Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-2303-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers
Yongqin Liu
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou 730000, China
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China
Pengcheng Fang
Key Laboratory of Virtual Geographic Environment (Nanjing Normal
University), Ministry of Education, Nanjing 210023, China
Bixi Guo
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou 730000, China
Pengfei Liu
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou 730000, China
Guannan Mao
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China
Baiqing Xu
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing 100101, China
Shichang Kang
State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou 730000, China
Related authors
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, and Mukan Ji
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-395, https://doi.org/10.5194/essd-2023-395, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Based on marker gene, metagenome, and cultivated genome sequencing, the dataset contains 67,224 bacterial and archaeal species, 2,517 potential pathogens, 62,595,715 unique genes, and 4,327 microbial genomes of bacteria and archaea from Antarctic, Arctic, and Tibetan glaciers. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Zhongyi Zhang, Chunxiang Ye, Yichao Wu, Tao Zhou, Pengfei Chen, Shichang Kang, Chong Zhang, Zhuang Jiang, and Lei Geng
Atmos. Chem. Phys., 25, 10625–10641, https://doi.org/10.5194/acp-25-10625-2025, https://doi.org/10.5194/acp-25-10625-2025, 2025
Short summary
Short summary
This study reveals unexpectedly high levels of particulate nitrite at the Base Camp of Mt. Qomolangma, which overwhelmingly exists in coarse mode, and demonstrates that lofted surface soil and long-range transported pollutants contribute to the high levels of nitrite. The high particulate nitrite is likely to participate in atmospheric reactive nitrogen cycling through gas-particle partitioning or photolysis, leading to production of HONO, OH and NO and thereby influencing oxidation chemistry.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144, https://doi.org/10.5194/egusphere-2024-1144, 2024
Preprint archived
Short summary
Short summary
Long-term variations in upper atmospheric temperature and water vapor in the selected domains of time and space are presented. The temperature during the past two decades showed a cooling trend and water vapor showed an increasing trend and had an inverse relation with temperature in selected domains of space and time. Seasonal temperature variations are distinct, with a summer minimum and a winter maximum. Our results can be an early warning indication for future climate change.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Yuling Hu, Haipeng Yu, Shichang Kang, Junhua Yang, Mukesh Rai, Xiufeng Yin, Xintong Chen, and Pengfei Chen
Atmos. Chem. Phys., 24, 85–107, https://doi.org/10.5194/acp-24-85-2024, https://doi.org/10.5194/acp-24-85-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP) saw a record-breaking aerosol pollution event from April 20 to May 10, 2016. We studied the impact of aerosol–meteorology feedback on the transboundary transport flux of black carbon (BC) during this severe pollution event. It was found that the aerosol–meteorology feedback decreases the transboundary transport flux of BC from the central and western Himalayas towards the TP. This study is of great significance for the protection of the ecological environment of the TP.
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, and Mukan Ji
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-395, https://doi.org/10.5194/essd-2023-395, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Based on marker gene, metagenome, and cultivated genome sequencing, the dataset contains 67,224 bacterial and archaeal species, 2,517 potential pathogens, 62,595,715 unique genes, and 4,327 microbial genomes of bacteria and archaea from Antarctic, Arctic, and Tibetan glaciers. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Xiufeng Yin, Dipesh Rupakheti, Guoshuai Zhang, Jiali Luo, Shichang Kang, Benjamin de Foy, Junhua Yang, Zhenming Ji, Zhiyuan Cong, Maheswar Rupakheti, Ping Li, Yuling Hu, and Qianggong Zhang
Atmos. Chem. Phys., 23, 10137–10143, https://doi.org/10.5194/acp-23-10137-2023, https://doi.org/10.5194/acp-23-10137-2023, 2023
Short summary
Short summary
The monthly mean surface ozone concentrations peaked earlier in the south in April and May and later in the north in June and July over the Tibetan Plateau. The migration of monthly surface ozone peaks was coupled with the synchronous movement of tropopause folds and the westerly jet that created conditions conducive to stratospheric ozone intrusion. Stratospheric ozone intrusion significantly contributed to surface ozone across the Tibetan Plateau.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
Huiming Lin, Yindong Tong, Long Chen, Chenghao Yu, Zhaohan Chu, Qianru Zhang, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Junfeng Liu, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 23, 3937–3953, https://doi.org/10.5194/acp-23-3937-2023, https://doi.org/10.5194/acp-23-3937-2023, 2023
Short summary
Short summary
Lhasa is the largest city in the Tibetan Plateau, and its atmospheric mercury concentrations represent the highest level of pollution in this region. Unexpectedly high concentrations of atmospheric mercury species were found. Combined with the trajectory analysis, the high atmospheric mercury concentrations may have originated from external long-range transport. Local sources, especially special mercury-related sources, are important factors influencing the variability of atmospheric mercury.
