Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2747-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2747-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Physical and biogeochemical parameters of the Mediterranean Sea during a cruise with RV Maria S. Merian in March 2018
Dagmar Hainbucher
CORRESPONDING AUTHOR
Institut für Meereskunde, CEN, Universität
Hamburg, Bundesstraße 53, 20146 Hamburg, Germany
Marta Álvarez
Instituto Español de Oceanografía (IEO), Centro
de A Coruña, Spain
Blanca Astray Uceda
Instituto Español de Oceanografía (IEO), Centro
de A Coruña, Spain
Giancarlo Bachi
Istituto di Biofisica, CNR, Pisa, Italy
Vanessa Cardin
Dept. Of Oceanography, Istituto Nazionale di Oceanografia e di Geofisica
Sperimentale – OGS, Borgo Grotta Gigante 42/c, 34010
Sgonico, Trieste, Italy
Paolo Celentano
Istituto di Scienze Marine, Venezia, Italy
Spyros Chaikalis
Hellenic Centre for Marine Research, Athens,
Greece
Maria del Mar Chaves Montero
Dept. Of Oceanography, Istituto Nazionale di Oceanografia e di Geofisica
Sperimentale – OGS, Borgo Grotta Gigante 42/c, 34010
Sgonico, Trieste, Italy
Centro Euro-Mediterraneo sui Cambiamenti Climatici CMCC,
Bologna, Italy
Giuseppe Civitarese
Dept. Of Oceanography, Istituto Nazionale di Oceanografia e di Geofisica
Sperimentale – OGS, Borgo Grotta Gigante 42/c, 34010
Sgonico, Trieste, Italy
Noelia M. Fajar
Instituto Español de Oceanografía (IEO), Centro
de A Coruña, Spain
Francois Fripiat
Max Planck Institute for Chemistry, Mainz,
Germany
Lennart Gerke
GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Alexandra Gogou
Hellenic Centre for Marine Research, Athens,
Greece
Elisa F. Guallart
Instituto Español de Oceanografía (IEO), Centro
de A Coruña, Spain
Birte Gülk
Institut für Meereskunde, CEN, Universität
Hamburg, Bundesstraße 53, 20146 Hamburg, Germany
Abed El Rahman Hassoun
National Council for Scientific Research in Lebanon,
National Center for Marine Sciences, Beirut, Lebanon
Nico Lange
GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Andrea Rochner
Institut für Meereskunde, CEN, Universität
Hamburg, Bundesstraße 53, 20146 Hamburg, Germany
Chiara Santinelli
Istituto di Biofisica, CNR, Pisa, Italy
Tobias Steinhoff
GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Toste Tanhua
GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Lidia Urbini
Dept. Of Oceanography, Istituto Nazionale di Oceanografia e di Geofisica
Sperimentale – OGS, Borgo Grotta Gigante 42/c, 34010
Sgonico, Trieste, Italy
Dimitrios Velaoras
Hellenic Centre for Marine Research, Athens,
Greece
Fabian Wolf
GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel,
Wischhofstr. 1–3, 24148 Kiel, Germany
Andreas Welsch
Institut für Meereskunde, CEN, Universität
Hamburg, Bundesstraße 53, 20146 Hamburg, Germany
Related authors
D. Hainbucher, V. Cardin, G. Siena, U. Hübner, M. Moritz, U. Drübbisch, and F. Basan
Earth Syst. Sci. Data, 7, 231–237, https://doi.org/10.5194/essd-7-231-2015, https://doi.org/10.5194/essd-7-231-2015, 2015
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean in April 2014. Data were taken on a west-east section starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The measurements include salinity, temperature, oxygen and currents. We study the mesoscale eddy field and support long-term investigations of the hydrography in the Mediterranean Sea.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Paulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, Alfredo Izquierdo, Miguel Bruno, and Ingunn Skjelvan
Earth Syst. Sci. Data, 16, 5333–5356, https://doi.org/10.5194/essd-16-5333-2024, https://doi.org/10.5194/essd-16-5333-2024, 2024
Short summary
Short summary
As part of the ATL2MED demonstration experiment, two autonomous surface vehicles undertook a 9-month mission from the northeastern Atlantic to the Adriatic Sea. Biofouling affected the measurement of variables such as conductivity and dissolved oxygen. COVID-19 limited the availability of discrete samples for validation. We present correction methods for salinity and dissolved oxygen. We use model products to correct salinity and apply the Argo floats in-air correction method for oxygen
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Preprint under review for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Mian Liu and Toste Tanhua
EGUsphere, https://doi.org/10.5194/egusphere-2024-1362, https://doi.org/10.5194/egusphere-2024-1362, 2024
Short summary
Short summary
Based on the distribution of water masses in the Atlantic Ocean, the water mass ages are shown by using CFC-12 and SF6. The ages increase with pressure and along the pathway. The central waters in the upper layer obtain the lowest ages. In all the other three deeper layers, the ages increase with the distance from formation area. The age is also used to calculate the oxygen utilization rate (OUR) in water masses. The western basin exhibits lower age with higher OUR due to the better ventilation.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024, https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Nydia Catalina Reyes Suárez, Valentina Tirelli, Laura Ursella, Matjaž Ličer, Massimo Celio, and Vanessa Cardin
Ocean Sci., 18, 1321–1337, https://doi.org/10.5194/os-18-1321-2022, https://doi.org/10.5194/os-18-1321-2022, 2022
Short summary
Short summary
Explaining the dynamics of jellyfish blooms is a challenge for scientists. Biological and meteo-oceanographic data were combined on different timescales to explain the exceptional bloom of the jellyfish Rhizostoma pulmo in the Gulf of Trieste (Adriatic Sea) in April 2021. The bloom was associated with anomalously warm seasonal sea conditions. Then, a strong bora wind event enhanced upwelling and mixing of the water column, causing jellyfish to rise to the surface and accumulate along the coast.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Irini Tsiodra, Georgios Grivas, Kalliopi Tavernaraki, Aikaterini Bougiatioti, Maria Apostolaki, Despina Paraskevopoulou, Alexandra Gogou, Constantine Parinos, Konstantina Oikonomou, Maria Tsagkaraki, Pavlos Zarmpas, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 21, 17865–17883, https://doi.org/10.5194/acp-21-17865-2021, https://doi.org/10.5194/acp-21-17865-2021, 2021
Short summary
Short summary
We analyze observations from year-long measurements at Athens, Greece. Nighttime wintertime PAH levels are 4 times higher than daytime, and wintertime values are 15 times higher than summertime. Biomass burning aerosol during wintertime pollution events is responsible for these significant wintertime enhancements and accounts for 43 % of the population exposure to PAH carcinogenic risk. Biomass burning poses additional health risks beyond those associated with the high PM levels that develop.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Pingyang Li and Toste Tanhua
Ocean Sci., 17, 509–525, https://doi.org/10.5194/os-17-509-2021, https://doi.org/10.5194/os-17-509-2021, 2021
Short summary
Short summary
Observations of transient tracer distribution provide essential information on ocean ventilation. The use of several commonly used transient traces is limited as their atmospheric mole fractions do not monotonically change. Here we explore new potential oceanic transient tracers with an analytical system that simultaneously measures a large range of compounds. Combined with the known atmospheric history and seawater solubility, we discuss the utility of selected HCFCs, HFCs, and PFCs as tracers.
