
Earth Syst. Sci. Data, 13, 4711–4726, 2021
https://doi.org/10.5194/essd-13-4711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The NIEER AVHRR snow cover extent product over China
– a long-term daily snow record for regional

climate research

Xiaohua Hao1,2, Guanghui Huang3, Tao Che1,2, Wenzheng Ji1, Xingliang Sun1,4, Qin Zhao1,
Hongyu Zhao1, Jian Wang1,2, Hongyi Li1,2, and Qian Yang5

1Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
4Engineering Laboratory for National Geographic State Monitoring, Lanzhou Jiaotong University,

Lanzhou 730070, China
5School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, China

Correspondence: Xiaohua Hao (haoxh@lzb.ac.cn)

Received: 5 June 2021 – Discussion started: 1 July 2021
Revised: 5 September 2021 – Accepted: 10 September 2021 – Published: 15 October 2021

Abstract. A long-term Advanced Very High Resolution Radiometer (AVHRR) snow cover extent (SCE) prod-
uct from 1981 until 2019 over China has been generated by the snow research team in the Northwest Institute
of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences. The NIEER AVHRR SCE prod-
uct has a spatial resolution of 5 km and a daily temporal resolution, and it is a completely gap-free product,
which is produced through a series of processes such as the quality control, cloud detection, snow discrimi-
nation, and gap-filling (GF). A comprehensive validation with reference to ground snow-depth measurements
during snow seasons in China revealed the overall accuracy is 87.4 %, the producer’s accuracy was 81.0 %,
the user’s accuracy was 81.3 %, and the Cohen’s kappa (CK) value was 0.717. Another validation with refer-
ence to higher-resolution snow maps derived from Landsat-5 Thematic Mapper (TM) images demonstrates an
overall accuracy of 87.3 %, a producer’s accuracy of 86.7 %, a user’s accuracy of 95.7 %, and a Cohen’s kappa
value of 0.695. These accuracies were significantly higher than those of currently existing AVHRR products.
For example, compared with the well-known JASMES AVHRR product, the overall accuracy increased approx-
imately 15 %, the omission error dropped from 60.8 % to 19.7 %, the commission error dropped from 31.9 %
to 21.3 %, and the CK value increased by more than 114 %. The new AVHRR product is already available at
https://doi.org/10.11888/Snow.tpdc.271381 (Hao et al., 2021).

1 Introduction

Snow cover is closely bound up with our climate. On the
one hand, owing to snow’s unique optical properties (high
albedo) it can affect the surface radiation budget severely
and thereby our climate systems significantly (Warren, 1982;
Huang et al., 2019). On the other hand, changes in climate in
turn affect global and regional snow covers. With the contin-

uous warming of the global climate, snow cover on the Earth
has been clearly shrinking over the past several decades (Bar-
nett et al., 2005; Bormann et al., 2018). Therefore, long-term
snow cover data are not only particularly important for cli-
mate research but also an indispensable indicator of climate
change.

Remote sensing is a widely used tool for monitoring snow
cover extent (SCE) globally and regionally at various spa-
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tial and temporal resolutions (Konig et al., 2001; Dozier and
Painter, 2004; Frei et al., 2012; Wang et al., 2014) since
the beginning of the satellite era in the 1960s. The North-
ern Hemisphere Weekly Snow Cover and Sea Ice Extent
(NHSCE) product provides weekly SCE with spatial reso-
lutions of about 190 km from 1966 to 1997 (Robinson et al.,
1993). Although the time coverage is long, the NHSCE prod-
uct has a low spatiotemporal resolution, hand-drawn snow
line maps, and incomplete spatial coverage due to swath
gaps or cloud obscuration, largely restricting its application
in climate research. With the development of satellite sen-
sors, SCE products with high spatial resolution have been
issued in the last decades, such as the Interactive Multisensor
Snow and Ice Mapping System (IMS), which provides daily
SCE with spatial resolutions of 24, 4, and 1 km from 1997
to the present (Helfrich et al., 2007; Ramsay, 1998). The
Moderate Resolution Imaging Spectroradiometer (MODIS)
provides daily SCE with a spatial resolution of 500 m from
2000 to the present (Hall et al., 2002; Riggs et al., 2017).
The Fengyun daily SCE products have a spatial resolution
of 1 km from 2003 to the present (Min et al., 2021). These
SCE datasets have good quality with a high spatiotemporal
resolution, but their short period is insufficient to create a cli-
matological baseline of snow cover.

The Japan Aerospace Exploration Agency (JAXA) re-
cently issued the long-term SCE product JASMES with a
spatial resolution of 5 km throughout the Northern Hemi-
sphere. This product consists of satellite-derived daily,
weekly, and half-monthly averaged global snow covers de-
rived from 5 km resampled radiance data of Advanced Very
High Resolution Radiometer (AVHRR) Global Area Cover-
age (GAC) radiance data on board NOAA series satellites
(1978–2001) and MODIS on board the Terra and Aqua satel-
lites (2000–the present) (Hori et al., 2017). Although the
JASMES product presented a long time series and signif-
icantly enhanced spatial and temporal resolutions, several
shortcomings have been found. (1) The JASMES product
uses AVHRR before 2000 and MODIS data after 2000. Al-
though calibrated by the authors, the bandwidths of the two
sensors are not consistent, and using the same algorithms
for both can cause discontinuities in the data. (2) Previous
work showed that the JASMES snow product has an exces-
sive cloud mask which would cause a considerable number
of snow pixels to be misidentification as cloud pixels (Wang
et al., 2018). (3) JASMES snow algorithm tended to un-
derestimate snow in China, especially on the Qinghai–Tibet
Plateau (Wang et al., 2018). (4) Finally, JASMES SCE ex-
hibits incomplete spatial coverage caused by clouds and data
gaps. These shortcomings limit its application in snow mon-
itoring and climate studies in China. Thus, China still lacks
a high-quality, long-term SCE product with complete spatial
coverage for climate research.