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
Jizu Chen, Wentao Du, Shichang Kang, Xiang Qin, Weijun Sun, Yang Li, Yushuo Liu, Lihui Luo, and Youyan Jiang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-179, https://doi.org/10.5194/tc-2022-179, 2022
Preprint withdrawn
Short summary
Short summary
This study developed a dynamic deposition model of light absorbing particles (LAPs), which coupled with a surface energy and mass balance model. Based on the coupled model, we assessed atmospheric deposited BC effect on glacier melting, and quantified global warming and increment of emitted black carbon respective contributions to current accelerated glacier melting.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, Shichang Kang, and Jianzhong Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-211, https://doi.org/10.5194/essd-2022-211, 2022
Manuscript not accepted for further review
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple short-term intensive field observations. The real-time online high-time-resolution (hourly) data of aerosol properties in the different TP region are integrated in a new dataset and can provide supporting for related studies in in the TP.
Yuying Chen, Keshao Liu, Yongqin Liu, Trista J. Vick-Majors, Feng Wang, and Mukan Ji
The Cryosphere, 16, 1265–1280, https://doi.org/10.5194/tc-16-1265-2022, https://doi.org/10.5194/tc-16-1265-2022, 2022
Short summary
Short summary
We investigated the bacterial communities in surface and subsurface snow samples in a Tibetan Plateau glacier using 16S rRNA gene sequences. Our results revealed rapid temporal changes in nitrogen (including nitrate and ammonium) and bacterial communities in both surface and subsurface snow. These findings advance our understanding of bacterial community variations and bacterial interactions after snow deposition and provide a possible biological explanation for nitrogen dynamics in snow.
Mukesh Rai, Shichang Kang, Junhua Yang, Maheswar Rupakheti, Dipesh Rupakheti, Lekhendra Tripathee, Yuling Hu, and Xintong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-199, https://doi.org/10.5194/acp-2022-199, 2022
Revised manuscript not accepted
Short summary
Short summary
Our study revealed distinctive seasonality with the maximum and minimum aerosol concentrations during the winter and summer seasons respectively. However, interestingly summer high (AOD > 0.8) was observed over South Asia. The highest aerosols are laden over South Asia and East China within 1–2 km, however, aerosol overshooting found up to 10 km due to the deep convection process. Whereas, integrated aerosol transport for OC during spring was found to be 5 times higher than the annual mean.
Jiule Li, Baiqing Xu, Ninglian Wang, Ping Yao, and Xiangke Xu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-43, https://doi.org/10.5194/tc-2022-43, 2022
Manuscript not accepted for further review
Short summary
Short summary
The air bubbles enclosed in the alpine glacier ice could be used to reveal regional climate changes. Thus, we analyzed the δ18O of gaseous oxygen in the ice core air bubbles (δ18Obub) from a glacier in the Tibetan Plateau (TP). We find that there is a good correlation between the variation of the δ18Obub and the accumulation or melting of the glacier. Combined with the chronology of the ice core air bubbles, we reconstruct the glacier variations since the late Holocene in the central TP.