Mian Liu and Toste Tanhua
Ocean Sci., 17, 463–486, https://doi.org/10.5194/os-17-463-2021, https://doi.org/10.5194/os-17-463-2021, 2021
Short summary
Short summary
We have characterized the major water masses in the Atlantic Ocean based on the properties found in their formation areas using six properties taken from the GLODAPv2 data product, including both conservative (conservative temperature and absolute salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) properties. The distributions of the water masses are estimated by using the optimum multi-parameter (OMP) model, and we have mapped the distributions of the water masses.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, J. Magdalena Santana-Casiano, and Alex Kozyr
Earth Syst. Sci. Data, 12, 1725–1743, https://doi.org/10.5194/essd-12-1725-2020, https://doi.org/10.5194/essd-12-1725-2020, 2020
Short summary
Short summary
This work offers a vision of the global ocean regarding the carbon cycle and the implications of ocean acidification through a climatology of a changing variable in the context of climate change: total dissolved inorganic carbon. The climatology was designed through artificial intelligence techniques to represent the mean state of the present ocean. It is very useful to introduce in models to evaluate the state of the ocean from different perspectives.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Eric J. Morgan, Jost V. Lavric, Damian L. Arévalo-Martínez, Hermann W. Bange, Tobias Steinhoff, Thomas Seifert, and Martin Heimann
Biogeosciences, 16, 4065–4084, https://doi.org/10.5194/bg-16-4065-2019, https://doi.org/10.5194/bg-16-4065-2019, 2019
Short summary
Short summary
Taking a 2-year atmospheric record of atmospheric oxygen and the greenhouse gases N2O, CO2, and CH4, made at a coastal site in the Namib Desert, we estimated the fluxes of these gases from upwelling events in the northern Benguela Current region. We compared these results with flux measurements made on a research vessel in the study area at the same time and found that the two approaches agreed well. The study region was a source of N2O, CO2, and CH4 to the atmosphere during upwelling events.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Marta Álvarez, Susan Becker, Henry C. Bittig, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Steve D. Jones, Sara Jutterström, Maren K. Karlsen, Alex Kozyr, Siv K. Lauvset, Claire Lo Monaco, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Maciej Telszewski, Bronte Tilbrook, Anton Velo, and Rik Wanninkhof
Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, https://doi.org/10.5194/essd-11-1437-2019, 2019
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2019 is the first update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 840 hydrographic cruises covering the world's oceans from 1972 to 2017.
Daniel Broullón, Fiz F. Pérez, Antón Velo, Mario Hoppema, Are Olsen, Taro Takahashi, Robert M. Key, Toste Tanhua, Melchor González-Dávila, Emil Jeansson, Alex Kozyr, and Steven M. A. C. van Heuven
Earth Syst. Sci. Data, 11, 1109–1127, https://doi.org/10.5194/essd-11-1109-2019, https://doi.org/10.5194/essd-11-1109-2019, 2019
Short summary
Short summary
In this work, we are contributing to the knowledge of the consequences of climate change in the ocean. We have focused on a variable related to this process: total alkalinity. We have designed a monthly climatology of total alkalinity using artificial intelligence techniques, that is, a representation of the average capacity of the ocean in the last decades to decelerate the consequences of climate change. The climatology is especially useful to infer the evolution of the ocean through models.
Debany Fonseca-Batista, Xuefeng Li, Virginie Riou, Valérie Michotey, Florian Deman, François Fripiat, Sophie Guasco, Natacha Brion, Nolwenn Lemaitre, Manon Tonnard, Morgane Gallinari, Hélène Planquette, Frédéric Planchon, Géraldine Sarthou, Marc Elskens, Julie LaRoche, Lei Chou, and Frank Dehairs
Biogeosciences, 16, 999–1017, https://doi.org/10.5194/bg-16-999-2019, https://doi.org/10.5194/bg-16-999-2019, 2019
Short summary
Short summary
Dinitrogen fixation and primary production were investigated using stable isotope incubation experiments along two transects off the Western Iberian Margin in May 2014 close to the end of the phytoplankton spring bloom. We observed substantial N2 fixation activities (up to 1533 µmol N m-2 d-1) associated with a predominance of unicellular cyanobacteria and non-cyanobacterial diazotrophs, which seemed to be promoted by the presence of bloom-derived organic matter and excess phosphorus.
Mian Liu and Toste Tanhua
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-140, https://doi.org/10.5194/os-2018-140, 2019
Publication in OS not foreseen
Pingyang Li, Jens Mühle, Stephen A. Montzka, David E. Oram, Benjamin R. Miller, Ray F. Weiss, Paul J. Fraser, and Toste Tanhua
Ocean Sci., 15, 33–60, https://doi.org/10.5194/os-15-33-2019, https://doi.org/10.5194/os-15-33-2019, 2019
Short summary
Short summary
Use of CFCs as oceanic transient tracers is difficult for recently ventilated water masses as their atmospheric mole fractions have been decreasing. To explore novel tracers, we synthesized consistent annual mean atmospheric histories of HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 (CF4) and PFC-116 in both hemispheres and reconstructed their solubility functions in water and seawater. This work is also potentially useful for tracer studies in a range of natural waters.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Chiara Santinelli, Roberto Iacono, Ernesto Napolitano, and Maurizio Ribera d'Alcalá
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-418, https://doi.org/10.5194/bg-2018-418, 2018
Revised manuscript not accepted
Short summary
Short summary
Part of the energy in the ocean is stored as dissolved organic carbon. Water moves around, bringing this energy from one place to another, down to the deep layers and up again. Here, we show that horizontal currents can have a strong impact on the carbon cycle, because they can transport chemical energy far away, establishing links between distant areas of the ocean and feeding regions in which the local accumulation of chemical energy is low.
Héloise Lavigne, Giuseppe Civitarese, Miroslav Gačić, and Fabrizio D'Ortenzio
Biogeosciences, 15, 4431–4445, https://doi.org/10.5194/bg-15-4431-2018, https://doi.org/10.5194/bg-15-4431-2018, 2018
Short summary
Short summary
The north Ionian circulation, which is characterized by a decadal alternation of cyclonic and anticyclonic regime, affects phytoplankton dynamics and surface chlorophyll a. From satellite ocean color data, the cyclonic and anticyclonic regimes are compared and two chlorophyll a dynamics are observed: when circulation is anticyclonic, bloom initiation is in December and chlorophyll is low in March, whereas during the cyclonic regime, a late chlorophyll peak is commonly observed in March.
