Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-13-4711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The NIEER AVHRR snow cover extent product over China – a long-term daily snow record for regional climate research
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Guanghui Huang
College of Earth and Environmental Sciences, Lanzhou University,
Lanzhou 730000, China
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Wenzheng Ji
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Xingliang Sun
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Engineering Laboratory for National Geographic State Monitoring,
Lanzhou Jiaotong University, Lanzhou 730070, China
Qin Zhao
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Hongyu Zhao
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Jian Wang
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Hongyi Li
Heihe Remote Sensing Experimental Research Station, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Key Laboratory of Remote Sensing of Gansu Province, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Qian Yang
School of Geomatics and Prospecting Engineering, Jilin Jianzhu
University, Changchun 130118, China
Related authors
Lue Li, Qian Yang, Meng Cui, Huanjun Liu, Xiaohua Hao, Yiyang Peng, and Junyi Chang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2951, https://doi.org/10.5194/egusphere-2025-2951, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study explored how snow cover changes affect cropland productivity in Northeast China. Using long-term satellite data, we found that snow duration and melt timing strongly influence plant growth. Longer snow cover improved productivity in dry farmlands, while later snowmelt was more important for rice paddies. These results highlight the importance of snow for supporting food production under changing climate conditions.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Lue Li, Qian Yang, Meng Cui, Huanjun Liu, Xiaohua Hao, Yiyang Peng, and Junyi Chang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2951, https://doi.org/10.5194/egusphere-2025-2951, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study explored how snow cover changes affect cropland productivity in Northeast China. Using long-term satellite data, we found that snow duration and melt timing strongly influence plant growth. Longer snow cover improved productivity in dry farmlands, while later snowmelt was more important for rice paddies. These results highlight the importance of snow for supporting food production under changing climate conditions.
Xufeng Wang, Tao Che, Jingfeng Xiao, Tonghong Wang, Junlei Tan, Yang Zhang, Zhiguo Ren, Liying Geng, Haibo Wang, Ziwei Xu, Shaomin Liu, and Xin Li
Earth Syst. Sci. Data, 17, 1329–1346, https://doi.org/10.5194/essd-17-1329-2025, https://doi.org/10.5194/essd-17-1329-2025, 2025
Short summary
Short summary
In this study, carbon flux and auxiliary meteorological data are post-processed to create an analysis-ready dataset for 34 sites across six ecosystems in the Heihe River basin. Overall, 18 sites have multi-year observations, while 16 were observed only during the 2012 growing season, totaling 1513 site months. This dataset can be used to explore carbon exchange, assess ecosystem responses to climate change, support upscaling studies, and evaluate carbon cycle models.
Xia Wang, Tao Che, Xueyin Ruan, Shanna Yue, Jing Wang, Chun Zhao, and Lei Geng
Geosci. Model Dev., 18, 651–670, https://doi.org/10.5194/gmd-18-651-2025, https://doi.org/10.5194/gmd-18-651-2025, 2025
Short summary
Short summary
We employed the WRF-Chem model to parameterize atmospheric nitrate deposition in snow and evaluate its performance in simulating snow cover, snow depth, and concentrations of dust and nitrate using new observations from northern China. The results generally exhibit reasonable agreement with field observations in northern China, demonstrating the model's capability to simulate snow properties, including concentrations of reservoir species.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Huadong Wang, Xueliang Zhang, Pengfeng Xiao, Tao Che, Zhaojun Zheng, Liyun Dai, and Wenbo Luan
The Cryosphere, 17, 33–50, https://doi.org/10.5194/tc-17-33-2023, https://doi.org/10.5194/tc-17-33-2023, 2023
Short summary
Short summary
The geographically and temporally weighted neural network (GTWNN) model is constructed for estimating large-scale daily snow density by integrating satellite, ground, and reanalysis data, which addresses the importance of spatiotemporal heterogeneity and a nonlinear relationship between snow density and impact variables, as well as allows us to understand the spatiotemporal pattern and heterogeneity of snow density in different snow periods and snow cover regions in China from 2013 to 2020.