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022, https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Short summary
The Tibetan Plateau is known as
The Third Poleand is generally considered to be a clean area owing to its high altitude. However, it may receive be impacted by air pollutants transported from the Indian subcontinent. Pollutants generally enter the Tibetan Plateau in several ways. Among them is the Yarlung Zangbu–Brahmaputra Grand Canyon. In this study, we identified the influence of the Indian summer monsoon on the origin, transport, and behavior of mercury in this area.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021, https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Short summary
Sea ice is retreating with rapid warming in the Arctic. It will continue and approach the worst predicted pathway released by the IPCC. The irreversible tipping point might show around 2060 when the oldest ice will have completely disappeared. It has a huge impact on human production. Ordinary merchant ships will be able to pass the Northeast Passage and Northwest Passage by the midcentury, and the opening time will advance to the next 10 years for icebreakers with moderate ice strengthening.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Kun Wang, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang
Atmos. Chem. Phys., 21, 8357–8376, https://doi.org/10.5194/acp-21-8357-2021, https://doi.org/10.5194/acp-21-8357-2021, 2021
Short summary
Short summary
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and decipher the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by conditions of high cloud water pH.
Mukan Ji, Weidong Kong, Chao Liang, Tianqi Zhou, Hongzeng Jia, and Xiaobin Dong
The Cryosphere, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020, https://doi.org/10.5194/tc-14-3907-2020, 2020
Short summary
Short summary
Old permafrost soil usually has more carbohydrates, while younger soil contains more aliphatic carbons, which substantially impacts soil bacterial communities. However, little is known about how permafrost age and thawing drive microbial communities. We found that permafrost thawing significantly increased bacterial richness in young permafrost and changed soil bacterial compositions at all ages. This suggests that thawing results in distinct bacterial species and alters soil carbon degradation.
Cited articles
Anesio, A. M. and Laybourn-Parry, J.: Glaciers and ice sheets as a biome,
Trends Ecol. Evol., 27, 219–225, https://doi.org/10.1016/j.tree.2011.09.012, 2012.
Anesio, A. M., Lutz, S., Chrismas, N. A. M., and Benning, L. G.: The
microbiome of glaciers and ice sheets, npj Biofilms Microbiomes, 3, 10,
https://doi.org/10.1038/s41522-017-0019-0, 2017.
Chen, Y., Liu, K., Liu, Y., Vick-Majors, T. J., Wang, F., and Ji, M.: Temporal variation of bacterial community and nutrients in Tibetan glacier snowpack, The Cryosphere, 16, 1265–1280, https://doi.org/10.5194/tc-16-1265-2022, 2022.
Dubnick, A., Wadham, J., Tranter, M., Sharp, M., Orwin, J., Barker, J.,
Bagshaw, E., and Fitzsimons, S.: Trickle or treat: The dynamics of nutrient
export from polar glaciers, Hydrol. Process., 31, 1776–1789,
https://doi.org/10.1002/hyp.11149, 2017.
Fell, S. C., Carrivick, J. L., Cauvy-Fraunié, S., Crespo-Pérez, V.,
Hood, E., Randall, K. C., Nicholass, K. J. M., Tiegs, S. D., Dumbrell, A.
J., and Brown, L. E.: Fungal decomposition of river organic matter
accelerated by decreasing glacier cover, Nat. Clim. Change, 11, 349–353,
https://doi.org/10.1038/s41558-021-01004-x, 2021.
Fellman, J. B., Hood, E., Raymond, P. A., Hudson, J., Bozeman, M., and
Arimitsu, M.: Evidence for the assimilation of ancient glacier organic
carbon in a proglacial stream food web, Limnol. Oceanogr., 60, 1118–1128,
https://doi.org/10.1002/lno.10088, 2015.
Fillinger, L., Hürkamp, K., Stumpp, C., Weber, N., Forster, D.,
Hausmann, B., Schultz, L., and Griebler, C.: Spatial and Annual Variation in
Microbial Abundance, Community Composition, and Diversity Associated With
Alpine Surface Snow, Front. Microbiol., 12, 781904,
https://doi.org/10.3389/fmicb.2021.781904, 2021.