James C. Orr, Raymond G. Najjar, Olivier Aumont, Laurent Bopp, John L. Bullister, Gokhan Danabasoglu, Scott C. Doney, John P. Dunne, Jean-Claude Dutay, Heather Graven, Stephen M. Griffies, Jasmin G. John, Fortunat Joos, Ingeborg Levin, Keith Lindsay, Richard J. Matear, Galen A. McKinley, Anne Mouchet, Andreas Oschlies, Anastasia Romanou, Reiner Schlitzer, Alessandro Tagliabue, Toste Tanhua, and Andrew Yool
Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, https://doi.org/10.5194/gmd-10-2169-2017, 2017
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) is a model comparison effort under Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Its physical component is described elsewhere in this special issue. Here we describe its ocean biogeochemical component (OMIP-BGC), detailing simulation protocols and analysis diagnostics. Simulations focus on ocean carbon, other biogeochemical tracers, air-sea exchange of CO2 and related gases, and chemical tracers used to evaluate modeled circulation.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Nadine Tisnérat-Laborde, Paolo Montagna, Toste Tanhua, Giuseppe Siani, and Philippe Jean-Baptiste
Biogeosciences, 14, 1197–1213, https://doi.org/10.5194/bg-14-1197-2017, https://doi.org/10.5194/bg-14-1197-2017, 2017
Short summary
Short summary
A high-resolution dynamical model was used to give the first simulation of the distribution of natural and anthropogenic radiocarbon (14C) across the whole Mediterranean Sea. The model correctly simulates the main features of 14C distribution during and after the bomb perturbation. The results demonstrate the major influence of the flux of Atlantic water through the Strait of Gibraltar, and a significant increase in 14C in the Aegean deep water during the Eastern Mediterranean Transient event.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Meike Becker, Nils Andersen, Helmut Erlenkeuser, Matthew P. Humphreys, Toste Tanhua, and Arne Körtzinger
Earth Syst. Sci. Data, 8, 559–570, https://doi.org/10.5194/essd-8-559-2016, https://doi.org/10.5194/essd-8-559-2016, 2016
Short summary
Short summary
The stable carbon isotope composition of dissolved inorganic carbon (δ13C-DIC) can be used to quantify fluxes within the marine carbon system such as the exchange between ocean and atmosphere or the amount of anthropogenic carbon in the water column. In this study, an internally consistent δ13C-DIC dataset for the North Atlantic is presented. The data have undergone a secondary quality control during which systematic biases between the respective cruises have been quantified and adjusted.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
Are Olsen, Robert M. Key, Steven van Heuven, Siv K. Lauvset, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Pérez, and Toru Suzuki
Earth Syst. Sci. Data, 8, 297–323, https://doi.org/10.5194/essd-8-297-2016, https://doi.org/10.5194/essd-8-297-2016, 2016
Short summary
Short summary
The GLODAPv2 data product collects data from more than 700 hydrographic cruises into a global and internally calibrated product. It provides access to the data from almost all ocean carbon cruises carried out since the 1970s and is a unique resource for marine science, in particular regarding the ocean carbon cycle. GLODAPv2 will form the foundation for future routine synthesis of hydrographic data of the same sort.
Siv K. Lauvset, Robert M. Key, Are Olsen, Steven van Heuven, Anton Velo, Xiaohua Lin, Carsten Schirnick, Alex Kozyr, Toste Tanhua, Mario Hoppema, Sara Jutterström, Reiner Steinfeldt, Emil Jeansson, Masao Ishii, Fiz F. Perez, Toru Suzuki, and Sylvain Watelet
Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, https://doi.org/10.5194/essd-8-325-2016, 2016
Short summary
Short summary
This paper describes the mapped climatologies that are part of the Global Ocean Data Analysis Project Version 2 (GLODAPv2). GLODAPv2 is a uniformly calibrated open ocean data product on inorganic carbon and carbon-relevant variables. Global mapped climatologies of the total dissolved inorganic carbon, total alkalinity, pH, saturation state of calcite and aragonite, anthropogenic carbon, preindustrial carbon content, inorganic macronutrients, oxygen, salinity, and temperature have been created.
Tim Stöven, Toste Tanhua, Mario Hoppema, and Wilken-Jon von Appen
Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, https://doi.org/10.5194/os-12-319-2016, 2016
Short summary
Short summary
The article describes transient tracer distributions of CFC-12 and SF6 in the Fram Strait in 2012. The SF6 excess and the anthropogenic carbon content in this area was estimated assuming a standard parameterization of the inverse-Gaussian–transit-time distribution. Hydrographic data were obtained along a mooring array at 78°50’N and a mean velocity field was used for flux estimates.
L. Stramma, R. Czeschel, T. Tanhua, P. Brandt, M. Visbeck, and B. S. Giese
Ocean Sci., 12, 153–167, https://doi.org/10.5194/os-12-153-2016, https://doi.org/10.5194/os-12-153-2016, 2016
Short summary
Short summary
The subsurface circulation in the eastern tropical North Atlantic OMZ is derived from velocity, float and tracer data and data assimilation results, and shows a cyclonic flow around the Guinea Dome reaching into the oxygen minimum zone. The stronger cyclonic flow around the Guinea Dome in 2009 seem to be connected to a strong Atlantic Meridional Mode (AMM) event.
A continuous deoxygenation trend of the low oxygen layer was confirmed.
Eddy influence is weak south of the Cape Verde Islands.
S. Walter, A. Kock, T. Steinhoff, B. Fiedler, P. Fietzek, J. Kaiser, M. Krol, M. E. Popa, Q. Chen, T. Tanhua, and T. Röckmann
Biogeosciences, 13, 323–340, https://doi.org/10.5194/bg-13-323-2016, https://doi.org/10.5194/bg-13-323-2016, 2016
Short summary
Short summary
Oceans are a source of H2, an indirect greenhouse gas. Measurements constraining the temporal and spatial patterns of oceanic H2 emissions are sparse and although H2 is assumed to be produced mainly biologically, direct evidence for biogenic marine production was lacking. By analyzing the H2 isotopic composition (δD) we were able to constrain the global H2 budget in more detail, verify biogenic production and point to additional sources. We also showed that current models are reasonably working.
R. Pedrosa-Pàmies, C. Parinos, A. Sanchez-Vidal, A. Gogou, A. Calafat, M. Canals, I. Bouloubassi, and N. Lampadariou
Biogeosciences, 12, 7379–7402, https://doi.org/10.5194/bg-12-7379-2015, https://doi.org/10.5194/bg-12-7379-2015, 2015
Short summary
Short summary
A multi-proxy approach is applied in surface sediments collected from deep slopes and basins (1018-4087 m depth) of the oligotrophic eastern Mediterranean Sea. This study sheds new light on the sources and transport mechanisms along with the impact of preservation vs. diagenetic processes on the composition of sedimentary organic matter in the deep basins of the oligotrophic eastern Mediterranean Sea.
E. Gemayel, A. E. R. Hassoun, M. A. Benallal, C. Goyet, P. Rivaro, M. Abboud-Abi Saab, E. Krasakopoulou, F. Touratier, and P. Ziveri
Earth Syst. Dynam., 6, 789–800, https://doi.org/10.5194/esd-6-789-2015, https://doi.org/10.5194/esd-6-789-2015, 2015
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
T. Stöven, T. Tanhua, M. Hoppema, and J. L. Bullister
Ocean Sci., 11, 699–718, https://doi.org/10.5194/os-11-699-2015, https://doi.org/10.5194/os-11-699-2015, 2015
Short summary
Short summary
We use a suite of transient tracer measurements from a Southern Ocean sector southeast of Africa collected from 1998 and 2012 to quantify ventilation and change in ventilation. We found that the ventilation can be constrained by an inverse Gaussian transit time distribution north of the Subantarctic Front. We do not find any significant changes in upper ocean ventilation during this time period.
D. Hainbucher, V. Cardin, G. Siena, U. Hübner, M. Moritz, U. Drübbisch, and F. Basan
Earth Syst. Sci. Data, 7, 231–237, https://doi.org/10.5194/essd-7-231-2015, https://doi.org/10.5194/essd-7-231-2015, 2015
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean in April 2014. Data were taken on a west-east section starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The measurements include salinity, temperature, oxygen and currents. We study the mesoscale eddy field and support long-term investigations of the hydrography in the Mediterranean Sea.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
P. Brandt, H. W. Bange, D. Banyte, M. Dengler, S.-H. Didwischus, T. Fischer, R. J. Greatbatch, J. Hahn, T. Kanzow, J. Karstensen, A. Körtzinger, G. Krahmann, S. Schmidtko, L. Stramma, T. Tanhua, and M. Visbeck
Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, https://doi.org/10.5194/bg-12-489-2015, 2015
Short summary
Short summary
Our observational study looks at the structure of the eastern tropical North Atlantic (ETNA) oxygen minimum zone (OMZ) in comparison with the less-ventilated, eastern tropical South Pacific OMZ. We quantify the OMZ’s oxygen budget composed of consumption, advection, lateral and vertical mixing. Substantial oxygen variability is observed on interannual to multidecadal timescales. The deoxygenation of the ETNA OMZ during the last decades represents a substantial imbalance of the oxygen budget.