Therefore, a new daily 5 km gap-free AVHRR snow cover
extent product for China was produced based on the Google
Earth Engine platform from 1981 to 2019. The new prod-

uct provides a long time series of SCE with high quality for
China and makes six improvements. (1) The Climate Data
Record (CDR) of AVHRR surface reflectance (SR) is used as
a data source after 2000 rather than MODIS to ensure prod-
uct continuity. (2) Considering sensor attenuation of Band
11 before and after 2000, the algorithm chooses different
training samples and discriminant thresholds separately. (3)
An improved cloud detection test and new thresholds are
obtained by a volume of training data which can solve the
snow/cloud confusion. (4) A multi-level decision tree for the
snow discrimination algorithm is applied which significantly
improved snow discrimination accuracy. (5) Improved gap-
filling (GF) strategies are adopted to obtain complete snow
coverage. (6) Land surface temperature (LST) reanalysis is
used to exclude the false snow identification. Due to these
improvements, the new AVHRR SCE product may serve as a
baseline record for climate and other related applications.

2 Datasets and preprocessing

2.1 AVHRR surface reflectance CDR

The NOAA CDR of AVHRR Surface Reflectance Version 4
(AVHRR SR V4) was used as basic input data. AVHRR SR
V4 is generated using AVHRR GAC Level 1B data through
geolocation, calibration, and atmospheric correction, and it
has latitudinal and longitudinal dimensions of 3600× 7200,
covering the globe at 0.05◦ spatial resolution (Vermote et al.,
2014). The dataset contains surface reflectance, brightness,
temperatures, and quality control flags for the period be-
tween 24 June 1981 and 16 May 2019. Google established
the Google Earth Engine (GEE) cloud computing platform
in 2012. GEE enables academics to quickly access mas-
sive amounts of remote sensing data without downloading it,
which could support scientific analysis and visualization of
geospatial datasets at petabyte scale (Gorelick, 2012). In this
study, all AVHRR SR V4 images were processed by GEE
cloud platform. The reflectance, brightness, and temperature
data are described in Table 1. The quality control flags are
summarized in Table 3.

2.2 Landsat-5 TM snow map

This study used two groups of Landsat-5 Thematic Map-
per (TM) maps across China from 1985 to 2013. The first
group was used as “true” values to acquire the training data
of AVHRR surface reflectance. TM snow maps were pro-
duced by the improved “SNOMAP” algorithm developed
by Chen et al. (2020) for the snow season (beginning on
1 November through 31 March of the following year). Each
map contained three classes, namely snow, non-snow, and
cloud. Considering sensor attenuation before and after 2000,
the algorithm chose different TM images separately. Table 2
shows the number of Landsat-5 TM scenes used for training
before and after 2000. The second group of maps was used as
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Table 1. The details of spectral bands from the CDR of AVHRR Surface Reflectance Version 4 from GEE platform.

GEE band Abbreviation Wavelength (µm) Description

SREFL_CH1 SR1 0.58–0.68 Surface reflectance at 0.64 µm
SREFL_CH2 SR2 0.725–1.00 Surface reflectance at 0.86 µm
SREFL_CH3 SR3 3.55–3.93 Surface reflectance at 3.75 µm
BT_CH3 BT37 3.55–3.93 Brightness temperature at 3.75 µm
BT_CH4 BT11 10.30–11.30 Brightness temperature at 11.0 µm
BT_CH6 BT12 11.50–12.50 Brightness temperature at 12.0 µm

Table 2. The number of training scenes using Landsat-5 TM.

Type of sample Number of Time period
Landsat-5 TM

scenes

Snow samples 1293 Before 2000
6695 After 2000

Non-snow samples 1670 Before 2000
5774 After 2000

Cloud samples 79 Before 2000
125 After 2000

ground truth values to evaluate the AVHRR SCE product. A
total of nine Landsat-5 TM snow maps were used as the val-
idation dataset (Fig. 1). To ensure reliability and represen-
tativeness, the training and validating samples were evenly
distributed in three major seasonally snow-covered regions
across China’s mainland, including north Xinjiang, North-
east China, and the Qinghai–Tibet Plateau.

2.3 AVHRR training samples

Snow and non-snow training samples from the AVHRR were
generated from spatially and temporally (same day) collo-
cated AVHRR surface reflectance along with the Landsat-5
snow maps. Cloud training samples came from AVHRR sur-
face reflectance with Landsat-5 cloud flags during summer
(1 June to 31 August). The training samples before 2000
included 717 172 snow samples, 804 104 non-snow sam-
ples, and 82 904 cloud samples. Samples after 2000 included
7 304 310 snow samples, 8 394 959 non-snow samples, and
44 422 cloud samples.

2.4 Ground snow-depth measurements

Ground snow-depth measurements provided by the China
Meteorological Administration (CMA) were used to validate
the AVHRR SCE products. Daily snow depth was measured
near the stations using a professional meter ruler. All mea-
surements were conducted at 08:00 Beijing time when the
fractional snow cover in the field of view was more than
50 % (C.M.A, 2003). Validation CMA stations were care-

fully selected because too many non-snow samples can af-
fect the accuracy of the assessment. To ensure the valida-
tion reliability, the selected CMA stations had ≥ 20 d with
true snow (> 1 cm) at the CMA site per snow season (Met-
sämäki, 2016). Finally, a total of 191 meteorological stations
at 38-year periods (from 1981 to 2019; Fig. 1) were used
to validate the AVHRR SCE products. The available CMA
stations were evenly distributed across the three major sea-
sonally snow-covered regions in China.