Gao, T., Kang, S., Zhang, Y., Sprenger, M., Wang, F., Du, W., Wang, X., and
Wang, X.: Characterization, sources and transport of dissolved organic
carbon and nitrogen from a glacier in the Central Asia, Sci. Total Environ.,
725, 138346, https://doi.org/10.1016/j.scitotenv.2020.138346, 2020.
Greenberg, A. E., Clesceri, L. S., and Andrew, D. E.: Standard methods for the examination of water and wastewater, 18th edn., American Public Health Association, Washington, DC, USA, ISBN 0875532071, 1992.
Hammes, F., Berney, M., Wang, Y., Vital, M., Köster, O., and Egli, T.:
Flow-cytometric total bacterial cell counts as a descriptive microbiological
parameter for drinking water treatment processes, Water Res., 42, 269–277,
https://doi.org/10.1016/j.watres.2007.07.009, 2008.
Hodson, A., Anesio, A. M., Tranter, M., Fountain, A., Osborn, M., Priscu,
J., Laybourn-Parry, J., and Sattler, B.: Glacial ecosystems, Ecol. Monogr.,
78, 41–67, https://doi.org/10.1890/07-0187.1, 2008.
Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R.,
D'Amore, D., and Scott, D.: Glaciers as a source of ancient and labile
organic matter to the marine environment, Nature, 462, 1044–1047,
https://doi.org/10.1038/nature08580, 2009.
Hood, E., Battin, T. J., Fellman, J., O'Neel, S., and Spencer, R. G. M.:
Storage and release of organic carbon from glaciers and ice sheets, Nat.
Geosci., 8, 91–96, https://doi.org/10.1038/ngeo2331, 2015.
Hu, Z., Kang, S., Yan, F., Zhang, Y., Li, Y., Chen, P., Qin, X., Wang, K.,
Gao, S., and Li, C.: Dissolved organic carbon fractionation accelerates
glacier-melting: A case study in the northern Tibetan Plateau, Sci. Total
Environ., 627, 579–585, https://doi.org/10.1016/j.scitotenv.2018.01.265,
2018.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change
Will Affect the Asian Water Towers, Science, 328, 1382,
https://doi.org/10.1126/science.1183188, 2010.
Irvine-Fynn, T. D. L., Edwards, A., Stevens, I. T., Mitchell, A. C.,
Bunting, P., Box, J. E., Cameron, K. A., Cook, J. M., Naegeli, K., Rassner,
S. M. E., Ryan, J. C., Stibal, M., Williamson, C. J., and Hubbard, A.:
Storage and export of microbial biomass across the western Greenland Ice
Sheet, Nat. Commun., 12, 3960, https://doi.org/10.1038/s41467-021-24040-9,
2021.
Kang, S., Zhang, Y., Chen, P., Guo, J., Zhang, Q., Cong, Z., Kaspari, S., Tripathee, L., Gao, T., Niu, H., Zhong, X., Chen, X., Hu, Z., Li, X., Li, Y., Neupane, B., Yan, F., Rupakheti, D., Gul, C., Zhang, W., Wu, G., Yang, L., Wang, Z., and Li, C.: Black carbon and organic carbon dataset over the Third Pole, Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, 2022.
Kellogg, C. A. and Griffin, D. W.: Aerobiology and the global transport of
desert dust, Trends Ecol. Evol., 21, 638–644,
https://doi.org/10.1016/j.tree.2006.07.004, 2006.
Lazzaro, A., Wismer, A., Schneebeli, M., Erny, I., and Zeyer, J.: Microbial
abundance and community structure in a melting alpine snowpack,
Extremophiles, 19, 631–642, https://doi.org/10.1007/s00792-015-0744-3,
2015.
Li, X., Ding, Y., Xu, J., He, X., Han, T., Kang, S., Wu, Q., Mika, S., Yu,
Z., and Li, Q.: Importance of Mountain Glaciers as a Source of Dissolved
Organic Carbon, J. Geophys. Res.-Earth, 123, 2123–2134,
https://doi.org/10.1029/2017JF004333, 2018.