V. Cardin, G. Civitarese, D. Hainbucher, M. Bensi, and A. Rubino
Ocean Sci., 11, 53–66, https://doi.org/10.5194/os-11-53-2015, https://doi.org/10.5194/os-11-53-2015, 2015
Short summary
Short summary
The results of this study reveal that the thermohaline properties in the study area in 2011 lie between the thermohaline characteristics of the EMT and those of the pre-EMT phase, indicating a possible slow return towards the latter. It highlights the relationship between the hydrological property distribution of the upper layer in the Levantine basin and the alternate circulation regimes in the Ionian, which modulates the salinity distribution in the Eastern Mediterranean Sea.
A. Oviedo, P. Ziveri, M. Álvarez, and T. Tanhua
Ocean Sci., 11, 13–32, https://doi.org/10.5194/os-11-13-2015, https://doi.org/10.5194/os-11-13-2015, 2015
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
T. Stöven and T. Tanhua
Ocean Sci., 10, 439–457, https://doi.org/10.5194/os-10-439-2014, https://doi.org/10.5194/os-10-439-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
M. Álvarez, H. Sanleón-Bartolomé, T. Tanhua, L. Mintrop, A. Luchetta, C. Cantoni, K. Schroeder, and G. Civitarese
Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, https://doi.org/10.5194/os-10-69-2014, 2014
A. Schneider, T. Tanhua, W. Roether, and R. Steinfeldt
Ocean Sci., 10, 1–16, https://doi.org/10.5194/os-10-1-2014, https://doi.org/10.5194/os-10-1-2014, 2014
D. L. Arévalo-Martínez, M. Beyer, M. Krumbholz, I. Piller, A. Kock, T. Steinhoff, A. Körtzinger, and H. W. Bange
Ocean Sci., 9, 1071–1087, https://doi.org/10.5194/os-9-1071-2013, https://doi.org/10.5194/os-9-1071-2013, 2013
S. Stavrakakis, A. Gogou, E. Krasakopoulou, A. P. Karageorgis, H. Kontoyiannis, G. Rousakis, D. Velaoras, L. Perivoliotis, G. Kambouri, I. Stavrakaki, and V. Lykousis
Biogeosciences, 10, 7235–7254, https://doi.org/10.5194/bg-10-7235-2013, https://doi.org/10.5194/bg-10-7235-2013, 2013
C. Parinos, A. Gogou, I. Bouloubassi, R. Pedrosa-Pàmies, I. Hatzianestis, A. Sanchez-Vidal, G. Rousakis, D. Velaoras, G. Krokos, and V. Lykousis
Biogeosciences, 10, 6069–6089, https://doi.org/10.5194/bg-10-6069-2013, https://doi.org/10.5194/bg-10-6069-2013, 2013
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
T. Tanhua, D. Hainbucher, V. Cardin, M. Álvarez, G. Civitarese, A. P. McNichol, and R. M. Key
Earth Syst. Sci. Data, 5, 289–294, https://doi.org/10.5194/essd-5-289-2013, https://doi.org/10.5194/essd-5-289-2013, 2013
T. Fischer, D. Banyte, P. Brandt, M. Dengler, G. Krahmann, T. Tanhua, and M. Visbeck
Biogeosciences, 10, 5079–5093, https://doi.org/10.5194/bg-10-5079-2013, https://doi.org/10.5194/bg-10-5079-2013, 2013
F. Mapelli, M. M. Varela, M. Barbato, R. Alvariño, M. Fusi, M. Álvarez, G. Merlino, D. Daffonchio, and S. Borin
Ocean Sci., 9, 585–595, https://doi.org/10.5194/os-9-585-2013, https://doi.org/10.5194/os-9-585-2013, 2013
C. Theodosi, C. Parinos, A. Gogou, A. Kokotos, S. Stavrakakis, V. Lykousis, J. Hatzianestis, and N. Mihalopoulos
Biogeosciences, 10, 4449–4464, https://doi.org/10.5194/bg-10-4449-2013, https://doi.org/10.5194/bg-10-4449-2013, 2013
S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, https://doi.org/10.5194/bg-10-2169-2013, 2013
Related subject area
Physical oceanography
A submesoscale eddy identification dataset in the northwest Pacific Ocean derived from GOCI I chlorophyll a data based on deep learning
MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP): the CoASTS-BiOMaP dataset
SDUST2023VGGA: A Global Ocean Vertical Gradient of Gravity Anomaly Model Determined from Multidirectional Data from Mean Sea Surface
Spatio-temporal changes in China's mainland shorelines over 30 years using Landsat time series data (1990–2019)
ISASO2: recent trends and regional patterns of ocean dissolved oxygen change
Constructing a 22-year internal wave dataset for the northern South China Sea: spatiotemporal analysis using MODIS imagery and deep learning
Surface current variability in the East Australian Current from long-term HF radar observations
Near-real-time atmospheric and oceanic science products of Himawari-8 and Himawari-9 geostationary satellites over the South China Sea
High-resolution observations of the ocean upper layer south of Cape St. Vincent, the western northern margin of the Gulf of Cádiz
Catalogue of coastal-based instances with bathymetric and topographic data
Oceanographic monitoring in Hornsund fjord, Svalbard
Multi-year observations of near-bed hydrodynamics and suspended sediment at the core of the estuarine turbidity maximum of the Changjiang Estuary: the NP-ChaM campaign
Salinity and Stratification at the Sea Ice Edge (SASSIE): an oceanographic field campaign in the Beaufort Sea
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
IAPv4 ocean temperature and ocean heat content gridded dataset
Probabilistic reconstruction of sea-level changes and their causes since 1900
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea
A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
Underwater light environment in Arctic fjords
A new multi-resolution bathymetric dataset of the Gulf of Naples (Italy) from complementary multi-beam echosounders
Multiyear surface wave dataset from the subsurface “DeepLev” eastern Levantine moored station
A European database of resources on coastal storm impacts
SDUST2020MGCR: a global marine gravity change rate model determined from multi-satellite altimeter data
Lagrangian surface drifter observations in the North Sea: an overview of high-resolution tidal dynamics and surface currents
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
A Lagrangian coherent eddy atlas for biogeochemical applications in the North Pacific Subtropical Gyre
Global marine gravity gradient tensor inverted from altimetry-derived deflections of the vertical: CUGB2023GRAD
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean
Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marsh plants under waves with and without current
Exploring multi-decadal time series of temperature extremes in Australian coastal waters
Measurements of morphodynamics of a sheltered beach along the Dutch Wadden Sea
Lagoon hydrodynamics of pearl farming islands: the case of Gambier (French Polynesia)
Oceanographic dataset collected during the 2021 scientific expedition of the Canadian Coast Guard Ship Amundsen
Extension of a high temporal resolution sea level time series at Socoa (Saint-Jean-de-Luz, France) back to 1875
Hyperspectral reflectance of pristine, ocean weathered and biofouled plastics from a dry to wet and submerged state
Lagoon hydrodynamics of pearl farming atolls: the case of Raroia, Takapoto, Apataki and Takaroa (French Polynesia)
Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys
A Mediterranean drifter dataset
The DTU21 global mean sea surface and first evaluation
A dataset for investigating socio-ecological changes in Arctic fjords
Dataset of depth and temperature profiles obtained from 2012 to 2020 using commercial fishing vessels of the AdriFOOS fleet in the Adriatic Sea
Measurements and modeling of water levels, currents, density, and wave climate on a semi-enclosed tidal bay, Cádiz (southwest Spain)
Wind wave and water level dataset for Hornsund, Svalbard (2013–2021)
Deep-water hydrodynamic observations around a cold-water coral habitat in a submarine canyon in the eastern Ligurian Sea (Mediterranean Sea)
Ocean cross-validated observations from R/Vs L'Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC campaign
Yan Wang, Ge Chen, Jie Yang, Zhipeng Gui, and Dehua Peng
Earth Syst. Sci. Data, 16, 5737–5752, https://doi.org/10.5194/essd-16-5737-2024, https://doi.org/10.5194/essd-16-5737-2024, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation are difficult to observe using current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Han Zhang, Dake Chen, Tongya Liu, Di Tian, Min He, Qi Li, Guofei Wei, and Jian Liu
Earth Syst. Sci. Data, 16, 5665–5679, https://doi.org/10.5194/essd-16-5665-2024, https://doi.org/10.5194/essd-16-5665-2024, 2024
Short summary
Short summary
This paper provides a cross-shaped moored array dataset (MASCS 1.0) of observations that consist of five buoys and four moorings in the northern South China Sea from 2014 to 2015. The moored array is influenced by atmospheric forcings such as tropical cyclones and monsoon as well as oceanic tides and flows. The data reveal variations of the air–sea interface and the ocean itself, which are valuable for studies of air–sea interactions and ocean dynamics in the northern South China Sea.
