, Nature, 300, 249–251, 1982.
Campbell, S., Hunt, C. O., Scourse, J. D., and Keen, D. H.: Quaternary of
South-west England, Chapman & Hall, London, https://doi.org/10.1007/978-94-011-4920-4, 1998.
Cartelle, V., Barlow, N. L. M., Hodgson, D. M., Busschers, F. S., Cohen, K. M., Meijninger, B. M. L., and van Kesteren, W. P.: Sedimentary architecture and landforms of the late Saalian (MIS 6) ice sheet margin offshore of the Netherlands, Earth Surf. Dynam., 9, 1399–1421, https://doi.org/10.5194/esurf-9-1399-2021, 2021.
Catt, J.: The Pleistocene glaciations of eastern Yorkshire: a review, P.
Yorks. Geol. Soc., 56, 177–207, 2007.
Catt, J. A. and Penny, L. F.: The Pleistocene Deposits of Holderness, East
Yorkshire, P. Yorks. Geol. Soc., 35, 375–409, https://doi.org/10.1144/pygs.35.3.375, 1966.
Cerrone, C., Vacchi, M., Fontana, A., and Rovere, A.: Last Interglacial sea-level proxies in the western Mediterranean, Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, 2021.
Chutcharavan, P. M. and Dutton, A.: A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e), Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, 2021.
Clemmensen, L. B., Hougaard, I. W., Murray, A. S., and Pedersen, S. S.: A
high-resolution sea-level proxy dated using quartz OSL from the Holocene
Skagen Odde spit system, Denmark, Boreas, 47, 1184–1198, 2018.
Cleveringa, P., Meijer, T., Van Leeuwen, R. J. W., Wolf, H. D., Pouwer, R.,
Lissenberg, T., and Burger, A. W.: The Eemian stratotype locality at
Amersfoort in the central Netherlands: a re-evaluation of old and new data,
Neth. J. Geosci., 79, 197–216, https://doi.org/10.1017/S0016774600023659, 2000.
Cliquet, D.: Le gisement paléolithique moyen de Saint-Germain des
Vaux/Port-Racine (Manche) dans son cadre régional, Editions ERAUL,
Liège, ISSN 0777-2173, 1994.
Cliquet, D.: Palaeolithic settlements of Normandy in their
chronostratigraphic context: “archaeological scraps”, Quaternaire, 24,
315–358, 2013.
Cliquet, D., Mercier, N., Valladas, H., Froget, L., Michel, D., van
Vliet-Lanoë, B., and Vilgrain, G.: Apport de la thermoluminescence sur
silex chauffes à la chronologie de site paléolithiques de
Normandie: nouvelles données et interprétations, Quaternaire, 14,
51–64, https://doi.org/10.3406/quate.2003.1729, 2003.
Cliquet, D., Lautridou, J.-P., Lamothe, M., Mercier, N., Schwenninger,
J.-L., Alix, P., and Vilgrain, G.: Nouvelles données sur le site majeur
d'Écalgrain: datations radiométriques et occupations humaines de la
Pointe de la Hague (Cotentin, Normandie), Quaternaire, 20, 345–359,
https://doi.org/10.4000/quaternaire.5244, 2009.
Cohen, K. M., MacDonald, K., Joordens, J. C. A., Roebroeks, W., and Gibbard,
P. L.: The earliest occupation of north-west Europe: a coastal perspective,
Quatern. Int., 271, 70–83, https://doi.org/10.1016/j.quaint.2011.11.003, 2012.
Cohen, K. M., Gibbard, P. L., and Weerts, H. J. T.: North Sea
palaeogeographical reconstructions for the last 1 Ma, Neth. J. Geosci., 93,
7–29, https://doi.org/10.1017/njg.2014.12, 2014.
Cohen, K. M., Westley, K., Erkens, G., Hijma, M. P., and Weerts, H. J. T.:
The North Sea, in: Submerged landscapes of the European continental shelf:
quaternary paleoenvironments, Wiley, Chichester, 147–186, https://doi.org/10.1002/9781118927823.ch7, 2017.
Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S., and Barlow, N. L. M.:
Last Interglacial sea-level data points from Northwest Europe,
V1: https://doi.org/10.5281/zenodo.5608459, V2: https://doi.org/10.5281/zenodo.6478094, Zenodo [data set], 2021.
Coutard, S., Lautridou, J.-P., and Rhodes, E.: Discontinuités dans
l'enregistrement des cycles interglaciaire-glaciaire sur un littoral en
contexte intraplaque. Exemple du Val de Saire (Normandie, France),
Quaternaire, 16, 217–227, https://doi.org/10.4000/quaternaire.434, 2005.
Coutard, S., Lautridou, J. P., Rhodes, E., and Clet, M.: Tectonic, eustatic
and climatic significance of raised beaches of Val de Saire, Cotentin,
Normandy, France, Quaternary Sci. Rev., 25, 595–611, https://doi.org/10.1016/j.quascirev.2005.02.003, 2006.
Davies, K. H.: Amino acid analysis of Pleistocene marine molluscs from the
Gower Peninsula, Nature, 32, 137–139, 1983.
Davies, K. H.: The aminostratigraphy of British Pleistocene beach deposits,
unpublished PhD Thesis, U.C.W. Aberystwyth, 1984.
Davies, K. H. and Keen, D. H.: The age of Pleistocene marine deposits at
Portland, Dorset, P. Geologist. Assoc., 96, 217–225, 1985.
De Clercq, M., Missiaen, T., Wallinga, J., Zurita Hurtado, O., Versendaal,
A., Mathys, M., and De Batist, M.: A well-preserved Eemian incised-valley
fill in the southern North Sea Basin, Belgian Continental Shelf-Coastal
Plain: Implications for northwest European landscape evolution, Earth Surf.
Proc. Land., 43, 1913–1942, https://doi.org/10.1002/esp.4365, 2018.
De Gans, W., Beets, D. J., and Centineo, M. C.: Late Saalian and Eemian
deposits in the Amsterdam glacial basin, Neth. J. Geosci., 79, 147–160,
https://doi.org/10.1017/S0016774600021685, 2000.
De Heinzelin, J.: Falaise et plage suspendue de Sangatte, Bulletin de la
Société Belge de Géologie 75, 292–296, 1966.
De La Beche, H. T.: Report on the geology of Cornwall and Devon and West
Somerset, Memoirs of the Geological Survey, London, 1839.
De Moor, G. and De Breuck, W.: Sedimentologie en stratigrafie van enkele
pleistocene afzettingen in de Belgische kustvlakte, Natuurwetenschappelijk
Tijdschrift, 55, 3–96, 1973.
De Moor, G. and Pissart, A.: Het reliëf, in: Geografie van België,
edited by: Denis, J., Gemeentekrediet, Brussels, 128–215, http://hdl.handle.net/1854/LU-222633, 1992.
Dechend, W. and Sindowski, K.-H.: Die Gliederung der Quartärs im Raum
Krummhörn-Dollart (Ostfriesland) und die geologische Entwicklung der
unteren Ems, Geologisches Jahrbuch, 71, 461–490, 1956.
Dendy, S., Austermann, J., Creveling, J. R., and Mitrovica, J. X.:
Sensitivity of Last Interglacial sea-level high stands to ice sheet
configuration during Marine Isotope Stage 6, Quaternary Sci. Rev., 171,
234–244, 2017.
Demarchi, B., Williams, M. G., Milner, N., Russell, N., Bailey, G., and
Penkman, K.: Amino acid racemization dating of marine shells: A mound of
possibilities, Quatern. Int., 239, 114–124, https://doi.org/10.1016/j.quaint.2010.05.029, 2011.
Dixon, F.: The Geology and Fossils of the Tertiary and Cretaceous Formations
of Sussex, Longman, Brown, Green and Longmans, https://doi.org/10.5962/bhl.title.14790, 1850.
Düsterhus, A., Tamisiea, M. E., and Jevrejeva, S.: Estimating the sea
level highstand during the last interglacial: a probabilistic massive
ensemble approach, Geophys. J. Int., 206, 900–920,
https://doi.org/10.1093/gji/ggw174, 2016.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U.,
DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise
due to polar ice-sheet mass loss during past warm periods, Science, 349,
6244, https://doi.org/10.1126/science.aaa4019, 2015.
Eaton, S. J., Hodgson, D. M., Barlow, N. L., Mortimer, E. E., and Mellett,
C. L.: Palaeogeographical changes in response to glacial–interglacial
cycles, as recorded in Middle and Late Pleistocene seismic stratigraphy,
southern North Sea, J. Quaternary Sci., 35, 760–775, 2020.
Edwards, R. J. and Horton, B. P.: Reconstructing relative sea-level change
using UK salt-marsh foraminifera, Mar. Geol., 169, 41–56, https://doi.org/10.1016/s0025-3227(00)00078-5, 2000.
Ehlers, J. and Gibbard, P. L.: Quaternary glaciations-extent and
chronology: part I: Europe, Elsevier, ISBN 978-0-444-51462-2, 2004.
Ehlers, J., Eissman, L., Lippstreu, L., Stephan, H. J., and Wansa, S.:
Pleistocene glaciations of north Germany, in: Quaternary Glaciations-Extent
and Chronology: Part I: Europe, 135–146, edited by: Ehlers, J. and Gibbard, P. L.,
https://doi.org/10.1016/S1571-0866(04)80064-2, 2004.