2.5 Ancillary data

Che et al. (2008) and Dai et al. (2015) generated snow-
depth data by using an inter-sensor calibration of multiple
satellites’ passive-microwave observations, which provides
daily 0.25◦ snow-depth data for China from 1979 to 2020,
and this dataset of long-term daily snow depth in China
is available at https://doi.org/10.11888/Geogra.tpdc.270194.
This dataset was used as a supplement to the gap-filling
strategies. We used the land surface temperature (LST) daily
product to alleviate the cloud–snow confusion by averaging
the hourly ERA 5 land climate reanalysis dataset on the GEE
platform (Muñoz Sabater, 2019). Digital elevation model
(DEM) data were used as auxiliary data in the cloud and
snow discrimination algorithm, mask, and validation. The
Shuttle Radar Topography Mission (SRTM) DEM product
has an original resolution of 90 m and is also available on the
GEE platform. To match with AVHRR products, these prod-
ucts were resampled or aggregated into 5 km.

3 Methodology

Figure 2 shows the different steps in the generation of
the Northwest Institute of Eco-Environment and Resources
(NIEER) AVHRR SCE product. Starting with AVHRR Sur-
face Reflectance Version 4 (AVHRR SR V4) data on the GEE
platform, valid observations were selected first by the qual-
ity control flags of AVHRR SR V4. Then, an improved cloud
detection algorithm was developed to distinguish cloudy pix-
els, water pixels, and clear pixels. Third, clear pixels were
determined as snow-covered or not by a multi-level decision
tree, generating a set of AVHRR preliminary SCE records.
Fourth, the gaps caused by clouds or invalid observations in
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Figure 1. The geographic location of study area and the spatial distribution of major snow-covered regions, climate stations, and Landsat-5
validation dataset. The elevation data were derived from Shuttle Radar Topography Mission (SRTM).

the preliminary SCE record were filled with a set of gap-
filling techniques, including HMRF-based (hidden Markov
random field) interpolation and snow-depth interpolation. Fi-
nally, postprocessing based on land surface temperature and
DEM was conducted to exclude false snow identifications.

3.1 Quality control of AVHRR

Only observations valid in all AVHRR channels were em-
ployed to directly generate SCE records by using the quality
control bit flags of AVHRR SR V4. Table 3 shows all the
quality control information from AVHRR SR V4 and the sta-
tus of usage in this study. After quality control processing,
the valid pixels were used as input for retrieval, and the in-
valid pixels were regarded as gap pixels.

3.2 Cloud detection algorithm

In this study, we could not directly adopt the cloudy flags
of AVHRR SR V4 due to the obvious cloud overestimation
(Chen et al., 2018).

As stated by previous studies (Hori et al., 2007; Hori et al.,
2017; Stamnes et al., 2007; Yamanouchi et al., 1987), the fol-
lowing eight variables were used in the cloud detection test:
SR1, SR2, SR3, BT11, the reflectance differences between
SR1 and SR2 (SR1-SR2), the brightness temperature (BT)

Figure 2. Generation flowchart of NIEER AVHRR snow cover ex-
tent product (NIEER AVHRR SCE).
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Table 3. The descriptions of quality control of AVHRR SR V4.

Bitmask Description Use or
no use

15 Polar flag (latitude over 60◦ (land) No use
or 50◦ (ocean))

14 BRDF-correction issues No use
13 RHO3 value is invalid No use
12 Channel 5 value is invalid Use
11 Channel 4 value is invalid Use
10 Channel 3 value is invalid Use
9 Channel 2 value is invalid Use
8 Channel 1 value is invalid Use
7 Channels 1–5 are valid Use
6 Pixel is at night (height solar zenith) Use
5 Pixel is over dense dark vegetation No use
4 Pixel is over sunglint No use
3 Pixel is over water Use
2 Pixel contains cloud shadow No use
1 Pixel is cloudy No use
0 Unused No use

differences between BT37 and BT11 (BT37-BT11), the BT
differences between BT11 and BT12 (BT11-BT12), and the
normalized difference vegetation index (NDVI). The calcu-
lation of the NDVI is based on formula (Eq. 1).

NDVI=
SR2−SR1
SR1+SR2

(1)

For cloud detection, “BT37-BT11” was used as the pri-
mary test. We adopted the cloud test scheme by Hori
et al. (2017), but the critical threshold value of BT37-
BT11 was adjusted. As earlier thresholds of BT37-BT11
used a stronger cloud discrimination algorithm and ignored
the cloud/snow confusion problem, further optimization was
needed to minimize misclassification and the omission of
clouds. Therefore, we focused on optimizing the cloud algo-
rithm thresholds. Using the Landsat-5 TM maps for the true
values, we trained the frequency distribution characteristics
of BT37-BT11 for cloud and snow samples from AVHRR
SR. Table 4 shows the cloud discrimination schemes, with 10
cloud detection schemes and 4 non-cloud schemes. With A1
type as an example, Fig. 3 shows the optimal BT37-BT11 de-
termination scheme. Figure 3a presents the BT37-BT11 fre-
quency distribution of cloud and snow training samples from
AVHRR before 2000, and Fig. 3b presents the variation in the
overall accuracy at different BT37-BT11 thresholds. Opti-
mum accuracy (84.76 %) occurred at the cross-point of snow
and cloud frequency distributions, with a BT37-BT11 thresh-
old of 14.5 K. This cross-point also represents a compromise
for cloud omission (10.49 %) and commission (19.92 %) er-
rors. Thus, the final threshold value was 14.5 K according to
the optimal overall accuracy (OA), which means that a pixel
is classified as a cloud when BT37-BT11> 14.5 K. Follow-
ing the same procedure, the optimal BT37-BT11 thresholds

Figure 3. The frequency distribution of BT37-BT11 and optimal
threshold acquisition of snow and cloud from A1 before 2000.
Panel (a) shows the frequency distribution of snow and cloud on
AVHRR, and panel (b) shows the determination of optimal thresh-
old for cloud detection.

were obtained from AVHRR data before and after 2000, as
listed in Table 4.