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024, https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Short summary
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019. A new automated quality control analysis has been performed starting from the original raw data and operational log sheets. The data have been formatted and standardized according to the latest community best practices, and all available metadata have been inserted, including calibration information and uncertainty specification.
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024, https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Short summary
The Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP) programs produced bio-optical data supporting satellite ocean color applications across European seas for almost 2 decades. CoASTS and BiOMaP applied equal standardized instruments, measurement methods, quality control schemes and processing codes to ensure temporal and spatial consistency with data products.
Ruichen Zhou, Jinyun Guo, Shaoshuai Ya, Heping Sun, and Xin Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-544, https://doi.org/10.5194/essd-2024-544, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study introduces SDUST2023VGGA, a high-resolution model of the ocean's vertical gravity gradient anomaly (VGGA). The model was developed using multi-directional mean sea surface data, providing detailed coverage of ocean gravity variations at a 1'×1' resolution. Freely available on Zenodo, SDUST2023VGGA serves as a valuable dataset for marine geophysics and oceanography research, offering insights into seafloor structures and ocean mass distribution.
Gang Yang, Ke Huang, Lin Zhu, Weiwei Sun, Chao Chen, Xiangchao Meng, Lihua Wang, and Yong Ge
Earth Syst. Sci. Data, 16, 5311–5331, https://doi.org/10.5194/essd-16-5311-2024, https://doi.org/10.5194/essd-16-5311-2024, 2024
Short summary
Short summary
Continuous monitoring of shoreline dynamics is critical to understanding the drivers of shoreline change and evolution. This study uses long-term sequences of Landsat Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) images to analyze the spatio-temporal evolution characteristics of the coastlines of Hainan, mainland China, Taiwan, and other countries from 1990 to 2019.
Nicolas Kolodziejczyk, Esther Portela, Virginie Thierry, and Annaig Prigent
Earth Syst. Sci. Data, 16, 5191–5206, https://doi.org/10.5194/essd-16-5191-2024, https://doi.org/10.5194/essd-16-5191-2024, 2024
Short summary
Short summary
Oceanic dissolved oxygen (DO) is fundamental for ocean biogeochemical cycles and marine life. To ease the computation of the ocean oxygen budget from in situ DO data, mapping of data on a regular 3D grid is useful. Here, we present a new DO gridded product from the Argo database. We compare it with existing DO mapping from a historical dataset. We suggest that the ocean has generally been losing oxygen since the 1980s, but large interannual and regional variabilities should be considered.
Xudong Zhang and Xiaofeng Li
Earth Syst. Sci. Data, 16, 5131–5144, https://doi.org/10.5194/essd-16-5131-2024, https://doi.org/10.5194/essd-16-5131-2024, 2024
Short summary
Short summary
Internal wave (IW) is an important ocean process and is frequently observed in the South China Sea (SCS). This study presents a detailed IW dataset for the northern SCS spanning from 2000 to 2022, with a spatial resolution of 250 m, comprising 3085 IW MODIS images. This dataset can enhance understanding of IW dynamics and serve as a valuable resource for studying ocean dynamics, validating numerical models, and advancing AI-driven model building, fostering further exploration into IW phenomena.
Manh Cuong Tran, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-480, https://doi.org/10.5194/essd-2024-480, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The East Australian Current (EAC) plays an important role in the marine ecosystem and climate of the region. To understand the EAC regime and the inner shelf dynamics, we implement the variational approach to produce the first multi-year coastal radar dataset (2012–2023) in this region. The validated data allows for a comprehensive investigation of the EAC dynamics. This dataset will be useful for understanding the complex EAC regime and its far-reaching impacts on the shelf environment.
Jian Liu, Jingjing Yu, Chuyong Lin, Min He, Haiyan Liu, Wei Wang, and Min Min
Earth Syst. Sci. Data, 16, 4949–4969, https://doi.org/10.5194/essd-16-4949-2024, https://doi.org/10.5194/essd-16-4949-2024, 2024
Short summary
Short summary
The Japanese Himawari-8 and Himawari-9 (H8/9) geostationary (GEO) satellites are strategically positioned over the South China Sea (SCS), spanning from 3 November 2022 to the present. They mainly provide cloud mask, fraction, height, phase, optical, and microphysical property; layered precipitable water; and sea surface temperature products within a temporal resolution of 10 min and a gridded resolution of 0.05° × 0.05°.
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024, https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Short summary
This article presents the data of a 4-month observation of the Iberian Margin Cape St. Vincent ocean observatory, in Portugal (2022), a European Multidisciplinary Seafloor and water column Observatory node. Three instruments at depths between 150 and 200 m collected physical/biogeochemical parameters at different spatial and temporal scales. EMSO-ERIC aims at developing strategies to enable sustainable ocean observation with regards to costs, time, and resolution.
Owein Thuillier, Nicolas Le Josse, Alexandru-Liviu Olteanu, Marc Sevaux, and Hervé Tanguy
Earth Syst. Sci. Data, 16, 4529–4556, https://doi.org/10.5194/essd-16-4529-2024, https://doi.org/10.5194/essd-16-4529-2024, 2024
Short summary
Short summary
Our study unveils a comprehensive catalogue of 17 700 unique coastal digital elevation models (DEMs) derived from the General Bathymetric Chart of the Oceans (GEBCO) as of 2022. These DEMs are designed to support a variety of scientific and educational purposes. Organised into three libraries, they cover a wide range of coastal geometries and different sizes. Data and custom colour palettes for visualisation are made freely available online, promoting open science and collaboration.
Meri Korhonen, Mateusz Moskalik, Oskar Głowacki, and Vineet Jain
Earth Syst. Sci. Data, 16, 4511–4527, https://doi.org/10.5194/essd-16-4511-2024, https://doi.org/10.5194/essd-16-4511-2024, 2024
Short summary
Short summary
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where retreating glaciers add meltwater and terrestrial matter to coastal waters. Therefore, turbidity and water sampling for suspended sediment concentration and sediment deposition are measured. The monitoring spans from May to October, enabling studies on seasonality and its variability over the years, and the dataset covers the whole fjord, including the inner basins in close proximity to the glaciers.