Elhaï, H.: La Normandie occidentale entre la Seine et le Golfe
normand-breton, Etude morphologique, Bière, Bodeaux, http://www.persee.fr/doc/ingeo_0020-0093_1963_num_27_4_5567 (last access: 19 June 2022), 1963.
EMODnet Bathymetry Consortium: EMODnet Digital Bathymetry (DTM),
https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649cea9881a, 2020.
Engelhart, S. E. and Horton, B. P.: Holocene sea level database for the
Atlantic coast of the United States, Quaternary Sci. Rev., 54, 12–25,
https://doi.org/10.1016/j.quascirev.2011.09.013, 2012.
Engelhart, S. E., Horton, B. P., and Kemp, A. C.: Holocene Sea Level Changes
Along the United States' Atlantic Coast, Oceanography, 24, 70–79, https://doi.org/10.1016/j.quascirev.2011.09.013, 2011.
Farrell, W. E. and Clark, J. A.: On postglacial sea level, Geophys. J. Roy.
Astr. S., 46, 647–667, 1976.
Flemming, N. C.: Multiple regression analysis of earth movements and
eustatic sea-level change in the United Kingdom in the past 9000 years, P.
Geologist. Assoc., 93, 113–125, https://doi.org/10.1016/S0016-7878(82)80035-7, 1982.
Folz, E.: La luminescence stimulée optiquement du quartz:
développements méthodologiques et applications à la datation de
séquences du pléistocène supérieur du nord-ouest de la
France, https://www.theses.fr/2000PA077082 (last access: 19 June 2022), 2000.
Franks, J. W.: Interglacial deposits at Trafalgar Square, London, New
Phytol., 59, 145–152, https://doi.org/10.1111/j.1469-8137.1960.tb06212.x, 1960.
Friborg, R.: The landscape below the Tinglev outwash plain: a
reconstruction, B. Geol. S. Denmark, 43, 34–40, 1996.
Funder, S., Demidov, I., and Yelovicheva, Y.: Hydrography and mollusc faunas
of the Baltic and the White Sea–North Sea seaway in the Eemian,
Palaeogeogr. Palaeocl., 184, 275–304, https://doi.org/10.1016/S0031-0182(02)00256-0, 2002.
García-Moreno, D., Verbeeck, K., Camelbeeck, T., De Batist, M.,
Oggioni, F., Zurita Hurtado, O., Versteeg, W., Jomard, H., Collier, J. S.,
Gupta, S., Trentesaux, A., and Vanneste, K.: Fault activity in the
epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake
(northwestern Europe), Geophys. J. Int., 201, 528–542, https://doi.org/10.1093/gji/ggv041, 2015.
Gale, S. J., Hoare, P. G., Hunt, C. O., and Pye, K.: The middle and upper
Quaternary deposits at Morton, North Norfolk, UK Geological Magazine,
125, 521–533, https://doi.org/10.1017/S001675680001325X,
1988.
Garzon, S. and Rovere, A.: WALIS visualization interface (Version 1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4943541, 2021.
Gehrels, W. R.: Determining relative sea-level change from salt-marsh
foraminifera and plant zones on the coast of Maine, USA, J. Coastal Res.,
10, 990–1009, 1994.
Gehrels, W. R.: Using foraminiferal transfer functions to produce
high-resloution sea-level records from salt-marsh deposits, Maine, USA,
Holocene, 10, 367–376, 2000.
Gibbard, P. L.: The Pleistocene history of the Middle Thames valley,
Cambridge University Press, ISBN 0 312 26578 9, 1985.
Gibbard, P. L.: The history of the great northwest European rivers during the
past three million years, Philos. T. Roy. Soc. B, 318, 559–602, 1988.
Gibbard, P. L.: The formation of the Strait of Dover, Geological Society,
London, Special Publications, 96, 15–26, 1995.
Gibbard, P. L., West, R. G., and Hughes, P. D.: Pleistocene glaciation of
Fenland, England, and its implications for evolution of the region,
Roy. Soc. Open Sci., 5, 170736, https://doi.org/10.1098/rsos.170736,
2018.
Gilbert, A.: The raised shoreline sequence at Saunton, in: Devon and East
Cornwall, edited by: Charman, D. J., Newnham, R. M., and Croot, D., Field Guide,
Quaternary Research Association, London, 40–47, ISBN 9780907780274, 1996.
Godwin-Austen, R.: On the land-surfaces beneath the Drift-Gravel, J. Geol.
Soc. London, 11, 112–119, 1855.
Godwin-Austen, R.: On the Newer Tertiary Deposits of the Sussex Coast,
Quarterly J. Geol. Soc. London, 13, 40–72, 1857.
Greensmith, J. T. and Tucker, E. V.: Compaction and consolidation, in: Sea-level research: a manual for the collection and evaluation of data, edited by: Van de Plassche, O., 591–603, https://doi.org/10.1007/978-94-009-4215-8_22, 1986.
Grüger, E.: Palynostratigraphy of the last interglacial/glacial cycle in
Germany, Quatern. Int., 3, 69–79, 1989.
Gupta, S., Collier, J. S., Palmer-Felgate, A., and Potter, G.: Catastrophic
flooding origin of shelf valley systems in the English Channel, Nature,
448, 342–345, https://doi.org/10.1038/nature06018, 2007.
Gupta, S., Collier, J. S., Garcia-Moreno, D., Oggioni, F., Trentesaux, A.,
Vanneste, K., De Batist, M., Camelbeeck, T., Potter, G., Vliet-Lanoë, V.,
and Arthur, J. C.: Two-stage opening of the Dover Strait and the origin of
island Britain, Nat. Commun., 8, 15101, https://doi.org/10.1038/ncomms15101, 2017.
Haesaerts, P. and Dupuis, C.: Contribution à la stratigraphie des
nappes alluviales de la Somme et de l'Avre dans la région d'Amiens.
Supplément au Bulletin de l'Association Française pour l'Etude du
Quaternaire, 26, 171–186, 1986.
Hanebuth, T., Stattegger, K., and Grootes, P. M.: Rapid flooding of the
Sunda Shelf: a late-glacial sea-level record, Science, 288, 1033–1035,
2000.
Harting, P.: De bodem van het Eemdal, Verslagen en Verhandelingen
Koninklijke Academie van Wetenschappen, 2e Reeks 8, 282–290, 1874.
Haslett, S. K. and Curr, R. H. F.: Stratigraphy and palaeoenvironmental
development of Quaternary coarse clastic beach deposits at Plage de
Mezpeurleuch, Brittany (France), Geol. J., 36, 171–182, https://doi.org/10.1002/GJ.888, 2001.
Hay, C., Mitrovica, J. X., Gomez, N., Creveling, J. R., Austermann, J., and
E. Kopp, R.: The sea-level fingerprints of ice-sheet collapse during
interglacial periods, Quaternary Sci. Rev., 87, 60–69, https://doi.org/10.1016/j.quascirev.2013.12.022, 2014.
Heyse, I.: Bijdrage tot de Geomorfologische Kennis van het Noordwesten van
Oost-Vlaanderen (Belgie), Verhandelingen van de Koninklijke Academie voor
Wetenschappen, Letteren en Schone Kunsten van Belgie, Klasse der
Wetenschappen, Jaargang XLI, Vol. 155, 1979.
Hijma, M. P. and Cohen, K. M.: Holocene transgression of the Rhine river
mouth area, The Netherlands/Southern North Sea: palaeogeography and sequence
stratigraphy, Sedimentology, 58, 1453–1485, https://doi.org/10.1111/j.1365-3091.2010.01222.x, 2011.
Hijma, M. P. and Cohen, K. M.: Holocene sea-level database for the
Rhine-Meuse Delta, The Netherlands: Implications for the pre-8.2 ka
sea-level jump, Quaternary Sci. Rev., 214, 68–86, https://doi.org/10.1016/j.quascirev.2019.05.001, 2019.
Hijma, M. P., Cohen, K. M., Hoffmann, G., Van der Spek, A. J., and
Stouthamer, E.: From river valley to estuary: the evolution of the Rhine
mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse
delta), Neth. J. Geosci., 88, 13–53, https://doi.org/10.1017/S0016774600000986, 2009.
Hijma, M. P., Cohen, K. M., Roebroeks, W., Westerhoff, W. E., and
Busschers, F. S.: Pleistocene Rhine–Thames landscapes: geological
background for hominin occupation of the southern North Sea region, J.
Quaternary Sci., 27, 17–39, https://doi.org/10.1002/jqs.1549,
2012.
Hijma, M., Engelhart, S. E., Törnqvist, T. E., Horton, B. P., Hu, P.,
and Hill, D. F.: A protocol for a geological sea-level database, in:
Handbook of sea-level research, edited by: Shennan, I., Long, A. J., and
Horton, B. P., John Wiley & Sons, Ltd, Chichester, UK, 536–553, https://doi.org/10.1002/9781118452547.ch34, 2015.