Hui Guo, Xiaoyan Wang, Zecheng Guo, Gaofeng Zhu, Tao Che, Jian Wang, Xiaodong Huang, Chao Han, and Zhiqi Ouyang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-229, https://doi.org/10.5194/tc-2022-229, 2022
Revised manuscript not accepted
Short summary
Short summary
Snow phenology is a seasonal pattern in snow cover and snowfall. In this review, we found that during the past 50 years in the Northern Hemisphere, the snow cover end date has shown a significantly advanced change trend. Eurasia contributes more to the snow phenology in the Northern Hemisphere than does North America. Snow phenology is related to climate and atmospheric circulation, and the response to vegetation phenology depends on geographical regions, temperature and precipitation gradients.
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022, https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
Short summary
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect ground-based passive microwave and optical remote-sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in continuously providing electromagnetic and physical features of snowpack and environment. The dataset is expected to serve the evaluation and development of microwave radiative transfer models and snow process models, along with land surface process models.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Donghang Shao, Hongyi Li, Jian Wang, Xiaohua Hao, Tao Che, and Wenzheng Ji
Earth Syst. Sci. Data, 14, 795–809, https://doi.org/10.5194/essd-14-795-2022, https://doi.org/10.5194/essd-14-795-2022, 2022
Short summary
Short summary
The temporal series and spatial distribution discontinuity of the existing snow water equivalent (SWE) products in the pan-Arctic region severely restricts the use of SWE data in cryosphere change and climate change studies. Using a ridge regression machine learning algorithm, this study developed a set of spatiotemporally seamless and high-precision SWE products. This product could contribute to the study of cryosphere change and climate change at large spatial scales.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Qian Yang, Kaishan Song, Xiaohua Hao, Zhidan Wen, Yue Tan, and Weibang Li
The Cryosphere, 14, 3581–3593, https://doi.org/10.5194/tc-14-3581-2020, https://doi.org/10.5194/tc-14-3581-2020, 2020
Short summary
Short summary
Using daily ice records of 156 hydrological stations across Songhua River Basin, we examined the spatial variability in the river ice phenology and river ice thickness from 2010 to 2015 and explored the role of snow depth and air temperature on the ice thickness. Snow cover correlated with ice thickness significantly and positively when the freshwater was completely frozen. Cumulative air temperature of freezing provides a better predictor than the air temperature for ice thickness modeling.
Cited articles
Arsenault, K. R., Houser, P. R., and De Lannoy, G. J. M.: Evaluation of the MODIS snow cover fraction product, Hydrol. Process., 28, 980–998, https://doi.org/10.1002/hyp.9636, 2014.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.:
Estimating snow-cover trends from space, Nat. Clim. Change, 8, 924–928,
https://doi.org/10.1038/s41558-018-0318-3, 2018.
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T.: Snow depth derived from passive microwave remote-sensing data in China, Ann. Glaciol., 49, 145–154, https://doi.org/10.3189/172756408787814690, 2008.
Chen, S., Wang, X., Guo, H., Xie, P., Wang, J., and Hao, X.: A
Conditional Probability Interpolation Method Based on a Space-Time Cube for
MODIS Snow Cover Products Gap Filling, Remote Sens.-Basel, 12, 3577,
https://doi.org/10.3390/rs12213577, 2020.
Chen, X., Long, D., Liang, S., He, L., Zeng, C., Hao, X., and Hong, Y.: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data, Remote Sens. Environ., 215, 284–299, https://doi.org/10.1016/j.rse.2018.06.021, 2018.
C.M.A: Specifications for Surface Meteorological Observations, China
Meteorological Press, Beijing, 2003.
Cohen, J.: A coefficient of agreement for nominal scales, Educ. Psychol. Meas., 20, 37–46, https://doi.org/10.1177/001316446002000104, 1960.