3.3 Snow discrimination algorithm

According to the previous snow classifications with AVHRR
data (Hori et al., 2007; Hori et al., 2017; Stamnes et al., 2007;
Yamanouchi et al., 1987), snow discrimination test variables
included SR1, BT11, the reflectance ratio between SR3 and
SR2 (SR3/SR2), reflectance differences between SR3 and
SR2 (SR3-SR2), NDVI, the normalized difference snow in-
dex (NDSI), and BT differences between BT11 and BT12
(BT11-BT12). For snow discrimination, the NDSI was one
of the primary tests. The NDSI is usually calculated using
the green (around a wavelength of 0.50 µm) and shortwave
infrared (around a wavelength of 1.60 µm) bands. As there
were no shortwave infrared observations around 1.60 µm in
AVHRR SR V4, we used the reflectance at 3.7 µm for an
NDSI-like calculation, following Hori et al. (2017). The cal-
culation of NDSI is shown in formula (Eq. 2).

NDSI=
SR1−SR3
SR1+SR3

(2)
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Table 4. Cloud detection tests and the corresponding thresholds. Target A indicates high and cold land (elevation> 300 m and
BT11< 260 K), which has four types: A1–A4. Target B indicates the remaining land, which includes 10 types: B1–B10. The cloud de-
tection test was conducted from the top of the list to the bottom for each target. If the switch of the cloudy flag was “on”, the pixel was set to
cloudy when the threshold tests met the conditions listed on the right-hand side. If the switch was “off”, the pixel identified as cloudy in the
previous tests was reset to clear.

Target Target Switch Elevation SR1 SR2 SR3 SR1 to NDVI BT11 Before 2000 After 2000 BT11 to
serial (m) SR2 (K) BT37 to BT37 to BT12
number BT11 BT11 (K)

(K) (K)

A: high or A1 On < 3000 ≥ 240 > 14.5 > 19.5
cold land A2 On ≥ 3000 ≥ 240 > 15.5 > 20
DEM> 300 and A3 On < 240 > 21.0 > 31
BT11< 260 K A4 On > 0.1 > 0.02 > 25.5 > 33.5

B: other land B1 On < 260 > 14 > 16
DEM< 300 B2 On >−0.02 < 310 > 10.5 > 16.5
or B3 On > 0.3 >−0.02 < 293 > 11.5 > 17.5
BT11≥ 260 K B4 On > 0.4 >−0.03 < 293 > 11.5 > 18.0 >−1

B5 On > 0.4 < 278 > 11.5 > 19.5 >−1
B6 On > 0.3 > 0.02 > 11.5 > 18
B7 Off > 0.5 > 288
B8 Off > 310
B9 Off > 1000 < 0.4 <−0.04 > 275
B10 Off <−0.04 > 300

To improve the snow discrimination under clear-skies, all
decision rules were re-adjusted according to the training
samples from high-resolution snow maps. We developed a
three-level decision tree algorithm which obtained the opti-
mal threshold values from the training data. Using Landsat-5
TM data as true values, we obtained the frequency distribu-
tion characteristics of each band from AVHRR data in the
snow and non-snow areas at SR1, BT11, SR3/SR2, SR3-
SR2, NDVI, and NDSI. Figure 4 shows the flowchart of the
three-level decision tree snow discrimination algorithm.

1. First-level decision tree. SR1, BT11 combined with
DEM, and SR3/SR2 were chosen as first-level discrimi-
nators. The main purpose of the first-level decision tree
is to exclude pixels that are definitely non-snow pixels.
Snow has high reflectance in the SR1 band and low
brightness temperature in the thermal infrared BT11
band. Since the ability to distinguish snow of SR3/SR2
is lower than SR3-SR2 by our training test, the SR3/SR2
was chosen as a first-level discriminator. Based on the
frequency distributions of snow and non-snow pixels for
the first-level discriminators for Landsat-5 TM maps, a
confidence level of 95 % of snow samples was set to
obtain the threshold value of certain non-snow pixels.
As shown in Table 5, for the samples before 2000, SR1
> 0.14 and BT11< 274 K when DEM< 1300 m, BT11
< 281 K when DEM≥ 1300 m, and SR3/SR2< 0.50
were the possible snow images, while the remaining
pixels were non-snow pixels. The potential snow pixels
were used as input for the second-level decision tree.

2. Second-level decision tree. NDVI and SR3-SR2 were
chosen as second-level discriminators. The second-level
decision tree was mainly used to obtain certain snow
pixels from the possible snow pixels. Based on the fre-
quency distributions of snow and non-snow pixels from
potential snow pixels processed by the first-level deci-
sion tree, a confidence level of 99 % of non-snow sam-
ples was set to obtain the threshold value of certain snow
pixels. For the samples before 2000, a pixel was clas-
sified as certain snow when NDVI<−0.16 or SR3-
SR2<−0.81 (Table 5). Other pixels were considered
as the potential snow pixels, which were used as input
for the third-level decision tree.

3. Third-level decision tree. NDSI was used as the third-
level discriminator due to its excellent discrimination
ability of snow cover and other land covers. Based on
the frequency distributions of potential snow pixels de-
rived from the second-level decision tree, the optimal
NDSI threshold value was calculated by a method sim-
ilar to that of the cloud test. Figure 5 shows the optimal
NDSI scheme. Figure 5a presents the NDSI frequency
distribution histogram of snow and non-snow pixels.
The cross-point of snow and non-snow that has the high-
est overall accuracy (85.87 %) was chosen as the opti-
mal NDSI threshold (0.73), as shown in Fig. 5b. The
cross-point also represents a compromise for the snow
omission (15.83 %) and commission error (13.03 %).
Thus, pixels with NDSI> 0.73 were identified as snow
for the samples before 2000.
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Table 5. Snow discrimination algorithm and its threshold values.