Zaiyang Zhou, Jianzhong Ge, Dirk Sebastiaan van Maren, Hualong Luan, Wenyun Guo, Jianfei Ma, Yingjia Tao, Peng Xu, Fuhai Dao, Wanlun Yang, Keteng Ke, Shenyang Shi, Jingting Zhang, Yu Kuai, Cheng Li, Jinghua Gu, and Pingxing Ding
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-400, https://doi.org/10.5194/essd-2024-400, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The North Passage (NP) is the primary navigation channel of the Changjiang Estuary, supporting the shipping needs of Shanghai and its surrounding regions. To enhance our understanding of hydrodynamics and sediment dynamics of the NP, a multi-year field observation campaign was designed and conducted from 2015 to 2018. This campaign improves the temporal and spatial coverage compared to previous observations, enabling more detailed investigations of this important channel system.
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024, https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary
Short summary
Since 2008, the Yellow Sea has faced a significant ecological issue, the green tide, which has become one of the world's largest marine disasters. Satellite remote sensing plays a pivotal role in detecting this phenomenon. This study uses AI-based models to extract the daily green tide from MODIS and SAR images and integrates these daily data to introduce a continuous weekly dataset, which aids research in disaster simulation, forecasting, and prevention.
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024, https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
Short summary
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom conducted an extensive sea campaign, mapping the bay's topography and exploring coastal processes. High-resolution data improve knowledge of the interactions between waves, tide and surge and determine processes responsible for submersion. Beyond science, these findings contribute crucially to a local warning system, providing a tangible solution to protect the community from coastal threats.
Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo
Earth Syst. Sci. Data, 16, 3193–3211, https://doi.org/10.5194/essd-16-3193-2024, https://doi.org/10.5194/essd-16-3193-2024, 2024
Short summary
Short summary
We overcame the limitations of satellite and reanalysis sea surface salinity (SSS) datasets and produced a gap-free gridded SSS product with reasonable accuracy and a spatial resolution of 1 km using a machine learning model. Our data enabled the recognition of SSS distribution and movement patterns of the Changjiang diluted water (CDW) front in the East China Sea (ECS) during summer. These results will further advance our understanding and monitoring of long-term SSS variations in the ECS.
Haibin Ye, Chaoyu Yang, Yuan Dong, Shilin Tang, and Chuqun Chen
Earth Syst. Sci. Data, 16, 3125–3147, https://doi.org/10.5194/essd-16-3125-2024, https://doi.org/10.5194/essd-16-3125-2024, 2024
Short summary
Short summary
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet achieves good performance reconstructing chlorophyll-a concentration data on the South China Sea. The reconstructed dataset depicts both the spatiotemporal patterns at the seasonal scale and a fast-change process at the weather scale. Reconstructed data show chlorophyll perturbations of individual eddies at different life stages, giving academics a unique and complete perspective on eddy studies.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-135, https://doi.org/10.5194/essd-2024-135, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to 2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area abrupt to geological changes and human impacts. These findings support future geological and geomorphological investigations and mapping and monitoring seafloor and habitats.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Paola Emilia Souto-Ceccon, Juan Montes-Perez, Enrico Duo, Paolo Ciavola, Tomas Fernandez Montblanc, and Clara Armaroli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-183, https://doi.org/10.5194/essd-2024-183, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This dataset will support the growing need for information on coastal storm impacts. To our knowledge a specific public access database is not available yet. The database was assembled after an extensive European-scale search of online and published resources and financed by the European Union within the H2020 Programme. Finally, we believe that our approach could be easily exported to all European countries and beyond.
Fengshun Zhu, Jinyun Guo, Huiying Zhang, Lingyong Huang, Heping Sun, and Xin Liu
Earth Syst. Sci. Data, 16, 2281–2296, https://doi.org/10.5194/essd-16-2281-2024, https://doi.org/10.5194/essd-16-2281-2024, 2024
Short summary
Short summary
We used multi-satellite altimeter data to construct a high-resolution marine gravity change rate (MGCR) model on 5′×5′ grids, named SDUST2020MGCR. The spatial distribution of SDUST2020MGCR and GRACE MGCR are similar, such as in the eastern seas of Japan (dipole), western seas of the Nicobar Islands (rising), and southern seas of Greenland (falling). The SDUST2020MGCR can provide a detailed view of long-term marine gravity change, which will help to study the seawater mass migration.
Lisa Deyle, Thomas H. Badewien, Oliver Wurl, and Jens Meyerjürgens
Earth Syst. Sci. Data, 16, 2099–2112, https://doi.org/10.5194/essd-16-2099-2024, https://doi.org/10.5194/essd-16-2099-2024, 2024
Short summary
Short summary
A dataset from the North Sea of 85 surface drifters from 2017–2021 is presented. Surface drifters enable the analysis of ocean currents by determining the velocities of surface currents and tidal effects. The entire North Sea has not been studied using drifters before, but the analysis of ocean currents is essential, e.g., to understand the pathways of plastic. The results show that there are strong tidal effects in the shallow North Sea area and strong surface currents in the deep areas.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Alexandra E. Jones-Kellett and Michael J. Follows
Earth Syst. Sci. Data, 16, 1475–1501, https://doi.org/10.5194/essd-16-1475-2024, https://doi.org/10.5194/essd-16-1475-2024, 2024
Short summary
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Richard Fiifi Annan, Xiaoyun Wan, Ruijie Hao, and Fei Wang
Earth Syst. Sci. Data, 16, 1167–1176, https://doi.org/10.5194/essd-16-1167-2024, https://doi.org/10.5194/essd-16-1167-2024, 2024
Short summary
Short summary
Gravity gradient tensor, a set of six unique gravity signals, is suitable for detecting undersea features. However, due to poor spatial resolution in past years, it has received less research interest and investment. However, current datasets have better accuracy and resolutions, thereby necessitating a revisit. Our analysis shows comparable results with reference models. We conclude that current-generation altimetry datasets can precisely resolve all six gravity gradients.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Xiaoxia Zhang and Heidi Nepf
Earth Syst. Sci. Data, 16, 1047–1062, https://doi.org/10.5194/essd-16-1047-2024, https://doi.org/10.5194/essd-16-1047-2024, 2024
Short summary
Short summary
This study measured the wave-induced plant drag, flow structure, turbulent intensity, and wave energy attenuation in the presence of a salt marsh. We showed that leaves contribute to most of the total plant drag and wave dissipation. Plant resistance significantly reshapes the velocity profile and enhances turbulence intensity. Adding current obviously impact the plants' wave decay capacity. The dataset can be reused to develop and calibrate marsh-flow theoretical and numerical models.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Marlies A. van der Lugt, Jorn W. Bosma, Matthieu A. de Schipper, Timothy D. Price, Marcel C. G. van Maarseveen, Pieter van der Gaag, Gerben Ruessink, Ad J. H. M. Reniers, and Stefan G. J. Aarninkhof
Earth Syst. Sci. Data, 16, 903–918, https://doi.org/10.5194/essd-16-903-2024, https://doi.org/10.5194/essd-16-903-2024, 2024
Short summary
Short summary
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch Wadden Sea with the aim of gaining new insights into the driving processes behind sheltered beach morphodynamics. Detailed measurements of the local hydrodynamics, bed-level changes and sediment composition were collected. The morphological evolution on this sheltered site is the result of the subtle interplay between waves, currents and bed composition.
Oriane Bruyère, Romain Le Gendre, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 16, 667–679, https://doi.org/10.5194/essd-16-667-2024, https://doi.org/10.5194/essd-16-667-2024, 2024
Short summary
Short summary
During 2019–2020, the lagoon and forereefs of Gambier Island (French Polynesia) were monitored with oceanographic instruments to measure lagoon hydrodynamics and ocean–lagoon water exchanges. Gambier Island is a key black pearl producer and the study goal was to understand the processes influencing spat collection of pearl oyster Pinctada margaritifera, the species used to produce black pearls. The data set is provided to address local pearl farming questions and other investigations as well.