Hinton, M. A. C. and Kennard, A. S.: Contributions to the Pleistocene
geology of the Thames Valley. 1. The Grays–Thurrock area, part 1, Essex
Naturalist, 11, 226–270, 1901.
Hoare, P. G., Gale, S. J., Robinson, R. A. J., Connell, E. R., and Larkin, N.
R.: Marine Isotope Stage 7–6 transition age for beach sediments at Morston,
north Norfolk, UK: implications for Pleistocene chronology, stratigraphy and
tectonics, J. Quaternary Sci., 24, 311–316, 2009.
Höfle, H. G., Merkt, J., and Müller, H.: Die Ausbreitung des
Eem-Meeres in Nordwestdeutschland, Eiszeitalter und Gegenwart, 35, 49–59,
1985.
Hodgson, J. M.: The low-level Pleistocene marine sands and gravels of the
West Sussex Coastal Plain, P. Geologist. Assoc., 75, 547–562, 1964.
Hollin, J. T.: Thames interglacial sites, Ipswichian sea levels and
Antarctic ice surges, Boreas, 6, 33–52, https://doi.org/10.1002/jqs.3390080407, 1977.
Holyoak, D. T. and Preece, R. C.: Late Pleistocene Interglacial Deposits at
Tattershall, Lincolnshire, Philos. T. Roy. Soc.
B, 311, 193–236, 1985.
Houmark-Nielsen, M.: Pleistocene stratigraphy and glacial history of the
central part of Denmark, B. Geol. Soc. Denmark, https://doi.org/10.37570/bgsd-1988-36-01, 1987.
James, H. C. L.: Aspects of the raised beaches of South Cornwall,
Proc. Ussher, 2, 55–56, 1968.
James, H. C. L.: An examination of recently exposed Pleistocene sections at
Godrevy, Proc. Ussher, 3, 299–301, 1975.
James, H. C. L.: Raised beaches of West Cornwall and their evolving
geochronology, Proc. Ussher, 8, 437–440, 1995.
James, H. C. L.: An extension of the well-known Quaternary section at
Godrevy, St Ives Bay, West Cornwall: Analysis and review,
Proc. Ussher, 12, 55–57, 2008.
Jelgersma, S.: Post-glacial rise of sea-level in the Netherlands (a
preliminary report), Geol. Mijnbouw, 39, 201–207, 1960.
Jelgersma, S.: Holocene sea-level changes in the Netherlands, PhD thesis, Leiden Univ. Med. Geol. St., Serie C 6, 1–100, 1961.
Jelgersma, S.: Sea-level changes in the North Sea basin, in: The Quaternary
history of the North Sea. Symposia Universitatis Upsaliensis annum
quingen-tesimum celebrantis, 2, 238–248, 1979.
Jessen, A., Milthers, V., Nordmann, V., Hartz, N., and Hesselboe, A.: En
Boring gennem de Kvartaere Lag ved Skaerumhede, Danmarks Geologiske
Undersøgelse, Series II, 25, 175 pp., 1910.
Jessen, K. and Milthers, V.: Stratigraphical and palaeontological studies
of interglacial fresh-water deposits in Jutland and northwest Germany,
Danmarks Geologiske Undersøgelse, Series II, 48, 1–379, 1928.
Kasse, C., van der Woude, J. D., Woolderink, H. A., and Schokker, J.: Eemian
to Early Weichselian regional and local vegetation development and
sedimentary and geomorphological controls, Amersfoort Basin, The
Netherlands, Neth. J. Geosci., 101, E7, https://doi.org/10.1017/njg.2022.4, 2022.
Keen, D. H., Harmon, R. S., and Andrews, J. T.: U-series and amino acid dates
from Jersey, Nature, 289, 162–164, https://doi.org/10.1038/289162a0, 1981.
Keogh, M. E. and Törnqvist, T. E.: Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation, Ocean Sci., 15, 61–73, https://doi.org/10.5194/os-15-61-2019, 2019.
Keogh, M. E., Törnqvist, T. E., Kolker, A. S., Erkens, G., and
Bridgeman, J. G.: Organic Matter Accretion, Shallow Subsidence, and River
Delta Sustainability, J. Geophys. Res.-Earth., 126, e2021JF006231,
https://doi.org/10.1029/2021JF006231, 2021.
Kiden, P., Denys, L., and Johnston, P.: Late Quaternary sea-level change and
isostatic and tectonic land movements along the Belgian–Dutch North Sea
coast: geological data and model results, J. Quaternary Sci., 17,
535–546, https://doi.org/10.1002/jqs.709, 2002.
Kidson, C. and Heyworth, A.: The Quaternary deposits of the Somerset
Levels, Q. J. Eng. Geol. Hydroge., 9, 217–235, https://doi.org/10.1144/GSL.QJEG.1976.009.03.05, 1976.
Knudsen, K.-L.: Foraminiferal faunas in Eemian deposits of the
Oldenbüttel area near the Kiel Canal, Germany, Geol. Jb., A86, 27–47,
1985.
Knudsen, K. L. and Lykke-Andersen, A.-L.: Foraminifera in Late Saalian,
Eemian, Early and Middle Weichselian of the Skaerumhede I boring, B. Geol.
Soc. Denmark, 30, 97–109, 1982.
Knudsen, K. L., Kristensen, P., and Larsen, N. K.: Marine glacial and
interglacial stratigraphy in Vendsyssel, northern Denmark: foraminifera and
stable isotopes, Boreas, 38, 787–810, 2009.
Konradi, P. B.: Foraminifera in Eemian deposits at Stensigmose, southern
Jutland, Danmarks Geologiske Undersøkelse, Series II, 105, 57 pp., 1976.
Konradi, P. B., Larsen, B., and Sørensen, A. B.: Marine Eemian in the
Danish eastern North Sea, Quatern. Int., 133, 21–31, https://doi.org/10.1016/j.quaint.2004.10.003, 2005.
Kooi, H., Johnston, P., Lambeck, K., Smither, C., and Molendijk, R.:
Geological causes of recent (∼ 100 yr) vertical land movement in the
Netherlands, Tectonophysics, 299, 297–316, https://doi.org/10.1016/S0040-1951(98)00209-1, 1998.
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and
Oppenheimer, M.: Probabilistic assessment of sea level during the last
interglacial stage, Nature, 462, 863–867, https://doi.org/10.1038/nature08686, 2009.
Kosack, B. and Lange, W.: Das Eem-Vorkommen von Offenbüttel/Schnittlohe
und die Ausbreitung des Eem-Meeres zwischen Nord-und Ostsee. Geologisches
Jahrbuch. Reihe A, Allgemeine und regionale Geologie BR Deutschland und
Nachbargebiete, Tektonik, Stratigraphie, Paläontologie, 86, 3–17, 1985.
Kristensen, P., Gibbard, P., Knudsen, K. L., and Ehlers, J.: Last
interglacial stratigraphy at Ristinge Klint, south Denmark, Boreas, 29,
103–116, https://doi.org/10.1111/j.1502-3885.2000.tb01204.x,
2000.
Kubisch, M. and Schönfeld, J.: Eine neue “Cyprinen-Ton”-Scholle bei
Stohl (Schleswig-Holstein): Mikrofauna und Grobfraktionsanalyse von
Sedimenten der Eemzeitlichen Ostsee, Meyniana, 37, 89–95, 1985.
Kuhlmann, G., Langereis, C., Munsterman, D., van Leeuwen, R. J., Verreussel,
R., Meulenkamp, J., and Wong, T.: Chronostratigraphy of Late Neogene
sediments in the southern North Sea Basin and paleoenvironmental
interpretations, Palaeogeogr. Palaeocl., 239, 426–455,
https://doi.org/10.1016/j.palaeo.2006.02.004, 2006a.
Kuhlmann, G., Langereis, C. G., Munsterman, D., Van Leeuwen, R. J.,
Verreussel, R., Meulenkamp, J. E., and Wong, T. E.: Integrated
chronostratigraphy of the Pliocene-Pleistocene interval and its relation to
the regional stratigraphical stages in the southern North Sea region, Neth.
J. Geosci., 85, 19–35, https://doi.org/10.1017/S0016774600021405, 2006b.
Kukla, G. J., Bender, M. L., de Beaulieu, J. L., Bond, G., Broecker, W. S.,
Cleveringa, P., Gavin, J. E., Herbert, T. D., Imbrie, J., Jouzel, J., Keigwin,
L. D., Knudsen, K.-L., McManus, J. F., Merkt, J., Muhs, D. R., Müller,
Poore, R. Z., Porter, S. C., Seret, G., Shackleton, N. J., Turner, C., and
Tzedakis, P. C.: Last Interglacial Climates, Quaternary Res., 58, 2–13,
https://doi.org/10.1006/qres.2001.2316, 2002.
Lamb, R. M., Harding, R., Huuse, M., Stewart, M., and Brocklehurst, S. H.:
The early Quaternary North Sea Basin, J. Geol. Soc., 175, 275–290,
https://doi.org/10.1144/jgs2017-057, 2018.
Lambeck, K.: Late Devensian And Holocene Shorelines Of The British-Isles And
North-Sea From Models Of Glacio-Hydro-Isostatic Rebound, J. Geol. Soc., 152,
437–448, 1995.