Target Snow SR1 BT11 (K) Elevation (m) SR3/SR2 SR3-SR2 NDVI NDSI

A: Snow1 > 0.14 < 274 < 1300 < 0.5 <−0.81
before 2000 > 0.14 < 281 ≥ 1300 < 0.5 <−0.81

Snow2 > 0.14 < 274 < 1300 < 0.5 <−0.16
> 0.14 < 281 ≥ 1300 < 0.5 <−0.16

Snow3 > 0.14 < 274 < 1300 < 0.5 ≥−0.81 ≥−0.16 > 0.73
> 0.14 < 281 ≥ 1300 < 0.5 ≥−0.81 ≥−0.16 > 0.73

B: Snow1 > 0.14 < 275 < 1300 < 0.56 <−0.77
after 2000 > 0.14 < 281 ≥ 1300 < 0.56 <−0.77

Snow2 > 0.14 < 275 < 1300 < 0.56 <−0.05
> 0.14 < 281 ≥ 1300 < 0.56 <−0.05

Snow3 > 0.14 < 275 < 1300 < 0.56 ≥−0.77 ≥−0.05 > 0.65
> 0.14 < 281 ≥ 1300 < 0.56 ≥−0.77 ≥−0.05 > 0.65

Figure 4. The flowchart of a three-level decision tree snow discrim-
ination algorithm for NIEER AVHRR SCE product.

Following the same strategy, optimal snow discrimination
threshold values were obtained from AVHRR data before and
after 2000 (Table 5). Using the above-mentioned algorithm,
we produced the AVHRR preliminary SCE record for China
based on the AVHRR SR V4.

3.4 Gap-filling strategies

For daily AVHRR preliminary SCE records, gaps caused by
frequent cloud obscuration or swath gaps remained serious.
Two gap-filling strategies described below were used to gen-
erate a spatially complete daily AVHRR SCE record.

Figure 5. NDSI frequency distribution histogram and optimal
threshold acquisition of snow and non-snow before 2000. Panel (a)
is the frequency distribution of snow and non-snow on AVHRR, and
panel (b) is the optimal NDSI threshold value.

3.4.1 HMRF-based spatiotemporal modeling

Here, we present a spatiotemporal modeling technique for
filling up gap pixels in daily snow cover estimates based
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Figure 6. Diagram of the HMRF-based gap-filling process used in
the study.

on the time series of AVHRR preliminary SCE records. The
spatiotemporal modeling technique integrated AVHRR pre-
liminary SCE spatial and temporal contextual information
within an HMRF model (Melgani and Serpico, 2003). Ini-
tially, Huang et al. (2018) utilized HMRF-based spectral
information, spatiotemporal information, and environmen-
tal information to reclassify snow and non-snow classes by
MODIS snow products. In our study, we only used the spa-
tiotemporal information for filling up gap pixels. The core
of this method is computing the spatiotemporal cubic energy
function for every gap from the neighborhood pixels and fur-
ther classifying the gap pixels as snow pixels, non-snow pix-
els, or gap pixels using

UT(βn)= Ust(βn
∣∣Nsp,Ntp ), (3)

where UT is the total energy function of belonging to the
class of βn (n= 2, β1 denotes snow and β2 denotes non-
snow), and Ust is the spatiotemporal neighborhood cubic en-
ergy function. Nsp and Ntp denote the spatial neighborhood
and temporal neighborhood centered with the gap pixel, re-
spectively.

Figure 6 illustrates our gap-filling process based on the
HMRF technique. For a given gap at the center, we first
calculated U (β1) and U (β2) based on a spatiotemporal sur-
rounding cube with 3 rows× 3 columns× 3d. If U (β1) >
U (β2), gap pixels were classified as snow pixels. Other-
wise, they were classified as non-snow pixels. If U (β1)=
U (β2) or there were not sufficient valid pixels for calculat-
ing U (βn), we extended the spatiotemporal neighborhood
to 3 rows× 3 columns× 5d. If there were still insufficient
valid pixels, the spatiotemporal neighborhood was expanded
to 5 rows×5 columns×5d. If the strategy above failed, gap
pixels were maintained.

The HMRF-based modeling provided a rigorous interpola-
tion framework for optimally integrating spatiotemporal con-
texts. To test the effect of HMRF-based interpolation for gap
pixels, we compared the monthly average gap ratio of the
AVHRR preliminary SCE record from 1981 to 2019 before

Table 6. The monthly average gap ratio of AVHRR preliminary
SCE record in China before and after HMRF-based spatiotemporal
interpolation from 1981 to 2019.

Month Gap ratio Gap ratio
before HMRF after HMRF

(%) (%)

1 51.4 2.0
2 55.2 2.7
3 57.0 2.5
4 52.1 0.9
5 50.3 1.0
6 48.1 0.8
7 46.0 1.3
8 40.1 0.2
9 39.5 2.4
10 39.8 5.6
11 44.0 6.0
12 49.6 6.4

Average 47.8 2.7

and after HMRF-based interpolation (Table 6). The gap ra-
tio of the AVHRR preliminary SCE record before HMRF-
based interpolation was within 40 %–60 % (average: 47.8 %),
and the gap ratio after HMRF-based interpolation ranged be-
tween 0.2 % and 6.4 % (average: 2.7 %). Almost 90 % of
gap pixels could be reduced. The HMRF-based spatiotem-
poral model significantly improved the practicability of the
AVHRR SCE product.

3.4.2 Interpolation based on passive microwave
snow-depth data

Although most gap pixels were filled after interpolating the
HMRF-based spatiotemporal model, there were still ∼ 6 %
gaps left in the daily SCE data. Therefore, a fusion method
combining the passive microwave daily snow-depth data and
the AVHRR snow cover data was performed for these resid-
ual gap pixels. The passive microwave daily snow-depth data
(25 km) were resampled to the same cell size as the AVHRR
data (5 km) by the nearest neighbor interpolation method. If
collocated snow depth was ≥ 2 cm, the gap was considered
as a snow pixel. Otherwise, it was considered as a non-snow
pixel (Hao et al., 2019).