Tahiana Ratsimbazafy, Thibaud Dezutter, Amélie Desmarais, Daniel Amirault, Pascal Guillot, and Simon Morisset
Earth Syst. Sci. Data, 16, 471–499, https://doi.org/10.5194/essd-16-471-2024, https://doi.org/10.5194/essd-16-471-2024, 2024
Short summary
Short summary
The Canadian Coast Guard Ship has collected oceanographic data across the Canadian Arctic annually since 2003. Such activity aims to support Canadian and international researchers. The ship has several instruments with cutting-edge technology available for research each year during the summer. The data presented here include measurements of physical, chemical and biological variables during the year 2021. Datasets collected from each expedition are available free of charge for the public.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Oriane Bruyère, Romain Le Gendre, Mathilde Chauveau, Bertrand Bourgeois, David Varillon, John Butscher, Thomas Trophime, Yann Follin, Jérôme Aucan, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 15, 5553–5573, https://doi.org/10.5194/essd-15-5553-2023, https://doi.org/10.5194/essd-15-5553-2023, 2023
Short summary
Short summary
During 2018–2022, four pearl farming Tuamotu atolls (French Polynesia) were studied with oceanographic instruments to measure lagoon hydrodynamics and ocean-lagoon water exchanges. The goal was to gain knowledge on the processes influencing the spat collection of the pearl oyster Pinctada margaritifera, the species used to produce black pearls. A worldwide unique oceanographic atoll data set is provided to address local pearl farming questions and other fundamental and applied investigations.
Edwin Rainville, Jim Thomson, Melissa Moulton, and Morteza Derakhti
Earth Syst. Sci. Data, 15, 5135–5151, https://doi.org/10.5194/essd-15-5135-2023, https://doi.org/10.5194/essd-15-5135-2023, 2023
Short summary
Short summary
Measuring ocean waves nearshore is essential for understanding how the waves impact our coastlines. We designed and deployed many small wave buoys in the nearshore ocean over 27 d in Duck, North Carolina, USA, in 2021. The wave buoys measure their motion as they drift. In this paper, we describe multiple levels of data processing. We explain how this dataset can be used in future studies to investigate nearshore wave kinematics, transport of buoyant particles, and wave-breaking processes.
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023, https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Short summary
Over 100 experiments were realized between 1998 and 2022 in the Mediterranean Sea using surface coastal and offshore Lagrangian drifters. Raw data were initially unified and pre-processed. Then, the integrity of the received data packages was checked and incomplete ones were discarded. Deployment information was retrieved and integrated into the PostgreSQL database. Data were interpolated at defined time intervals, providing a dataset of 158 trajectories, available in different formats.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Pierluigi Penna, Filippo Domenichetti, Andrea Belardinelli, and Michela Martinelli
Earth Syst. Sci. Data, 15, 3513–3527, https://doi.org/10.5194/essd-15-3513-2023, https://doi.org/10.5194/essd-15-3513-2023, 2023
Short summary
Short summary
This work presents the pressure (depth) and temperature profile dataset provided by the AdriFOOS infrastructure in the Adriatic Sea (Mediterranean basin) from 2012 to 2020. Data were subject to quality assurance (QA) and quality control (QC). This infrastructure, based on the ships of opportunity principle and involving the use of commercial fishing vessels, is able to produce huge amounts of useful data both for operational oceanography and fishery biology purposes.
Carmen Zarzuelo, Alejandro López-Ruiz, María Bermúdez, and Miguel Ortega-Sánchez
Earth Syst. Sci. Data, 15, 3095–3110, https://doi.org/10.5194/essd-15-3095-2023, https://doi.org/10.5194/essd-15-3095-2023, 2023
Short summary
Short summary
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a paradigmatic example of a tidal bay of complex geometry under high anthropogenic pressure. The dataset brings together measured and modeled data on water levels, currents, density, and waves for the period 2012–2015. It allows the characterization of the bay dynamics from intratidal to seasonal scales. Potential applications include the study of ocean–bay interactions, wave propagation, or energy assessments.
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Cited articles
Bullister, J. L. and Weiss, R. F.: Determination of CCl3F and CCl2F2 in
seawater and air, Deep-Sea Res., 35, 839–853, 1988.
Byrne, R. H. and Yao, W.: Procedures for measurement of carbonate ion
concentrations in seawater by direct espectrophotometric observations of Pb
(II) complexation, Mar. Chem., 112, 128–135, 2008.
Carlson, C. A. and Hansell, D. A.: Biogeochemistry of Marine Dissolved Organic
Matter, 2nd edn., Elsevier Inc., 66–126, https://doi.org/10.1016/C2012-0-02714-7, 2015.
Casciotti, K. L., Sigman, D. M., Galanter Hastings, M., Böhlke, J. K., and
Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in
seawater and freshwater using the denitrifier method, Anal. Chem., 74,
4905–4912, 2002.
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH measurements:
total hydrogen ion concentration scale concentration scale calibration of
m-cresol purple and at-sea results, Deep-Sea Res. Pt. I, 40, 2115–2129, 1993.
Gerke, L.: pCO2 in the Mediterranean Sea during the cruise MSM72. Master
thesis, Department of Chemistry, Christian-Albrechts-University, Kiel, 2020.
Gonnelli, M., Galletti, Y., Marchetti, E., Mercadante, L., Brogi, S. R.,
Ribotti, A., Sorgente, R., Vestri, S., and Santinelli, C.: Dissolved organic
matter dynamics in surface waters affected by oil spill pollution: Results
from the serious game exercise, Deep-Sea Res. Pt. II,
133, 88–99, 2016.
Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid
for nitrate N and O isotope analysis with the denitrifier method, Rapid
Commun. Mass Spectrom., 23, 3753–3762, https://doi.org/10.1002/rcm.4307, 2009.
Häder, D.-P. and Sinha, R. P.: Solar ultraviolet radiation-induced DNA
damage in aquatic organisms: potential environmental impact, ScienceDirect, https://doi.org/10.1016/j.mrfmmm.2004.11.017, 2005.
Hainbucher, D.: Underway CTD data during MARIA S. MERIAN cruise
MSM72, PANGAEA, https://doi.org/10.1594/PANGAEA.913512, 2020a.
Hainbucher, D.: ADCP current measurements (38 and 75 kHz)
during MARIA S. MERIAN cruise MSM72, PANGAEA, https://doi.org/10.1594/PANGAEA.913608, 2020b.
Hainbucher, D.: Lowered ADCP data during MARIA S. MERIAN cruise
MSM72, PANGAEA, https://doi.org/10.1594/PANGAEA.913505, 2020c.
Hainbucher, D., Álvarez, M., Astray, B., Bachi, G., Cardin, V.,
Celentano, P., Chaikakis, S., Chaves Montero, M. M., Civitarese, G., El
Rahman Hassoun, H., Fajar, N. M., Fripiat, F., Gerke, L., Gogou, A., Guallart,
F., Gülk, B., Lange, N., Rochner, A., Santinelli, C., Schroeder, K.,
Steinhoff, Tanhua, T., Urbini, L., Velaoras, D., Wolf, F., and Welsch, A.:
Variability and Trends in Physical and Biogeochemical Parameters of the
Mediterranean Sea, available at: http://epic.awi.de/47567/2/msm71-74-expeditionsheft.pdf (last access: 10 November 2020), 2018.
Hainbucher, D., Cardin, V., Velaoras,
D., and Montero, M. F.: Physical oceanography
during MARIA S. MERIAN cruise MSM72, PANGAEA, https://doi.org/10.1594/PANGAEA.905902, 2019.
Hansell, D. A., Carlson, C. A., Pepeta, D. L., and Schlitzer, R.: Dissolved
Organic Matter in the Ocean: A controversy stimulates new insights, Oceanography,
22, 202–211, 2009.