Lambeck, K., Purcell, A., Funder, S., KjæR, K. H., Larsen, E., and
Moller, P. E. R.: Constraints on the Late Saalian to early Middle
Weichselian ice sheet of Eurasia from field data and rebound modelling,
Boreas, 35, 539–575, https://doi.org/10.1080/03009480600781875,
2006.
Lamplugh, G. W.: On the Bridlington and Dimlington Glacial Shell-beds, Geol.
Mag., 8, 535–546, https://doi.org/10.1017/S0016756800159229,
1881.
Lamplugh, G. W.: Report on the buried cliff at Sewerby, near Bridlington, P.
Yorks. Geol. Polytech. Soc., 9, 381–392, https://doi.org/10.1144/pygs.9.3.381, 1887.
Lang, J., Lauer, T., and Winsemann, J.: New age constraints for the Saalian
glaciation in northern central Europe: Implications for the extent of ice
sheets and related proglacial lake systems, Quaternary Sci. Rev., 180,
240–259, https://doi.org/10.1016/j.quascirev.2017.11.029, 2018.
Larsen, N. K., Krohn, C. F., Kronborg, C., Nielsen, O. B., and Knudsen, K.
L.: Lithostratigraphy of the late Saalian to middle Weichselian Skaerumhede
Group in Vendsyssel, northern Denmark, Boreas, 38, 762–786, https://doi.org/10.1111/j.1502-3885.2009.00102.x, 2009.
Lautridou, J.-P. and Cliquet, D.: Le Pléistocène supérieur de
Normandie et peuplements préhistoriques, Quaternaire, 17, 187–206,
https://doi.org/10.4000/quaternaire.815, 2006.
Lautridou, J.-P., Baize, S., Clet, M., Coutard, J.-P., and Ozouf, J.-C.: Les
séquences plio-pléistocènes littorales et estuariennes de
Normandie, Quaternaire, 10, 161–169, 1999.
Lautridou, J.-P., Auguste, P., Carpentier, G., Cordy, J.-M., Lebret, P.,
Lechevalier, C., and Lefebvre, D.: L'Eemien et le Pléistocène moyen
récent fluvio-marin et continental de la vallée de la Seine de
Cléon au Havre (Normandie), Quaternaire, 14, 25–30, https://doi.org/10.3406/quate.2003.1726, 2003.
Lewis, S., G., Ashton, N., and Jacobi, R.: 9 – Testing Human Presence During
the Last Interglacial (MIS 5e): A Review of the British Evidence, in:
Developments in Quaternary Sciences, edited by: Ashton, N., Lewis, S. G.,
and Stringer, C., Elsevier, 125–164, https://doi.org/10.1016/B978-0-444-53597-9.00009-1, 2011.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanogr., 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Long, A. J., Woodroffe, S. A., Roberts, D. H., and Dawson, S.: Isolation
basins, sea-level changes and the Holocene history of the Greenland Ice
Sheet, Quaternary Sci. Rev., 30, 3748–3768, https://doi.org/10.1016/j.quascirev.2011.10.013, 2011.
Long, A. J., Barlow, N. L. M., Busschers, F. S., Cohen, K. M., Gehrels, W.
R., and Wake, L. M.: Near-field sea-level variability in northwest Europe
and ice sheet stability during the last interglacial, Quaternary Sci. Rev.,
126, 26–40, https://doi.org/10.1016/j.quascirev.2015.08.021,
2015.
Lorié, J.: De Geologische Bouw der Gelderse Vallei, benevens
Beschrijving van eenige nieuwe grondboringen, VII – Verh. Kon. Akad.
Wetensch., 2-12-1, 1–100, 1906.
Loyer, S., van Vliet-Lanoë, B., Monnier, J.L., Hallegouet, B., and
Mercier, N.: La coupe de Nantois (Baie de Saint-Brieuc, France): Datations
par thermoluminescence (TL) et données paléoenvironnementales
nouvelles pour le Pléistocène de Bretagne, Quaternaire, 6, 21–33,
https://doi.org/10.3406/quate.1995.2034, 1995.
Mackie, S. J.: On a deposit at Folkestone containing bones of Mammalia,
Quarterly J. Geol. Soc. London, VII, 257–262, 1851.
Madsen, V. C., Nordmann, V. J. H., and Hartz, N. E. K.: Eem-zonerne: Studier
over Cyprinaleret og andre Eem-aflejringer i Danmark, Nord-Tyskland og
Holland, Danmarks Geologiske Undersøgelse, Series II, 17–19, 1908.
Martinius, A. W. and Van den Berg, J. H.: Atlas of sedimentary structures in
estuarine and tidally-influenced river deposits of the Rhine-Meuse-Scheldt
system, Houten, EAGE, 298 pp., ISBN 9789073834118, 2011.
Mathys, M.: The Quaternary geological evolution of the Belgian Continental
Shelf, southern North Sea, PhD thesis, Ghent University, 382 pp.,
http://hdl.handle.net/1854/LU-716421, 2009.
Mauz, B., Vacchi, M., Green, A., Hoffmann, G., and Cooper, A.: Beachrock: a
tool for reconstructing relative sea level in the far-field, Mar. Geol.,
362, 1–16, https://doi.org/10.1016/j.margeo.2015.01.009, 2015.
Meijer, T.: The late Middle Pleistocene non-marine molluscan fauna of
borehole Noorderhoeve-19E117 (province of Noord-Holland, the Netherlands),
Cainozoic Research, 2, 129–134, 2002.
Meijer, T. and Preece, R. C.: Malacological evidence relating to the
insularity of the British Isles during the Quaternary, Geol. Soc. London,
Spec. Publ. 96, 89–110, 1995.
Meijer, T. and Preece, R.C.: A review of the occurrence of Corbicula in the Pleistocene of North-West Europe, Neth. J. Geosc., 79, 241–255, https://doi.org/10.1017/S0016774600021739, 2000.
Meijer, T. and Cleveringa, P.: Aminostratigraphy of Middle and Late
Pleistocene deposits in The Netherlands and the southern part of the North
Sea Basin, Global Planet. Change, 68, 326–345, 2009.
Meijer, T., Pouwer, R., Cleveringa, P., de Wolf, H., Busschers, F. S., and
Wesselingh, F. P.: Fossil molluscs from borehole Hollum (Ameland, the
Netherlands) constrain three successive Quaternary interglacial marine
intervals in the southern North Sea Basin, Neth. J. Geosci., 100, e13, 2021.
Mellett, C. L., Mauz, B., Plater, A. J., Hodgson, D. M., and Lang, A.: Optical
dating of drowned landscapes: A case study from the English Channel, Quat.
Geochronol., 10, 201–208, https://doi.org/10.1016/j.quageo.2012.03.012, 2012.
Mellett, C. L., Hodgson, D. M., Plater, A. J., Mauz, B., Selby, I., and Lang,
A.: Denudation of the continental shelf between Britain and France at the
glacial–interglacial timescale, Geomorphology, 203, 79–96, https://doi.org/10.1016/j.geomorph.2013.03.030, 2013.
Meng, S., Börner, A., Menzel-Harloff, H., Strahl, J., and Müller,
U.: Palaeo-ecological development and interpretation of the macrofauna
inventory (Bivalvia and Gastropoda) in marine Eemian deposits at Warnow Bay
(NE Germany), Quatern. Int., 630, 84–96, https://doi.org/10.1016/j.quaint.2021.05.008, 2022.
Menke, B.: Palynologische Untersuchungen zur Transgression des Eem-Meeres im
Raum Offenbüttel/Nord-Ostsee-Kanal, Geologisches Jahrbuch A, 86, 19–26,
1985.
Menke, B. and Tynni, R.: Das Eeminterglazial und das Weichselfruh-glazial
von Rederstall/Dithmarschen und ihre Bedeutung für die mitteleuropaische
Jungpleistozan-Gliederung, Geologisches Jahrbuch A, 76, 1–109, 1984.
Miller, G. H. and Mangerud, J.: Aminostratigraphy of European marine
interglacial deposits, Quaternary Sci. Rev., 4, 215–278, https://doi.org/10.1016/0277-3791(85)90002-2, 1985.
Miller, G. H., Hollin, J. T., and Andrews, J. T.: Aminostratigraphy of UK
Pleistocene deposits, Nature, 281, 539–543, 1979.
Missiaen, T., Fitch, S., Muru, M., Harding, R., Fraser, A., De Clercq, M.,
Garcia Moreno, D. G., Versteeg, W., Busschers, F., van Heteren, S., Hijma,
M., Reichart, G.-J., and Gaffney, V.: Targeting the mesolithic:
Interdisciplinary approaches to archaeological prospection in the Brown Bank
area, southern North Sea, Quatern. Int., 584, 141–151, 2020.
Mitchell, G. F.: The Pleistocene history of the Irish Sea, BAAS Adv. Sci.,
17, 313–325, 1960.
Mitchell, G. F.: The Pleistocene history of the Irish Sea: Second
approximation, Sci. P. R. Dublin Soc., 4, 181–199, 1972.
Mitrovica, J. X., Gomez, N., and Clark, P. U.: The Sea-Level Fingerprint of
West Antarctic Collapse, Science, 323, 753, https://doi.org/10.1126/science.1166510, 2009.