3.5 Postprocessing based on surface temperature and
DEM

Because of their similar optical properties, ice-cloud pixels
are sometimes mistaken for snow pixels, which will result
in artifact snow covers in southern China even during sum-
mers where and when snow is impossible. Referencing the
MODIS algorithm, the postprocessing adopts LST products
of ERA5 reanalysis and DEM to eliminate these snow pixels.
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The pixel is reclassified as snow-free under two condition:
(1) LST≥ 275 K and DEM≤ 1300 km; (2) LST≥ 281 K and
DEM≥ 1300 km.

4 Accuracies of the NIEER AVHRR SCE product

4.1 Metrics of accuracy evaluation

A confusion matrix similar to that given in Table 7 is used
to assess all associated AVHRR SCE data in the paper. Four
kinds of accuracy metrics were used in this study, following
on previous studies (Dong et al., 2014; Zhang et al., 2019),
including the OA, the producer’s accuracy (PA), the user’s
accuracy (UA), and Cohen’s kappa (CK) value. The OA is
the fraction of the correctly detected cases and all cases. The
PA measures the probability of correctly detected snow cases
by AVHRR in the actual snow cases. The UA measures the
proportion of true snow cases in all the detected snow cases
by AVHRR. The sum of PA and omission error equals 1,
and the sum of UA and commission error equals 1 (Arse-
nault et al., 2014). CK value is an overall measurement of
the agreement and is considered a more robust metric than
OA (Cohen, 1960; Powers and Ailab, 2011).

4.2 Validation with ground snow-depth measurements

As mentioned above, we will use 38-year CMA ground
snow-depth measurements at 191 stations to validate the new
NIEER AVHRR SCE product. Table 8 presents an overview
of validation results. The OA is up to 87.4 %. The value of
PA (81.0 %) was close to the UA (81.3 %), which indicated
that the algorithm sensibly performed a trade-off between the
omission error (19.0 %) and commission error (18.7 %). In
addition, the CK value was 0.717. According to the guide-
lines presented by Landis and Koch (1977), this would place
the level of agreement as “substantial”. All reveal that on a
whole the new NIEER AVHRR product is accurate and has a
good agreement with measurements of CMA stations.

To validate the stability and reliability of the NIEER
AVHRR SCE product, Fig. 7 presents the four accuracy
metrics’ annual fluctuation over the past 38 years. The OA
ranged within 80 %–90 %, the PA and UA ranged within
70 %–90 %, and the CK value ranged from 0.61 to 0.8.
Several considerable annual fluctuations mainly occurred in
1993, 1994, and 2017, which were mainly caused by the
poor quality of raw satellite data rather than the algorithm.
In summary, the product maintained a higher precision with
small annual fluctuations, which indicated the effectiveness
and stability of the training framework with different thresh-
olds before and after 2000.

Figure 8 further detailed accuracy metrics at each CMA
station. From this figure, the OAs had higher values within
80 %–90 % at most stations across China, but PA, UA, and
CK had low values with a clear spatial inconsistency. We
found that the product performed well in north Xinjiang and

the north of Northeast China where the stable snow was
widely distributed. In contrast, the accuracy was relatively
lower on the Qinghai–Tibet Plateau, Loess Plateau, in the
northeast of Inner Mongolia, and in the south of Northeast
China, where snowpack may be instable due to patchy snow-
cover features, rugged terrains, or rapid melt even in winter.

4.3 Validation with Landsat-5 TM SCE maps

The measurements from CMA stations can provide time-
continuous validation. However, such a “point-to-area” eval-
uation method also ignores the heterogeneity within pixels
(Huang et al., 2011). The snow condition of an individual
CMA station may not represent the larger area viewed by
AVHRR. The “area-to-area” method using higher-resolution
images has pointed out a good way to assess the snow spatial
distribution of the AVHRR SCE product.

In the study, nine Landsat-5 snow maps were used to fur-
ther evaluate the NIEER AVHRR product. Table 9 gives the
validation results of our maps versus the Landsat-5 TM SCE
maps. The OA was as high as 87.3 %. The high UA and low
PA revealed that the product has a slight tendency to un-
derestimate the snow cover extent. The CK value (0.695)
of the area-to-area method also demonstrated “substantial”
agreement, which was close to that of ground measurements
validation (0.717). Therefore, no matter from either point of
view (ground measurements) or area of view (Landsat-5 SCE
maps), the NIEER AVHRR product is accurate. In general,
the NIEER AVHRR SCE product is promising to better serve
the climatic and other related studies in China.

Figure 9 further displays three intuitional examples
demonstrating the detailed difference between NIEER
AVHRR SCE maps and Landsat-5 SCE reference maps. The
three images (serial numbers C1, C5, and C8) were located in
Northeast China, the Qinghai–Tibet Plateau, and north Xin-
jiang, respectively. It was clear that the NIEER AVHRR SCE
maps agree much better with higher-resolution snow maps in
a wide range of snow-covered areas. However, in the bound-
aries of snow-covered areas, the NIEER AVHRR SCE maps
failed to identify most snow pixels in the Landsat-5 SCE
maps, which could be explained by the low ability of our
product to detect low fractional snow-covered pixels.

5 Discussion

5.1 Uncertainties of the NIEER AVHRR SCE product

The validation based on both CMA stations and Landsat TM
images indicated that the NIEER AVHRR SCE product per-
forms well for large and deep snow cover. To explore the
uncertainties of our product in the thin snow-covered areas,
we set different snow-depth (SD) thresholds based on CMA
measurements to further evaluate the NIEER AVHRR SCE
product. Figure 10 shows the accuracy metrics of the prod-
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Table 7. Description of a confusion matrix of snow classification between NIEER AVHRR SCE product and truth value which reference
ground snow-depth measurements or Landsat-5 TM SCE maps.