Liu, K., Liu, Y., Hu, A., Wang, F., Zhang, Z., Yan, Q., Ji, M., and
Vick-Majors, T. J.: Fate of glacier surface snow-originating bacteria in the
glacier-fed hydrologic continuums, Environ. Microbiol., 23, 6450–6462,
https://doi.org/10.1111/1462-2920.15788, 2021.
Liu, S., Yao, X., Guo, W., Xu, J., Shangguan, D., Wei., J., Bao., W., and
Wu., L.: The contemporary glaciers in China based on the Second Chinese
Glacier Inventory, Acta Geographica Sinica, 70, 3–16, 2015 (in Chinese).
Liu, Y.: Dataset of microbial abundance, dissolved organic carbon, and total
nitrogen in Tibetan Plateau glaciers, National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Cryos.tpdc.271841, 2021.
Liu, Y., Priscu, J. C., Yao, T., Vick-Majors, T. J., Xu, B., Jiao, N.,
Santibáñez, P., Huang, S., Wang, N., Greenwood, M., Michaud, A. B.,
Kang, S., Wang, J., Gao, Q., and Yang, Y.: Bacterial responses to
environmental change on the Tibetan Plateau over the past half century,
Environ. Microbiol., 18, 1930–1941, https://doi.org/10.1111/1462-2920.13115,
2016a.
Liu, Y., Xu, J., Kang, S., Li, X., and Li, Y.: Storage of dissolved organic
carbon in Chinese glaciers, J. Glaciol., 62, 402–406,
https://doi.org/10.1017/jog.2016.47, 2016b.
Liu, Y. W., Xu-Ri, Wang, Y. S., Pan, Y. P., and Piao, S. L.: Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau, Atmos. Chem. Phys., 15, 11683–11700, https://doi.org/10.5194/acp-15-11683-2015, 2015.
Mao, G., Ji, M., Xu, B., Liu, Y., and Jiao, N.: Variation of High and Low
Nucleic Acid-Content Bacteria in Tibetan Ice Cores and Their Relationship to
Black Carbon, Front. Microbiol., 13, 844432,
https://doi.org/10.3389/fmicb.2022.844432, 2022.
Marie, D., Partensky, F., Jacquet, S., and Vaulot, D.: Enumeration and cell
cycle analysis of natural populations of marine picoplankton by flow
cytometry using the nucleic acid stain SYBR Green I, Appl. Environ.
Microbiol., 63, 186–193, 1997.
Miteva, V., Teacher, C., Sowers, T., and Brenchley, J.: Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates, Environ. Microbiol., 11, 640–656, https://doi.org/10.1111/j.1462-2920.2008.01835.x, 2009.
Prest, E. I., Hammes, F., Kötzsch, S., van Loosdrecht, M. C. M., and
Vrouwenvelder, J. S.: Monitoring microbiological changes in drinking water
systems using a fast and reproducible flow cytometric method, Water Res.,
47, 7131–7142, https://doi.org/10.1016/j.watres.2013.07.051, 2013.
Santibáñez, P. A., Mcconnell, J. R., and Priscu, J. C.: A flow cytometric
method to measure prokaryotic records in ice cores: an example from the West
Antarctic Ice Sheet Divide drilling site, J. Glaciol., 62, 655–673,
https://doi.org/10.1017/jog.2016.50, 2016.
Shi., Y. and Liu., S.: Estimation of the response of Chinese glaciers to
global warming in the 21st century, Sci. Bull., 45, 434–438, 2000 (in
Chinese).
Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P.,
Dittmar, T., and Battin, T. J.: Biogeochemically diverse organic matter in
Alpine glaciers and its downstream fate, Nat. Geosci., 5, 710–714,
https://doi.org/10.1038/ngeo1581, 2012.
Smith, H. J., Foster, R. A., McKnight, D. M., Lisle, J. T., Littmann, S.,
Kuypers, M. M. M., and Foreman, C. M.: Microbial formation of labile organic
carbon in Antarctic glacial environments, Nat. Geosci., 10, 356–359,
https://doi.org/10.1038/ngeo2925, 2017.
Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W., Zhang, Q., Canagaratna, M. R., Allan, J., Coe, H., McFiggans, G., Rap, A., and Forster, P.: Aerosol mass spectrometer constraint on the global secondary organic aerosol budget, Atmos. Chem. Phys., 11, 12109–12136, https://doi.org/10.5194/acp-11-12109-2011, 2011.
Telling, J., Anesio, A. M., Tranter, M., Irvine-Fynn, T., Hodson, A.,
Butler, C., and Wadham, J.: Nitrogen fixation on Arctic glaciers, Svalbard,
J. Geophys. Res.-Biogeo., 116, G03039, https://doi.org/10.1029/2010JG001632,
2011.
Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T., and Jouzel, J.:
Tibetan Plateau summer monsoon northward extent revealed by measurements of
water stable isotopes, J. Geophys. Res.-Atmos., 106, 28081–28088, 2001.
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016.
Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I.,
Vrouwenvelder, J. S., Knezev, A., Boon, N., and Hammes, F.: Flow cytometric
bacterial cell counts challenge conventional heterotrophic plate counts for
routine microbiological drinking water monitoring, Water Res., 113, 191–206,
https://doi.org/10.1016/j.watres.2017.01.065, 2017.
Wang, Q., Yi, S., and Sun, W.: Continuous Estimates of Glacier Mass Balance
in High Mountain Asia Based on ICESat-1,2 and GRACE/GRACE Follow-On Data,
Geophys. Res. Lett., 48, e2020GL090954,
https://doi.org/10.1029/2020GL090954, 2021.
Xiang, S.-R., Shang, T.-C., Chen, Y., Jing, Z.-F., and Yao, T.: Changes in
diversity and biomass of bacteria along a shallow snow pit from Kuytun 51
Glacier, Tianshan Mountains, China, J. Geophys. Res.-Biogeo., 114, G04008,
https://doi.org/10.1029/2008JG000864, 2009.
Yan, F., Wang, P., Kang, S., Chen, P., Hu, Z., Han, X., Sillanpää,
M., and Li, C.: High particulate carbon deposition in Lhasa – a typical city
in the Himalayan–Tibetan Plateau due to local contributions, Chemosphere,
247, 125843, https://doi.org/10.1016/j.chemosphere.2020.125843, 2020.
Yao, T., Xiang, S., Zhang, X., Wang, N., and Wang, Y.: Microorganisms in the
Malan ice core and their relation to climatic and environmental changes,
Global Biogeochem. Cy., 20, GB1004, https://doi.org/10.1029/2004GB002424, 2006.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan,
K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak,
D.: Different glacier status with atmospheric circulations in Tibetan
Plateau and surroundings, Nat. Clim. Change, 2, 663–667,
https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau,
W. K.-M., Lettenmaier, D., and Mosbrugger, V.: Recent third pole's rapid
warming accompanies cryospheric melt and water cycle intensification and
interactions between monsoon and environment: Multidisciplinary approach
with observations, modeling, and analysis, B. Am. Meteorol. Soc., 100,
423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019.
Zhang, S. H., Hou, S. G., Yang, G. L., and Wang, J. H.: Bacterial community
in the East Rongbuk Glacier, Mt. Qomolangma (Everest) by culture and
culture-independent methods, Microbiol. Res., 165, 336–345,
https://doi.org/10.1016/j.micres.2009.08.002, 2010.
Zhang, X. F., Yao, T. D., Tian, L. D., Xu, S. J., and An, L. Z.:
Phylogenetic and Physiological Diversity of Bacteria Isolated from
Puruogangri Ice Core, Microb. Ecol., 55, 476–488,
https://doi.org/10.1007/s00248-007-9293-3, 2008.
Zhang, Y., Kang, S., Wei, D., Luo, X., Wang, Z., and Gao, T.: Sink or
source? Methane and carbon dioxide emissions from cryoconite holes,
subglacial sediments, and proglacial river runoff during intensive glacier
melting on the Tibetan Plateau, Fundam. Res., 1, 232–239,
https://doi.org/10.1016/j.fmre.2021.04.005, 2021.
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study...
Special issue
Altmetrics
Final-revised paper
Preprint