Monnier, J.-L., Huet, B., and Laforge, M.: Application of sedimentological
analysis to correlation of eroded layers under beaches with local and
regional Pleistocene stratigraphy: A contribution to geological dating of
Palaeolithic sites, northern coast of Brittany, France, Quatern. Int., 231,
78–94, https://doi.org/10.1016/j.quaint.2010.06.033, 2011.
Moreau, J., Huuse, M., Janszen, A., van der Vegt, P., Gibbard, P. L., and
Moscariello, A.: The glaciogenic unconformity of the southern North Sea,
Geol. Soc. London Spec. Publ., 368, 99–110, 2012.
Morzadec-Kerfourn, M. T. and Monnier, J. L.: Chronologie relative des cordons
littoraux pléistocènes de Bretagne, B. Assoc. Fr. Etud. Quaternaire,
4, 195–203, 1982.
Mottershead, D. N., Gilbertson, D. D., and Keen, D. H.: The raised beaches and
shore platforms of Tor Bay: a re-evaluation, P. Geologist. Assoc., 98,
241–257, 1987.
Müller, H.: Pollenanalytische Untersuchungen und Jahresschichtenzahlung
an der eem-zeitlichen Kieselgur von Bispingen/Luhe, Geologisches Jahrbuch,
A-21, 149–169, 1974.
Murchison, C.: Mastodon, elephant, rhinoceros, ossiferous caves, primeval
man and his contemporaries. Palaeontological Memoirs and Notes of the Late
High Falconer, Vol. II. London, 1868.
Murray, A. S. and Funder, S.: Optically stimulated luminescence dating of a
Danish Eemian coastal marine deposit: a test of accuracy, Quaternary Sci.
Rev., 22, 1177–1183, 2003.
NEEM community members: Eemian interglacial reconstructed from a Greenland
folded ice core, Nature, 493, 489–494, https://doi.org/10.1038/nature11789, 2013.
Nelson, A. R.: Coastal sediments, in: Handbook of Sea-Level Research, edited
by: Shennan, I., Long, A. J., and Horton, B. P., 47–65, https://doi.org/10.1002/9781118452547.ch4, 2015.
Nolf, D.: Mollusken uit het marien Kwartair te Meetkerke (West-Vlaanderen,
België), Natuurwetenschappelijk Tijdschrift, 55, 97–120, 1973.
Nordmann, V.: La Position stratigraphique des Depots d'Eem. Danmarks
Geologiske Undersøgelse, Series II, 47, 81 pp., 1928.
O'Leary, M. J., Hearty, P. J., Thompson, W. G., Raymo, M. E., Mitrovica, J.
X., and Webster, J. M.: Ice sheet collapse following a prolonged period of
stable sea level during the last interglacial, Nat. Geosci., 6,
796–800, 2013.
Orme, A. R.: The Raised Beaches and Strandlines of South Devon, Field Studies
Journal, 1, 109–130, https://fsj.field-studies-council.org/media/344669/vol1.2_15.pdf (last access: 19 June 2022), 1960.
Ottesen, D., Dowdeswell, J. A., and Bugge, T.: Morphology, sedimentary
infill and depositional environments of the Early Quaternary North Sea Basin
(56–62 N), Mar. Petrol. Geol., 56, 123–146, 2014.
Otvos, E. G.: Beach ridges–definitions and significance, Geomorphology, 32,
83–108, 2000.
Paddenberg, D., Russel, J., and Tizzard, L.: Seabed Prehistory: Gauging the
Effects of Marine Aggregate Dredgin – Final Report: Volume IV – Great
Yarmouth, London, https://doi.org/10.5284/1009322, 2008.
Palmer, L. S. and Cooke, J. H.: The Pleistocene deposits of the Portsmouth
district and their relation to man, P. Geologist. Assoc., 34, 253–292,
1923.
Paul, M. A., Barras, B. F., and Mein, J. E.: Geotechnical properties of
British estuarine clays: towards a geological framework, in: Advances in
geotechnical engineering: The Skempton conference: Proceedings of a three
day conference on advances in geotechnical engineering, Th. Telford,
568–579, https://doi.org/10.1680/aigev1.32644.0032, 2004.
Pedoja, K., Husson, L., Regard, V., Cobbold, P.R., Ostanciaux, E., Johnson,
M. E., Kershaw, S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., and
Delcaillau, B.: Relative sea-level fall since the last interglacial stage:
Are coasts uplifting worldwide?, Earth-Sci. Rev., 108, 1–15,
https://doi.org/10.1016/j.earscirev.2011.05.002, 2011.
Pedoja, K., Husson, L., Johnson, M.E., Melnick, D., Witt, C., Pochat, S.,
Nexer, M., Delcaillau, B., Pinegina, T., Poprawski, Y., Authemayou, C.,
Elliot, M., Regard, V., and Garestier, F.: Coastal staircase sequences
reflecting sea-level oscillations and tectonic uplift during the Quaternary
and Neogene, Earth-Sci. Rev., 132, 13–38, https://doi.org/10.1016/j.earscirev.2014.01.007, 2014.
Pedoja, K., Jara-Muñoz, J., de Gelder, G., Robertson, J., Meschis, M.,
Fernandez-Blanco, D., Nexer, M., Poprawski, Y., Dugué, O., Delcaillau,
B., Bessin, P., Benabdelouahed, M., Authemayou, C., Husson, L., Regard, V.,
Menier, D., and Pinel, B.: Neogene-Quaternary slow coastal uplift of Western
Europe through the perspective of sequences of strandlines from the Cotentin
Peninsula (Normandy, France), Geomorphology, 303, 338–356,
https://doi.org/10.1016/j.geomorph.2017.11.021, 2018.
Peeters, J., Busschers, F. S., and Stouthamer, E.: Fluvial evolution of the
Rhine during the last interglacial-glacial cycle in the southern North Sea
basin: a review and look forward, Quatern. Int., 357, 176–188, 2015.
Peeters, J., Busschers, F. S., Stouthamer, E., Bosch, J. H. A., Van den
Berg, M. W., Wallinga, J., Versendaal, A. J., Bunnik, F. P. M., and Middelkoop,
H.: Sedimentary architecture and chronostratigraphy of a late Quaternary
incised-valley fill: a case study of the late Middle and Late Pleistocene
Rhine system in the Netherlands, Quaternary Sci. Rev., 131, 211–236,
https://doi.org/10.1016/j.quascirev.2015.10.015, 2016.
Peeters, J., Cohen, K. M., Thrana, C., Busschers, F. S., Martinius, A. W.,
Stouthamer, E., and Middelkoop, H.: Preservation of Last Interglacial and
Holocene transgressive systems tracts in the Netherlands and its
applicability as a North Sea Basin reservoir analogue, Earth-Sci. Rev., 188,
482–497, https://doi.org/10.1016/j.earscirev.2018.10.010, 2019.
Pellerin, J. and Dupeuble, P. A.: Le bas niveau marin éémien de
Graye-sur-Mer (Calvados), Bulletin de la Société linnéenne de
Normandie, 107, 21–26, 1979.
Peltier, W. R.: Global glacial isostatic adjustment: palaeogeodetic and
space geodetic test of the ICE-4G (VM2) model, J. Quaternary Sci., 17,
491–510, 2002.
Penkman, K.: Aminoacid geochronology: its impact on our understanding of the
Quaternary stratigraphy of the British Isles, J. Quaternary Sci., 25,
501–514, 2010.
Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J.:
Closed-system behaviour of the intra-crystalline fraction of amino acids in
mollusc shells, Quat. Geochronol., 3, 2–25,
https://doi.org/10.1016/j.quageo.2007.07.001, 2008.
Penkman, K. E., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T.,
Parfitt, S. A., White, T. S., and Collins, M. J.: A chronological framework
for the British Quaternary based on Bithynia opercula, Nature, 476, 446–449,
2011.
Penkman, K. E., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T.,
Parfitt, S. A., White, T. S., and Collins, M. J.: An aminostratigraphy for
the British Quaternary based on Bithynia opercula, Quaternary Sci. Rev., 61,
111–134, 2013.
Penney, D. N.: Application of Ostracoda to sea-level studies, Boreas, 16,
237–247, 1987.
Pirazzoli, P. A.: Marine terraces, Encyclopedia of Coastal Science, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/978-3-319-48657-4_209-2, 632–633, 2005.
Preece, R. C.: Mollusca from Last Interglacial fluvial deposits of the River
Thames at Trafalgar Square, London, J. Quaternary Sci., 14, 77–89, 1999.
Preece, R. C.: Molluscan evidence for differentiation of interglacials
within the “Cromerian Complex”, Quaternary Sci. Rev., 20, 1643–1656, 2001.
Preece, R. C., Scourse, J. D., Houghton, S. D., Knudsen, K. L., and Penney,
D. N.: The Pleistocene sea level and neotectonic history of the Eastern
Solent, Southern England, Philos. T. R. Soc. B, 328, 425–477,
https://doi.org/10.1016/j.quaint.2010.06.033, 1990.
Prestwich, J.: On the westward extension of the old raised beach of Brighton
and on the extent of the sea-bed of the same period, Quarterly J. Geol. Soc.
London, 15, 215–221, 1859.