NIEER AVHRR SCE product

Snow Non-snow

Ground snow depth
Snow SS SN
Non-snow NS NN

Overall accuracy (OA) OA= SS+NN
T

Producer’s accuracy (PA) PA= SS
SS+SN

User’s accuracy (UA) UA= SS
SS+NS

Cohen’s kappa coefficient (CK) CK= OA−P
1−P

Where T = SS+SN+NS+NN

P =
(

SS+NS
T
×

SS+SN
T

)
+

(
NN+NS
T
×

NN+SN
T

)
Note: SS, NN, NS, and SN are all numbers. SS represents the number of cases that AVHRR predicts snow, and the
ground snow depth measures snow. NN represents the number of cases that AVHRR predicts non-snow, and the
ground snow depth measures non-snow. SN represents the number of cases that AVHRR predicts non-snow, while
the ground snow depth measures snow. NS represents the number of cases that AVHRR predicts snow, while the
ground snow depth measures non-snow.

Figure 7. Accuracy fluctuations of NIEER AVHRR product based on ground snow-depth measurements in the past 38 years.

Table 8. A confusion matrix for NIEER AVHRR SCE maps versus
ground snow-depth measurements.

NIEER AVHRR SCE

Class Snow Non-snow

Ground snow-depth Snow 282 239 66 167
measurements Non-snow 64 759 622 381

OA 87.4 %

PA 81.0 %

UA 81.3 %

CK 0.717

uct under different SD thresholds (SD≥ 1 cm, SD≥ 2 cm,
SD≥ 3 cm, SD≥ 4 cm, and SD≥ 5 cm).

The results showed that the OA, UA, and CK values of the
product decreased with increasing SD thresholds, while the
PA values of the product increased with the increase in SD
threshold. As SD increased, the UA presented a sharply de-
creasing trend, and PA presented a slightly increasing trend.
On a whole, OA and CK values showed a significant de-
creasing trend. We can see our algorithm performed well at
lower SD thresholds, which indicated the product has a better
recognition ability for shallow snow.

According to the snow cover temporal distribution fea-
ture in China, three seasonal snow periods were defined, i.e.,
the snow accumulation period, stable snow period, and snow
melting period. The snow accumulation period is November.
The stable snow period ranges from the beginning of Decem-
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Figure 8. Point-based accuracy results of NIEER AVHRR product: (a) OA, (b) PA, (c) UA, and (d) CK. The snow depth of 191 climate
stations used is provided by the China Meteorological Administration (CMA). OA, PA, UA, and CK represent overall accuracy, producer’s
accuracy, user’s accuracy, and Cohen’s Kappa coefficient.

Table 9. The accuracy of NIEER AVHRR SCE maps versus Landsat-5 TM SCE maps. C1–C8 denotes the different Landsat-5 TM SCE.

Path/row Serial Date Cloud Snow OA PA UA CK
number percentage percentage

116 028 C1 12 March 1997 2.0 % 77.2 % 87.9 % 88.3 % 95.9 % 0.678
121 024 C2 19 March 2016 1.8 % 96.4 % 98.1 % 100.0 % 98.1 % 1
135 038 C3 9 November 1996 1.0 % 66.5 % 79.5 % 81.0 % 87.9 % 0.552
137 039 C4 23 November 1996 2.0 % 50.7 % 78.2 % 65.7 % 88.5 % 0.566
142 027 C5 23 March 1987 0.0 % 96.1 % 97.2 % 100.0 % 97.2 % 0.036
143 027 C6 10 November 2005 2.0 % 48.6 % 93.1 % 86.7 % 99.8 % 0.863
147 029 C7 22 February 2016 1.1 % 89.0 % 90.6 % 91.4 % 98.0 % 0.587
147 029 C8 17 February 1997 2.0 % 88.3 % 89.8 % 90.9 % 97.7 % 0.560

Total 89.4 % 90.2 % 96.1 % 0.713

ber of the year to the end of February, and the snow melting
period is March. Figure 11 presents the accuracy results of
the NIEER AVHRR SCE product in different snow periods.
The OAs of the accumulation period (87.7 %), stable period
(86.7 %), and melting period (89.0 %) showed a similar re-

sponse. However, the PAs, UAs, and CK values of the ac-
cumulation and melting periods were markedly lower than
those of the stable snow period. The product had the high-
est omission errors (29.5 %) during the accumulation period
because of the mixed pixels in the early snowfall seasons,
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Figure 9. Comparison of Landsat reference images with NIEER AVHRR SCE images. Panel (a) is located in Northeast China on 12 March
1997, panel (b) is located in Qinghai–Tibet Plateau on 9 November 1996, and panel (c) is located in north Xinjiang on 10 November 2005.

Figure 10. Histogram of accuracy results of NIEER AVHRR SCE product under different snow-depth thresholds.
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Figure 11. Histogram of accuracy results of NIEER AVHRR SCE product in different snow periods, including accumulation period, stable
period, and melting period.

Table 10. The confusion matrix and accuracy results of NIEER AVHRR and JASMES SCE products based on snow-depth measurements
from CMA. OA, PA, UA, and CK.

NIEER AVHRR SCE JASMES SCE

Class Snow Non-snow Snow Non-snow
Ground snow-depth measurements Snow 134 260 32 946 50 335 78 148

Non-snow 36 367 295 890 23 594 209 149

OA 86.1 % 71.8 %

PA 80.3 % 39.2 %

UA 78.7 % 68.1 %

CK 0.690 0.321

Table 11. The description of NIEER AVHRR SCE product.

Classification Values Description

Snow 1 Snow from AVHRR
2 Snow from HMRF
3 Snow from SD

Non-snow 0 Non-snow form AVHRR

Water 4

Filling value 255 Filling value

while the product had the highest commission error (30.3 %)
during the melting period due to the influence of wet snow.