Dai, L., Che, T., and Ding, Y.: Inter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China, Remote Sens.-Basel, 7, 7212–7230, https://doi.org/10.3390/rs70607212, 2015.
Dong, J., Ek, M., Hall, D., Peters-Lidard, C., Cosgrove, B., Miller, J., Riggs, G., and Xia, Y.: Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental United States, J. Hydrometeorol., 15, 551–562, https://doi.org/10.1175/jhm-d-13-060.1, 2014.
Dozier, J. and Painter, T. H.: Multispectral and hyperspectral remote sensing of alpine snow properties, Annu. Rev. Earth Pl. Sc., 32, 465–494, https://doi.org/10.1146/annurev.earth.32.101802.120404, 2004.
Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., and
Robinson, R. A.: A review of global satellite-derived snow products,
Adv. Space Res., 50, 1007–1029,
https://doi.org/10.1016/j.asr.2011.12.021, 2012.
Gorelick, N.: Google Earth Engine, Gebruiker Woody Bousson, kladblok, 2012.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K. J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194, https://doi.org/10.1016/s0034-4257(02)00095-0, 2002.
Hao, X. H., Luo, S. Q., Che, T., Wang, J., Li, H. Y., Dai, L. Y., Huang, X. D., and Feng, Q. S.: Accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau, Int. J. Digit. Earth, 12, 375–393, https://doi.org/10.1080/17538947.2017.1421721, 2019.
Hao, X., Ji, W., Zhao, Q., Sun, X., Wang, J., Li, H., and Zhao, H.: Daily 5-km Gap-free AVHRR snow cover extent product over China (1981–2019), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Snow.tpdc.271381, 2021.
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.: Enhancements to, and forthcoming developments in the Interactive Multisensor Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586, https://doi.org/10.1002/hyp.6720, 2007.
Hori, M., Aoki, T., Stamnes, K., and Li, W.: ADEOS-II/GLI snow/ice products
– Part III: Retrieved results, Remote Sens. Environ., 111, 291–336,
https://doi.org/10.1016/j.rse.2007.01.025, 2007.
Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K., Niwano, M., and Enomoto, H.: A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors, Remote Sens. Environ., 191, 402–418, https://doi.org/10.1016/j.rse.2017.01.023, 2017.
Huang, G., Li, Z., Li, X., Liang, S., Yang, K., Wang, D., Zhang, Y.: Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. Environ., 233, 111371, https://doi.org/10.1016/j.rse.2019.111371, 2019.
Huang, X., Liang, T., Zhang, X., and Guo, Z.: Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China, Int. J. Remote Sens., 32, 133–152, https://doi.org/10.1080/01431160903439924, 2011.
Huang, Y., Liu, H., Yu, B., We, J., Kang, E. L., Xu, M., Wang, S., Klein, A., and Chen, Y.: Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin, Remote Sens. Environ., 204, 568–582, https://doi.org/10.1016/j.rse.2017.10.001, 2018.
Konig, M., Winther, J. G., and Isaksson, E.: Measuring snow and glacier ice properties from satellite, Rev. Geophys., 39, 1–27, https://doi.org/10.1029/1999rg000076, 2001.
Landis, J. R. and Koch, G. G.: The Measurement Of Observer Agreement For Categorical Data, Biometrics, 33, 159–174, https://doi.org/10.2307/2529310, 1977.
Melgani, F. and Serpico, S. B.: A Markov random field approach to spatio-temporal contextual image classification, IEEE T. Geosci. Remote, 41, 2478–2487, https://doi.org/10.1109/tgrs.2003.817269, 2003.
Metsämäki, S.: Report on Validation of VIIRS-FSC Products against
In-Situ Observations, Finnish Environment Institute, available at: https://sen3app.fmi.fi/project/deliverables/D4_3_ Validation Report_Snow_Boreal.pdf (last access: 1 October 2021), 2016.