Prestwich, J.: Notes on the phenomenon of the Quaternary period in the Isle
of Portland and around Weymouth, Quarterly J. Geol. Soc. London, 31, 29–54,
1875.
Prestwich, J.: The raised beaches and “head” or rubble-drift of the South of
England: their relation to the Valley Drifts and to the Glacial Period; and
on a late post-Glacial submergence, Quarterly J. Geol. Soc. London, 48,
263–343, 1892.
Proctor, C. J. and Smart, P. L.: A dated cave sediment record of Pleistocene
transgressions on Berry Head, Southwest England, J. Quaternary Sci., 6,
233–244, https://doi.org/10.1002/jqs.3390060306, 1991.
Regnauld, H., Mauz, B., and Morzadec-Kerfourn, M. T.: The last interglacial
shoreline in northern Brittany, western France, Mar. Geol., 194, 65–77,
https://doi.org/10.1016/S0025-3227(02)00699-0, 2003.
Reid, C.: The Pleistocene deposits of the Sussex Coast, and their
equivalents in other districts, Quarterly J. Geol. Soc. London, 48, 344–346,
https://doi.org/10.1144/GSL.JGS.1892.048.01-04.20,
1892.
Reid, C.: A fossiliferous Pleistocene deposit at Stone, on the Hampshire
coast, Quarterly J. Geol. Soc. London, 49, 325–329,
https://doi.org/10.1144/GSL.JGS.1893.049.01-04.51, 1893.
Reid, C.: Geology of the Country Around Bournemouth, Memoirs of the
Geological Survey, England and Wales, New Series, No. 329, 1898.
Roe, H. M., Coope, G. R., Devoy, R. J. N., Harrison, C. J. O., Penkman, K.
E. H., Preece, R. C., and Schreve, D. C.: Differentiation of MIS 9 and MIS
11 in the continental record: vegetational, faunal, aminostratigraphic and
sea-level evidence from coastal sites in Essex, UK, Quaternary Sci. Rev.,
28, 2342–2373, https://doi.org/10.1016/j.quascirev.2009.04.017,
2009.
Rohling, E. J., Hibbert, F. D., Williams, F. H., Grant, K. M., Marino, G.,
Foster, G. L., Hennekam, R., de Lange, G. J., Roberts, A. P., Yu, J.,
Webster, J. M., and Yokoyama, Y.: Differences between the last two glacial
maxima and implications for ice-sheet, δ18O, and sea-level
reconstructions, Quaternary Sci. Rev., 176, 1–28,
https://doi.org/10.1016/j.quascirev.2017.09.009, 2017.
Rohling, E. J., Hibbert, F. D., Grant, K. M., Galaasen, E. V., Irvalı, N.,
Kleiven, H. F., Marino, G., Ninnemann, U., Roberts, A. P., Rosenthal, Y.,
Schulz, H., Williams, F. H., and Yu, J.: Asynchronous Antarctic and
Greenland ice-volume contributions to the last interglacial sea-level
highstand, Nat. Commun., 10, 5040, https://doi.org/10.1038/s41467-019-12874-3, 2019.
Rosentau, A., Klemann, V., Bennike, O., Steffen, H., Wehr, J.,
Latinović, M., Bagge, M., Ojala, A., Berglund, M., Peterson Becher, G.,
Schoning, K., Hansson, A., Nielsen, L., Clemmensen, L.B., Hede, M.U., Kroon,
A., Pejrup, M., Sander, L., Stattegger, K., Schwarzer, K., Lampe, R., Lampe,
M., Uścinowicz, S., Bitinas, A., Grudzinska, I., Vassiljev, J., Nirgi,
T., Kublitskiy, Y., and Subetto, D. A: Holocene relative sea-level database
for the Baltic Sea, Quaternary Sci. Rev., 266, 107071, https://doi.org/10.1016/j.quascirev.2021.107071, 2021.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P.,
Gómez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty,
P. J.: The analysis of Last Interglacial (MIS 5e) relative sea-level
indicators: Reconstructing sea-level in a warmer world, Earth-Sci. Rev.,
159, 404–427, https://doi.org/10.1016/j.earscirev.2016.06.006,
2016.
Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A.,
Lorscheid, T., Chutcharavan, P., Brill, D., Bartz, M., Jankowski, N.,
Mueller, D., Cohen, K., and Gowan, E.: Descriptions of database fields for
the World Atlas of Last Interglacial Shorelines (WALIS) (Version 1.0),
Zenodo [code], https://doi.org/10.5281/zenodo.3961544,
2020.
Rubio-Sandoval, K., Rovere, A., Cerrone, C., Stocchi, P., Lorscheid, T., Felis, T., Petersen, A.-K., and Ryan, D. D.: A review of last interglacial sea-level proxies in the western Atlantic and southwestern Caribbean, from Brazil to Honduras, Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, 2021.
Russell, J. and Tizzard, L.: Seabed Prehistory: Site Evaluation Techniques
(Area 240) Synthesis, Wessex Archaeology, https://doi.org/10.5284/1008287, 2011.
Sanchez-Goñi, M. F., Eynaud, F., Turon, J., and Shackleton, N. J.: High
resolution palynological record off the Iberian margin: direct land-sea
correlation for the Last Interglacial complex, Earth Planet. Sc. Lett.,
171, 123–137, https://doi.org/10.1016/S0012-821X(99)00141-7,
1999.
Schaumann, R. M., Capperucci, R. M., Bungenstock, F., McCann, T., Enters,
D., Wehrmann, A., and Bartholomä, A.: The Middle Pleistocene to early
Holocene subsurface geology of the Norderney tidal basin: new insights from
core data and high-resolution sub-bottom profiling (Central Wadden Sea,
southern North Sea), Neth. J. Geosci., 100, e15,
https://doi.org/10.1017/njg.2021.3, 2021.
Schreve, D. C.: Differentiation of the British late Middle Pleistocene
interglacials: the evidence from mammalian biostratigraphy, Quaternary Sci.
Rev., 20, 1693–1705, 2001.
Schulz, H., Emeis, K.-C., Winn, K., and Erlenkeuser, H.:
Oberflächentemperaturen des Eem-Meeres in Schlesvig-Holstein–die
UK'37-Indizien, Meyniana, 53, 163–181, 2001.
Scourse, J. D.: Late Pleistocene stratigraphy of North and West Cornwall,
Transactions of the Royal Geological Society Cornwall, 22, 2–56, 1996.
Seidenkrantz, M. S.: Benthic foraminiferal and stable isotope evidence for a
“Younger Dryas-style” cold spell at the Saalian-Eemian transition,
Denmark, Palaeogeogr. Palaeocl., 102, 103–120, https://doi.org/10.1016/0031-0182(93)90008-7, 1993.
Selle, W.: Geologische und vegetationskundliche Untersuchungen an einigen
wichtigen Vorkommen des letzen Interglazials in Nordwestdeutschland,
Geologische Jahrbuch, 79, 295–352, 1962.
Selle, W. and Schneekloth, H.: Ergebnisse einer Kernbohrung in Oerel, Krs.
Bremervörde; drei Interstadiale über Ablagerungen des
Eem-Interglazials, Zeitschrift der Deutschen Geologischen Gesellschaft, 115,
109–117, 1965.
Sha, L. P. (Ed.), Schwarz, C., Maenhout van Lemberge, V, Cameron, T. D. J.,
Zollmer, V., Konradi, P., Laban, C., Streif, H., and Schuttenhelm, R. T. E.:
Quaternary sedimentary sequences in the southern North Sea Basin.
Sedimentological Working Group of the Southern North Sea Project, Commission
of the European Communities (contract no. SCI* -128-C 9EDB), 1991.
Shackleton, N. J., Chapman, M., Sanchez-Goñi, M. F., Pailler, D., and
Lancelot, Y.: The classic marine isotope substage 5e, Quaternary Res., 58,
14–16, https://doi.org/10.1006/qres.2001.2312, 2002.
Shackleton, N. J., Sanchez-Goñi, M. F., Pailler, D., and Lancelot, Y.:
Marine isotope substage 5e and the Eemian interglacial, Global Planet.
Change, 36, 151–155, https://doi.org/10.1016/S0921-8181(02)00181-9, 2003.
Shennan, I.: Interpretation of Flandrian sea-level data from the Fenland,
England, P. Geologist. Assoc., 93, 53–63, 1982.
Shennan, I.: Flandrian sea-level changes in the Fenland I. The geographical
setting and evidence of relative sea-level changes, J. Quaternary Sci., 1,
119–154, 1986.
Shennan, I.: Holocene crustal movements and sea-level changes in Great
Britain, J. Quaternary Sci., 4, 77–89, 1989.
Shennan, I., Hamilton, S., Hillier, C., and Woodroffe, S.: A 16,000-year
record of near-field relative sea-level changes, northwest Scotland, United
Kingdom, Quatern. Int., 133–34, 95–106, 2005.
Shennan, I., Long, A. J., and Horton, B. P.: Handbook of Sea-Level Research,
John Wiley & Sons, Ltd, Chichester, UK, https://doi.org/10.1002/9781118452547, 2015.