Hansen, H. P. and Koroleff, E.: Determination of nutrients, in: Methods of seawater analysis, edited by: Grasshoff, K., Kremling,
K., and Ehrhardt, M., Wiley VCH,
Weinheim, 159–228, 1999.
Herndl, G. J., Müller-Niklas, G., and Frick, J.: Major role of
ultraviolet-B in controlling bacterio plankton growth in the surface layer
of the ocean, Nature, 361, 717–719, 1993.
Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K., and Wong, C. S.:
Coulometric total carbon dioxide analysis for marine studies: maximizing the
performance of an automated gas extraction system and coulometric detector,
Marine Chem., 44, 167–187, 1993.
Langdon, C.: Determination of dissolved oxygen in seawater by Winkler
titration using the amperometric technique, IOCCP Report No.
14, ICPO publication series N 134, 2010.
Li, P. and Tanhua, T.: Medusa-Aqua system: simultaneous measurement and evaluation of novel potential halogenated transient tracers HCFCs, HFCs and PFCs in the ocean, Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-101, in review, 2019.
Li, P. and Tanhua, T.: Recent Changes in Deep Ventilation of the
Mediterranean Sea; Evidence from Long-Term Transient Tracer Observations,
Front. Marine Sci., 7, 1–23, https://doi.org/10.3389/fmars.2020.00594, 2020.
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic, M., Kress, N., Marullo, S., Ribera d'Alcalà, M., Sofianos, S., Tanhua, T., Theocharis, A., Alvarez, M., Ashkenazy, Y., Bergamasco, A., Cardin, V., Carniel, S., Civitarese, G., D'Ortenzio, F., Font, J., Garcia-Ladona, E., Garcia-Lafuente, J. M., Gogou, A., Gregoire, M., Hainbucher, D., Kontoyannis, H., Kovacevic, V., Kraskapoulou, E., Kroskos, G., Incarbona, A., Mazzocchi, M. G., Orlic, M., Ozsoy, E., Pascual, A., Poulain, P.-M., Roether, W., Rubino, A., Schroeder, K., Siokou-Frangou, J., Souvermezoglou, E., Sprovieri, M., Tintoré, J., and Triantafyllou, G.: Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research, Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, 2014.
Margolin, A. R., Gonnelli, M., Hansel, D. A., and Santinelli, C.: Black Sea
dissolved organic matter dynamics: Insights from optical analyses, Limnol.
Oceanogr., 63, 1425–1443, https://doi.org/10.1002/lno.10791, 2018.
Mintrop, L., Pérez, F. F., González-Dávila, M., Körtzinger,
A., and Santana-Casiano, J. M.: Alkalinity determination by
potentiometry-intercalibration using three different methods, Ciencias
Marinas, 26, 23–37, 2000.
Nelson, N. B. and Siegel, D. A.: The global distribution and dynamics of
chromophoric dissolved organic matter, Annu. Rev. Mar. Sci., 5, 447–476,
2013.
Patsavas, M. C., Byrne, R. B., Yang, B., Easley, R. A., Wanninkhof, R., and Liu,
X.: Procedures for direct spectrophotometric determination of carbonate ion
concentrations: Measurements in US Gulf of Mexico and East Coast waters,
Mar. Chem., 168, 80–85, 2015.
Pérez, F. F. and Fraga, F.: A precise and rapid analytical procedure for
alkalinity determination, Marine Chem., 21, 169–182, 1987.
Pérez, F. F., Ríos, A. F., Rellán, T., and Álvarez, M.:
Improvements in a fast potentiometric seawater alkalinity determination,
Ciencias Marinas, 26, 463–478, 2000.
Retelletti Brogi, S., Gonelli, M., Vestri, S., and Santinelli, C.: Biophysical
processes affecting DOM dynamics at the Arno river mouth (Tyrrhenian Sea),
Biophys. Chem., 197, 1–9, 2015.
Roether, W., Klein, B., and Hainbucher, D.: The Eastern Mediterranean
Transient: Evidence for Similar Events Previously?, in: The Mediterranean
Sea: Temporal Variability and Spatial Patterns, edited by: Borzelli, G. L.
E., AGU monographs, https://doi.org/10.1002/9781118847572.ch6, 2013.
Santinelli, C.: DOC in the Mediterranean Sea, in: Biogeochemistry of Marine
Dissolved Organic Matter, 2nd edn., 579–08, 2015.
Santinelli, C., Hansell, D. A., and Ribera d'Alcala, M.: Influence of
stratification on marine dissolved organic carbon (DOC) dynamics: The
Mediterranean Sea case, Prog. Oceanogr., 119, 68–77, 2013.
Santinelli, C., Follet C., Retelletti Brogi, S., Xu, L., and Repeta, D.: Carbon
isotope measurements reveal unexpected cycling of dissolved organic matter
in the deep Mediterranean Sea, Marine Chem., 177, 267–277, 2015.
Schneider, A., Tanhua, T., Körtzinger, A., and Wallace, D. W. R.: High
anthropogenic carbon content in the eastern Mediterranean, J. Geophys. Res.,
115, C12050, https://doi.org/10.1029/2010JC006171, 2010.
Schroeder, K., Gasparini, G. P., Tangherlini, M., and Astraldi, M.: Deep and
intermediate water in the western Mediterranean under the influence of the
Eastern Mediterranean Transient, Geophys. Res. Lett., 33, L21607, https://doi.org/10.1029/2006GL027121, 2006.
Schroeder, K., Ribotti, A., Borghini, M., Sorgente, R., Perilli, A., and
Gasparini, G. P.: An extensive western Mediterranean deep water renewal
between 2004 and 2006, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL035146, 2008.
Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and
Böhlke, J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate
in seawater and freshwater, Anal. Chem., 73, 4145–4153, 2001.
Stedmon, C. A. and Nelson, N. B.: The optical properties of DOM in the Ocean,
in: Biogeochemistry of Marine Dissolved Organic Matter, 2nd edn., Elsevier, edited by: Hansell, D. A. and Carlson, C. A., chapter 10,
481–508, https://doi.org/10.1016/B978-0-12-405940-5.00010-8, 2015.
Tanhua, T. and Steinhoff, T.: Surface underway measurements of partial
pressure of carbon dioxide (pCO2), salinity, temperature and other
associated parameters during the R/V MARIA S. MERIAN cruise (EXPOCODE
06M220180302) in Mediterranean Sea from 2018-03-02 to 2018-04-03 (NCEI
Accession 0208442), NOAA National Centers for
Environmental Information, Dataset, https://doi.org/10.25921/z7en-hn85, 2020.
Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G.: The Mediterranean Sea system: a review and an introduction to the special issue, Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, 2013.
Tanhua, T., Álvarez, M., and Civitarese,
G.: Hydrochemistry of water bottles during MARIA S. MERIAN
cruise MSM72, PANGAEA, https://doi.org/10.1594/PANGAEA.905887, 2019.
Turnherr, A. M.: How to Process LADCP Data with the LDEO Software (Versions
IX.7–IX.10). The “go-ship” manual for LADCP data acquisition, available at: ftp://ftp.ldeo.columbia.edu/pub/LADCP/UserManuals (last access: 10 November 2020), 2014.
Ullmann, D. S. and Hebert, D.: Processing of Underway CTD data, AMS,
https://doi.org/10.1175/JTECH-D-13-00200.1, 2014.
Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., and Sigman, D. M.: Updates
to instrumentation and protocols for isotopic analysis of nitrate by the
denitrifier method, Rapid Commun. Mass Spectrom., 30, 1365–1383, 2016.
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The...
Altmetrics
Final-revised paper
Preprint