Min, W. B., Peng, J., and Li, S. Y.: The evaluation of FY–3C snow products in the Tibetan Plateau, Remote Sensing for Land and Resources, 33, 145–151, https://doi.org/10.6046/gtzyyg.2020102, 2021.
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Copernicus Climate Change Service (C3S), Climate Data Store (CDS), https://doi.org/10.24381/cds.e2161bac, 2019.
Powers, D. and Ailab: Evaluation: From precision, recall and Fmeasure to ROC, informedness, markedness & correlation, International Journal of Machine Learning Technology, 2, 2229–703981, arXiv [preprint], arXiv:2010.16061, 2011.
Ramsay, B. H.: The interactive multisensor snow and ice mapping system, Hydrol. Process., 12, 1537–1546, https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1537::Aid-hyp679>3.0.Co;2-a, 1998.
Riggs, G. A., Hall, D. K., and Román, M. O.: Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records, Earth Syst. Sci. Data, 9, 765–777, https://doi.org/10.5194/essd-9-765-2017, 2017.
Robinson, D. A., Dewey, K. F., and Heim, R. R.: Global Snow Cover Monitoring: An Update, B. Am. Meteorol. Soc., 74, 1689–1696, https://doi.org/10.1175/1520-0477(1993)074<1689:Gscmau>2.0.Co;2, 1993.
Stamnes, K., Li, W., Eide, H., Aoki, T., Hori, M., and Storvold, R.: ADEOS-II/GLI snow/ice products – Part I: Scientific basis, Remote Sens. Environ., 111, 258–273, https://doi.org/10.1016/j.rse.2007.03.023, 2007.
Vermote, E., Justice, C., Csiszar, I., Eidenshink, J., Myneni, R., Baret, F., Masuoka, E., Wolfe, R., and Claverie, M.: NOAA CDR Program (2014): NOAA Climate Data Record (CDR) of AVHRR Surface Reflectance, Version 4, NOAA National Climatic Data Center, https://doi.org/10.7289/V53776Z4, 2014.
Wang, J., Li, H., Hao, X., Huang, X., Hou, J., Che, T., Dai, L., Liang, T., Huang, C., Li, H., Tang, Z., and Wang, Z.: Remote sensing for snow hydrology in China: challenges and perspectives, J. Appl. Remote Sens., 8, 084687, https://doi.org/10.1117/1.JRS.8.084687, 2014.
Wang, X., Hao, X., Wang, J., Che, T., Li, H., and Shao, D.: Accuracy
Evaluation of Long Time Series AVHRR Snow Cover Area Products in China, Remote Sensing Technology and Application, 33, 994–1003,
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2018.6.0994 (last access: 1 October 2021), 2018.
Warren, S. G.: Optical Properties of Snow, Rev. Geophys., 20, 67–89, https://doi.org/10.1029/RG020i001p00067, 1982.
Yamanouchi, T., Suzuki, K., and Kawaguchi, S.: Detection of clouds Antarctica from infrared multispectral data of AVHRR, J. Meteorol. Soc. Jpn., 65, 949–962, https://doi.org/10.2151/jmsj1965.65.6_949, 1987.
Zhang, H., Zhang, F., Zhang, G., Che, T., Yan, W., Ye, M., and Ma, N.: Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold, Sci. Total Environ., 651, 2712–2726, https://doi.org/10.1016/j.scitotenv.2018.10.128, 2019.
Short summary
Long-term snow cover data are not only of importance for climate research. Currently China still lacks a high-quality snow cover extent (SCE) product for climate research. This study develops a multi-level decision tree algorithm for cloud and snow discrimination and gap-filled technique based on AVHRR surface reflectance data. We generate a daily 5 km SCE product across China from 1981 to 2019. It has high accuracy and will serve as baseline data for climate and other applications.
Long-term snow cover data are not only of importance for climate research. Currently China still...
Special issue
Altmetrics
Final-revised paper
Preprint