Shennan, I., Bradley, S. L., and Edwards, R.: Relative sea-level changes and
crustal movements in Britain and Ireland since the Last Glacial Maximum,
Quaternary Sci. Rev., 188, 143–159,
https://doi.org/10.1016/j.quascirev.2018.03.031, 2018.
Sier, M. J., Peeters, J., Dekkers, M. J., Pares, J. M., Chang, L.,
Busschers, F. S., Cohen, K. M., Wallinga, J., Bunnik, F. P. M., and Roebroeks,
W.: The Blake Event recorded near the Eemian type locality? a diachronic
onset of the Eemian in Europe, Quat. Geochronol., 28, 12–28, 2015.
Sirocko, F., Seelos, K., Schaber, K., Rein, B., Dreher, F., Diehl, M.,
Lehne, R., Jäger, K., Krbetschek, M., and Degering, D.: A late Eemian
aridity pulse in central Europe during the last glacial inception, Nature,
436, 833–836, https://doi.org/10.1038/nature03905, 2005.
Southgate, G. A.: Thermoluminescence dating of beach and dune sands:
potential of single-grain measurements, Nuclear Tracks, 10, 743–747,
https://doi.org/10.1016/0735-245X(85)90084-5, 1985.
Sparks, B. W.: The non-marine Mollusca of the interglacial deposits at
Bobbitshole, Ipswich, Philos. T. Roy. Soc.
B, 241, 33–44, https://doi.org/10.1098/rstb.1957.0007, 1957.
Sparks, B. W. and West, R. G.: The Interglacial Deposits at Stutton,
Suffolk, P. Geologist. Assoc., 74, 419–432, 1963.
Sparks, B. W. and West, R. G.: Late Pleistocene deposits at Wretton,
Norfolk. I. Ipswichian interglacial deposits, Philos. T.
Roy. Soc. B, 258, 1–30,
https://doi.org/10.1098/rstb.1970.0030, 1970.
Straw, A.: Geomorphology of the Kirmington interglacial deposits and the
Immingham channel, north Lincolnshire, Mercian Geologist, 19, 134–140, 2018.
Streif, H.: Quaternary Sea-Level Changes in the North Sea, an Analysis of
Amplitudes and Velocities, in: Earth's Rotation
from Eons to Days, edited by: Brosche, P. and Sünderman, J., 201–214,
https://doi.org/10.1007/978-3-642-75587-3_21, 1990.
Streif, H.: Zum Ausmass und Ablauf eustatischer Meeresspiegelschwankungen im
südlichen Nordseegebiet seit Beginn des Letzten Interglazials, in:
Klimageschichtliche Probleme der letzten 130 000 Jahre, edited by: Frenzel, B.,
Fisher, New York, Stuttgart, 231–249, ISBN 9783437304590, 1991.
Streif, H.: Sedimentary record of Pleistocene and Holocene marine
inundations along the North Sea coast of Lower Saxony, Germany, Quatern.
Int., 112, 3–28, 2004.
Stringer, C. B., Currant, A. P., Schwarcz, H. P., and Collcutt, S. N.: Age of
Pleistocene faunas from Bacon Hole, Wales, Nature, 320, 59–62, 1986.
Sundelin, U.: Fornsjöstudier inom Stångåns och Svartåns
vattenområden med särskild hänsyn till den sen-och postglaciala
klimatutvecklingen, Sveriges geologiska undersökning, 16, 1917.
Sutcliffe, A. J. and Currant, A. P.: Minchin Hole Cave, in: Wales: Gower,
Preseli and Forest Fawr, edited by: Bowen, D. Q. and Henry, A., Quaternary Research
Association Field Guide, Durham, 33–37, 1984.
Sutcliffe, A. J., Currant, A. P., and Stringer, C. B.: Evidence of sea-level
change from coastal caves with raised beach deposits, terrestrial faunas and
dated stalagmites, Prog. Oceanogr., 18, 243–271, 1987.
Sutherland, J. L., Davies, B. J., and Lee, J. R.: A litho-tectonic event
stratigraphy from dynamic Late Devensian ice flow of the North Sea Lobe,
Tunstall, east Yorkshire, UK, P. Geologist. Assoc., 131, 168–186,
https://doi.org/10.1016/j.pgeola.2020.03.001, 2020.
Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell,
J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen,
M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H.,
Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J.,
Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O.,
Polyak, L., Saarnisto, M., Siegert, C., Siegert, M. J., Spielhagen, R. F., and
Stein, R.: Late Quaternary ice sheet history of northern Eurasia, Quaternary
Sci. Rev., 23, 1229–1271, https://doi.org/10.1016/j.quascirev.2003.12.008, 2004.
Tamisiea, M. E., Mitrovica, J. X., Milne, G. A., and Davis, J. L.: Global
geoid and sea level changes due to present-day ice mass fluctuations, J.
Geophys. Res.-Sol. Ea., 106, 30849–30863, https://doi.org/10.1029/2000jb000011, 2001.
Tastet, J. P.: Le Pléistocène de la façade atlantique du
Nord-Médoc (France): état des connaissances sur la lithologie et la
chronostratigraphie des “Argiles du Gurp”, Quaternaire, 10, 199–212,
https://doi.org/10.3406/quate.1999.1643, 1999.
Thomas, G.: Late Middle Pleistocene pollen biostratigraphy in Britain:
Pitfalls and possibilities in the separation of interglacial sequences,
Quaternary Sci. Rev., 20, 1621–1630, https://doi.org/10.1016/S0277-3791(01)00026-9, 2001.
Törnqvist, T. E., Wallinga, J., and Busschers, F. S.:
Timing of the last sequence boundary in a fluvial setting near the highstand
shoreline — Insights from optical dating, Geology, 31, 279–282, 2003.
Toucanne, S., Zaragosi, S., Bourillet, J. F., Marieu, V., Cremer, M.,
Kageyama, M., Van Vliet-Lanoë, B., Eynaud, F., Turon, J.-L., and
Gibbard, P. L.: The first estimation of Fleuve Manche palaeoriver discharge
during the last deglaciation: Evidence for Fennoscandian ice sheet meltwater
flow in the English Channel ca 20–18 ka ago, Earth Planet. Sc. Lett., 290,
459–473, 2010.
Turner, C.: The Eemian interglacial in the North European plain and adjacent
areas, Geol. Mijnbouw/Neth. J. Geosci., 79, 217–231, https://doi.org/10.1017/S0016774600023660, 2000.
Turner, C.: Problems of the duration of the Eemian interglacial in Europe
North of the Alps, Quaternary Res., 58, 45–48, https://doi.org/10.1006/qres.2002.2366, 2002.
Turner, C. and West, R.: The subdivision and zonation of interglacial
periods, Eiszeitalter und Gegenwart, 19, 93–101, 1968.
Turney, C. S. M., Fogwill, C. J., Golledge, N. R., McKay, N. P., van
Sebille, E., Jones, R. T., Etheridge, D., Rubino, M., Thornton, D. P.,
Davies, S. M., Ramsey, C. B., Thomas, Z. A., Bird, M. I., Munksgaard, N. C.,
Kohno, M., Woodward, J., Winter, K., Weyrich, L. S., Rootes, C. M., Millman,
H., Albert, P. G., Rivera, A., van Ommen, T., Curran, M., Moy, A.,
Rahmstorf, S., Kawamura, K., Hillenbrand, C.-D., Weber, M. E., Manning, C.
J., Young, J., and Cooper, A.: Early Last Interglacial ocean warming drove
substantial ice mass loss from Antarctica, P. Natl. A. Sci. USA, 117, 3996–4006,
https://doi.org/10.1073/pnas.1902469117, 2020.
Tzedakis, C.: Timing and duration of Last Interglacial conditions in Europe:
a chronicle of a changing chronology, Quaternary Sci. Rev., 22, 763–768,
https://doi.org/10.1016/S0277-3791(03)00004-0, 2003.
Tzedakis, P. C., Drysdale, R. N., Margari, V., Skinner, L. C., Menviel, L.,
Rhodes, R. H., Taschetto, S., Hodell, D. A., Crowhurst, S. J., Hellstrom, J.
C., Fallick, A. E., Grimalt, J. O., McManus, J. F., Martrat, B., Mokeddem,
Z., Parrenin, F., Regattieri, E., Roe, K., and Zanchetta, G.: Enhanced
climate instability in the North Atlantic and southern Europe during the
Last Interglacial, Nat. Commun., 9, 1–14, https://doi.org/10.1038/s41467-018-06683-3, 2018.
Ussher, W. A. E.: The post-tertiary geology of Cornwall, Stephen Austin and
Sons, Hertford, 1879.
Van Asselen, S., Karssenberg, D., and Stouthamer, E.: Contribution of peat
compaction to relative sea-level rise within Holocene deltas, Geophys. Res.
Lett., 38, L24401, https://doi.org/10.1029/2011gl049835, 2011.
Van de Plassche, O.: Sea-level change and water movements in the Netherlands
during the Holocene, Mededelingen Rijks Geologische Dienst, 36, 1–93, https://puc.overheid.nl/doc/PUC_147237_31 (last access: 19 June 2022), 1982.
Van de Plassche, O.: Sea-Level Research: a manual for the collection and
evaluation of data, GeoBooks, Norwich, 618 pp., https://doi.org/10.1007/978-94-009-4215-8, 1986.