5.2 Comparison of NIEER AVHRR and JASMES SCE
products

To more objectively assess our product, we compared the
NIEER AVHRR SCE product with JASMES SCE product.
Since the JASMES SCE product was only generated by
AVHRR data from 1981 to 1999, comparisons were made
against the same ground snow-depth reference measurements

in 19 snow seasons (1981–1999). Table 10 lists the compar-
ison of the accuracy metrics. Our product performed well,
with OA, PA, UA, and CK values of 86.1 %, 80.3 %, 78.7 %,
and 0.690, respectively. The JASMES SCE products per-
formed much worse, with total OA, PA, UA, and CK val-
ues amounting to 71.8 %, 39.2 %, 68.1 %, and 0.321, re-
spectively. It means that our product clearly outperforms
the JASMES product. Relative to the JASMES SCE prod-
uct, the NIEER AVHRR OA increased approximately 15 %,
the omission error dropped from 60.8 % to 19.7 %, the com-
mission error dropped from 31.9 % to 21.3 %, and the CK
value increased by more than 114 %. The JASMES prod-
uct markedly underestimated the snow in China. In addi-
tion, there were about 50 000 validation samples in our prod-
uct and only about 36 000 SD measurements in that of the
JASMES product. Thus, our product should fill more gap
pixels than JASMES. On the whole, the snow and cloud de-
tection algorithm and the gap-filling strategy of our product
performed better than those of JASMES.

To better figure out the spatial distribution difference be-
tween the two sets of products, comparison maps were con-
structed for 15 November 1985. Figure 12 presents the two
SCE maps and their difference. There were significant dif-
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Figure 12. Comparison of snow cover maps between the
NIEER AVHRR and JASMES SCE map over mainland China on
15 November 1985. Panel (a) is the NIEER AVHRR SCE map,
panel (b) is the JASMES SCE map, and panel (c) is the compari-
son between the two snow maps.

ferences in mapped snow extent between the two maps in the
three major seasonal snow regions in China, i.e., north Xin-
jiang, Northeast China, and the Qinghai–Tibet Plateau. Our

product mapped more snow in north Xinjiang, the Qinghai–
Tibet Plateau, and the non-forest area in the northeast of
China than JASMES. The most considerable discrepancy
occurred on the Qinghai–Tibet Plateau where our product
identified more snow-covered areas than JASMES. JASMES
maps had more snow in the forested area of Northeast China
than our product. Three improvements contributed to this
phenomenon. Firstly, the snow algorithm proposed improved
snow discrimination accuracy and reduced omission errors
largely. Secondly, the cloud detection algorithm effectively
improved the cloud–snow confusion, which identified the
snow pixels that were misidentified as clouds pixels in the
JASMES. Thirdly, the gap-filling strategy provided complete
spatial coverage of snow cover.

6 Data availability

The NIEER AVHRR SCE product was
named in the manner of NIEER_GF AVHRR
SCE_yyyymmdd_DAILY_5km_V01 (V01 denotes the
first version). It has a spatial resolution of 5 km and
a daily temporal resolution. It spans latitude 16–56◦ N
and longitude 72–142◦ E and now is freely accessible at
https://doi.org/10.11888/Snow.tpdc.271381 (Hao et al.,
2021). Detailed information on the product is listed in Ta-
ble 11. The values in the product are classified as non-snow
(0), snow from AVHRR (1), snow from HMRF (2), snow
from SD (3), water (4), and filling value (255).

7 Conclusions

In this study, a daily AVHRR SCE product with a spatial
resolution of 5 km across China’s mainland from 1981 to
2019 has been generated by the snow research team in the
NIEER, Chinese Academy of Sciences. The NIEER AVHRR
SCE product used a multi-level decision tree algorithm for
cloud and snow discrimination and an improved GF tech-
nique. The product was validated using snow-depth mea-
surements provided by the China Meteorological Adminis-
tration and higher-spatial-resolution SCE maps derived from
Landsat-5 TM.

The OA of the NIEER AVHRR product was 87.4 %, a high
accuracy, while the PA and UA were 81.0 % and 81.3 %, re-
spectively. The PA and UA were similar, showing that the
algorithm of the NIEER AVHRR product performed a trade-
off between commission and omission errors. The CK value
was 0.717, which indicated that the product had an agree-
ment level of “substantial”. Considering the limitations of
point-to-area validation, the overall OA, PA, UA, and CK
values were 87.3 %, 86.7 %, 95.7 %, and 0.695, respectively,
using area-to-area method compared to Landsat 5 TM, which
showed the same trend of accuracy as the point validation.
Therefore, no matter from either point of view or area of
view, our AVHRR SCE product has high accuracy.
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The performance of the NIEER AVHRR product in China
was compared with the existing JASMES AVHRR SCE
product. The OA, PA, UA, and CK value of the NIEER prod-
uct were 86.1 %, 80.3 %, 78.7 %, and 0.690, and those of
JASMES were 71.8 %, 39.2 %, 68.1 %, and 0.321. Compared
with the JASMES product, the NIEER product OA increased
approximately 15 %, the omission error dropped from nearly
60 % to 19.7 %, the commission error dropped from 31.9 %
to 21.3 %, and the CK value increased by more than 114 %.
Accordingly, the NIEER AVHRR product had a higher ac-
curacy than the JASMES product. Furthermore, the NIEER
product provides a completely gap-free product for China,
permitting its wide applications.

Finally, we assessed the behavior of the NIEER AVHRR
product during the snow accumulation, stable snow, and
melting periods. The SCE performed best during the stable
period, and the product was more accurate in the snow accu-
mulation than the melting period. In general, the algorithm
had a relatively high ability to identify shallower snow, but
some uncertainties existed in patchy snow areas, regarding
thinner snow, and in rugged terrain areas. As a long-term
record, the dataset will provide a valuable data source for
analyzing the influence of climate changes on the cryosphere
on multiple timescales.
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