Van de Plassche, O.: Evolution of the intra-coastal tidal range in the
Rhine-Meuse delta and Flevo Lagoon, 5700–3000 yrs cal BC, Mar. Geol.,
124, 113–128, 1995.
Van der Meulen, M. J., Doornenbal, J. C., Gunnink, J. L., Stafleu, J.,
Schokker, J., Vernes, R. W., Van Geer, F. C., Van Gessel, S. F., Van Heteren,
S., Van Leeuwen, R. J. W., and Bakker, M. A.: 3D geology in a 2D country:
perspectives for geological surveying in the Netherlands, Neth. J. Geosci.,
92, 217–241, https://doi.org/10.1017/S0016774600000184, 2013.
Van Leeuwen, R. J., Beets, D. J., Bosch, J. H. A., Burger, A. W.,
Cleveringa, P., Harten, D. V., Herngreen, G. F. W., Kruk, R. W., Langereis,
C. G., Meijer, T., and Pouwer, R.: Stratigraphy and integrated facies
analysis of the Saalian and Eemian sediments in the Amsterdam-Terminal
borehole, the Netherlands, Neth. J. Geosci., 79, 161–196,
https://doi.org/10.1017/S0016774600023647, 2000.
Van Vliet-Lanoë, B., Laurent, M., Bahain, J. L., Balescu, S.,
Falguères, C., Field, M., Hallégouët, B., and Keen, D. H.: Middle
Pleistocene raised beach anomalies in the English Channel: regional and
global stratigraphic implications, J. Geodyn., 29, 15–41,
https://doi.org/10.1016/S0264-3707(99)00063-0, 2000.
Van Vliet-Lanoë, B., Cliquet, D., Auguste, P., Folz, E., Keen, D.,
Schwenninger, J.-L., Mercier, N., Alix, P., Roupin, Y., Meurisse, M., and
Seignac, H.: L'abri sous-roche du Rozel (France, Manche): un habitat de la
phase récente du Paléolithique moyen dans son contexte
géomorphologique, Quaternaire, 17, 207–258, https://doi.org/10.4000/quaternaire.826, 2006.
Vandenberghe, J.: Paleoenvironment and stratigraphy during the Last Glacial
in the Belgian-Dutch border region, Quaternary Res., 24, 23–38, 1985.
Vink, A., Steffen, H., Reinhardt, L., and Kaufmann, G.: Holocene relative
sea-level change, isostatic subsidence and the radial viscosity structure of
the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern
North Sea), Quaternary Sci. Rev., 26, 3249–3275, 2007.
Vis, G. J., Cohen, K. M., Westerhoff, W. E., Veen, J. H. T., Hijma, M. P.,
van der Spek, A. J., and Vos, P. C.: Paleogeography, in: Handbook of
sea-level research, edited by: Shennan, I., Long, A. J., and Horton, B. P.,
John Wiley & Sons, Ltd, Chichester, UK, 514–535, https://doi.org/10.1002/9781118452547.ch33, 2015.
Wallinga, J., Törnqvist, T. E., Busschers, F. S., and Weerts, H. J.:
Allogenic forcing of the late Quaternary Rhine–Meuse fluvial record: the
interplay of sea-level change, climate change and crustal movements, Basin
Res., 16, 535–547, https://doi.org/10.1111/j.1365-2117.2003.00248.x, 2004.
Wesselingh, F., Visser, P., and Meijer, T.: Het Eemien in zuidelijk Flevoland:
een blik in de bodem van het bekken van Amersfoort, Afzettingen WTKG, 31,
https://natuurtijdschriften.nl/pub/567575 (last access: 19 June 2022), 2010.
West, R. G.: Pleistocene Geology and Biology, Longman, ISBN 9780582446205, 1977.
West, R. G. and Godwin, H.: Interglacial deposits at Bobbitshole, Ipswich,
Philos. T. Roy. Soc. B, 241, 1–31,
https://doi.org/10.1098/rstb.1957.0006, 1957.
West, R. G. and Sparks, B. W.: Coastal interglacial deposits of the English
Channel, Philos. T. Roy Soc. B, 243, 95–133, 1960.
West, R. G., Andrew, R., Catt, J. A., Hart, C. P., Hollin, J. T., Knudsen,
K. L., Miller, G., Penney, D. N., Pettit, M., Preece, R. C., Switsur, V. R.,
Whiteman, C. A., and Zhou, L. P.: Late and Middle Pleistocene deposits at
Somersham, Cambridgeshire, U.K.: a model for reconstructing
fluvial/estuarine depositional environments, Quaternary Sci. Rev., 18,
1247–1314, 1999.
Westaway, R., Maddy, D., and Bridgland, D.: Flow in the lower continental
crust as a mechanism for the Quaternary uplift of south-east England:
constraints from the Thames terrace record, Quaternary Sci. Rev., 21,
559–603, 2002.
Westaway, R., Bridgland, D., and White, M.: The Quaternary uplift history of
central southern England: evidence from the terraces of the Solent River
system and nearby raised beaches, Quaternary Sci. Rev., 25,
2212–2250, 2006.
Weston, C. H.: On the sub-escarpments of the Ridgeway Range and their
contemporary deposits in the Isle of Portland, Quarterly J. Geol. Soc.
London, 8, 110–120, 1852.
Whitaker, W., Skertchly, S. B. J., and Jukes-Browne, A. J.: The geology of south-western
Norfolk and of northern Cambridgeshire, (Explanation of sheet 65), H.M. Stationary Off, London, https://pubs.bgs.ac.uk/publications.html?pubID=B01415 (last access: 19 June 2022), 1893.
Winn, K. and Erlenkeuser, H.: Das Eem Meer in Norddeutschland: Die
Kernbohrungen bei Dagebüll–Erstergebnisse, Meyniana, 47, 101–113,
https://doi.org/10.2312/meyniana.1995.47.101, 1995.
Winn, K. and Erlenkeuser, H. (Eds.): Das Eem-Meer in Norddeutschland und
angrenzenden Gebieten: Aufbau einer stratigraphischen Feingliederung und
Untersuchung der palaeohydrographischen Entwicklung nach isotopischen,
sedimentologischen, geochemischen und faunistischen Kriterien
Abschlussbericht zum DFG-Forschungsvorhaben Wi 1322/1-1,-2,
Christian-Albrechts-Universitaet, Kiel, Germany, http://hdl.handle.net/10013/epic.46007.d001, 1998.
Winn, K., Glos, R., Averdieck, F.-R., and Erlenkeuser, H.: On the age of the
marine Eem in northwestern Germany, Geologos, 5, 41–56, 2000.
Woodroffe, S. A. and Barlow, N. L.: Reference water level and tidal datum,
in: Handbook of sea-level research, edited by: Shennan, I., Long, A. J., and
Horton, B. P., John Wiley & Sons, Ltd, Chichester, UK, 171–180, https://doi.org/10.1002/9781118452547.ch11, 2015.
Woodward, H. B., Blake, J. H., Bristow, H. W., Rutley, F., and Ussher, W. A. E.:
Geology of the east Somerset and the Bristol Coalfields, Memoirs of the
Geological Survey, London,
https://pubs.bgs.ac.uk/publications.html?pubID=B01840 (last access: 19 June 2022), 1876.
Yokoyama, Y. and Purcell, A.: On the geophysical processes impacting
palaeo-sea-level observations, Geosci. Lett., 8, 13,
https://doi.org/10.1186/s40562-021-00184-w, 2021.
Zagwijn, W. H.: Vegetation, climate and radiocarbon datings in the late
Pleistocene of the Netherlands: I. Eemian and early Weichselian,
Mededelingen van de Geologische Stichting Nieuwe Serie 14, 15–45, 1961.
Zagwijn, W. H.: Sea-level changes in the Netherlands during the Eemian,
Geol. Mijnbouw, 62, 437–450, 1983.
Zagwijn, W. H.: An analysis of Eemian climate in western and central Europe,
Quaternary Sci. Rev., 15, 451–469, https://doi.org/10.1016/0277-3791(96)00011-X, 1996.
Zecchin, M., Nalin, R., and Roda, C.: Raised Pleistocene marine terraces of
the Crotone peninsula (Calabria, southern Italy): facies analysis and
organization of their deposits, Sediment. Geol., 172, 165–185, 2004.
Zeuner, F. E.: Cervus elaphus jerseyensis and other fauna in the 25 ft beach
of Belle Hougue Cave, Bulletin de la Société
Jerseiaise, 14, 238–254, 1946.
Zong, Y. and Horton, B. P.: Diatom zones across intertidal flats and
coastal saltmarshes in Britain, Diatom Res., 13, 375–394, 1998.
Short summary
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000 years ago). From 80 known sites in and around the North Sea and English Channel (from below coastal plains, from along terraced parts of coastlines, from offshore), we provide and document 146 data points (35 entries in the Netherlands, 10 in Belgium, 23 in Germany, 17 in Denmark, 36 in Britain and the Channel Isles, 25 in France) that are also viewable at https://warmcoasts.eu/world-atlas.html.
We describe a geological sea-level dataset for the Last Interglacial period (peaking ~125 000...
Special issue
Altmetrics
Final-revised paper
Preprint