Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2679-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2679-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tropical cyclones vertical structure from GNSS radio occultation: an archive covering the period 2001–2018
Elżbieta Lasota
Institute of Geodesy and Geoinformatics, Wrocław University of
Environmental and Life Sciences, Wrocław, 50356, Poland
Dipartimento di Geoscienze, Università degli Studi di Padova,
Padua, 35131, Italy
Andrea K. Steiner
Wegener Center for Climate and Global Change (WEGC), University of
Graz, Graz, 8010, Austria
Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, 8010, Austria
Gottfried Kirchengast
Wegener Center for Climate and Global Change (WEGC), University of
Graz, Graz, 8010, Austria
Institute for Geophysics, Astrophysics, and Meteorology/Institute of Physics, University of Graz, Graz, 8010, Austria
Riccardo Biondi
CORRESPONDING AUTHOR
Dipartimento di Geoscienze, Università degli Studi di Padova,
Padua, 35131, Italy
Related authors
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Annika Reiter, Julia Danzer, and Andrea Karin Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3745, https://doi.org/10.5194/egusphere-2025-3745, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Observational GNSS radio occultation (RO) temperature and wind data show high potential to study the tropical width. Comparisons of RO data with state-of-the-art reanalyses demonstrate their feasibility to study the tropopause break and jet stream metrics for zonal-mean and longitudinally-resolved studies. The RO data record provides observations in regions where other methods fall short, such as over oceans and in the Southern Hemisphere.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Florian Ladstädter, Matthias Stocker, Sebastian Scher, and Andrea K. Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2100, https://doi.org/10.5194/egusphere-2025-2100, 2025
Short summary
Short summary
The tropopause, the boundary between the lower and upper atmosphere, is a sensitive marker of climate change. We studied changes in tropopause height and temperature over the past two decades using precise satellite observations. We found warming in the tropics and rising tropopause heights in many regions, especially over Asia and the Middle East. These changes reflect how both atmospheric layers are responding to climate change and highlight the need for continued satellite monitoring.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Short summary
Due to the shortcomings of available observations, having accurate global 3D wind fields remains a challenge. A promising option is radio occultation (RO) satellite data, which enable the derivation of winds based on wind approximations. We test how well RO winds describe the ERA5 winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert Ossó
Atmos. Chem. Phys., 24, 10893–10919, https://doi.org/10.5194/acp-24-10893-2024, https://doi.org/10.5194/acp-24-10893-2024, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can markedly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere–troposphere coupling using vertically highly resolved observations from global navigation satellite system radio occultation for 2007–2019. Our results provide a purely observational view of the evolution of major SSWs, their link to blocking, and their effect on the polar tropopause.
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024, https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Short summary
We investigated the potential of radio occultation (RO) data for climate-oriented wind field monitoring, focusing on the equatorial band within ±5° latitude. In this region, the geostrophic balance breaks down, and the equatorial balance approximation takes over. The study encourages the use of RO wind fields for mesoscale climate monitoring for the equatorial region, showing a small improvement in the troposphere when including the meridional wind in the zonal-mean total wind speed.
Alejandro de la Torre, Peter Alexander, Torsten Schmidt, Andrea K. Steiner, Florian Ladstädter, Rodrigo Hierro, and Pablo Llamedo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1654, https://doi.org/10.5194/egusphere-2024-1654, 2024
Preprint archived
Short summary
Short summary
A single tropopause separates the troposphere below from the stratosphere above. In regions of strong vertical wind shear, a second tropopause layer may be associated to complex weather patterns. From GNSS radio occultation data, the distribution of multiple tropopause and its possible relation to the variability of climate indices is explored. A cluster analysis is applied to geographically associate the DT occurrences with the climate indices and a multivariate linear regression is constructed
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ying Li, Gottfried Kirchengast, Marc Schwaerz, and Yunbin Yuan
Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, https://doi.org/10.5194/acp-23-1259-2023, 2023
Short summary
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021, https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Cited articles
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017.
Anisetty, S. K. A. V. P. R., Huang, C.-Y., and Chen, S.-Y.: Impact of
FORMOSAT-3/COSMIC radio occultation data on the prediction of super cyclone
Gonu (2007): a case study, Nat. Hazards, 70, 1209–1230,
https://doi.org/10.1007/s11069-013-0870-0, 2014.
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Anthes, R. A., Kuo, Y.-H., Rocken, C., and Schreiner, W.: Atmospheric
sounding using GPS radio occultation, MAUSAM, 54, 25–38, 2003.
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F.,
Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H.,
Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C.,
Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C.,
Trenberth, K. E., Wee, T.-K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3
Mission: Early Results, B. Am. Meteorol. Soc., 89, 313–334,
https://doi.org/10.1175/BAMS-89-3-313, 2008.
Barlow, M.: Influence of hurricane-related activity on North American
extreme precipitation, Geophys. Res. Lett., 38, L04705,
https://doi.org/10.1029/2010GL046258, 2011.
Beyerle, G., Schmidt, T., Michalak, G., Heise, S., Wickert, J., and Reigber,
C.: GPS radio occultation with GRACE: Atmospheric profiling utilizing the
zero difference technique, Geophys. Res. Lett., 32, L13806,
https://doi.org/10.1029/2005GL023109, 2005.
Biondi, R., Neubert, T., Syndergaard, S., and Nielsen, J.: Measurements of
the upper troposphere and lower stratosphere during tropical cyclones using
the GPS radio occultation technique, Adv. Space Res., 47,
348–355, https://doi.org/10.1016/j.asr.2010.05.031, 2011a.
Biondi, R., Neubert, T., Syndergaard, S., and Nielsen, J. K.: Radio occultation bending angle anomalies during tropical cyclones, Atmos. Meas. Tech., 4, 1053–1060, https://doi.org/10.5194/amt-4-1053-2011, 2011b.
Biondi, R., Ho, S.-P., Randel, W., Syndergaard, S., and Neubert, T.: Tropical
cyclone cloud-top height and vertical temperature structure detection using
GPS radio occultation measurements, J. Geophys. Res.-Atmos., 118, 5247–5259, https://doi.org/10.1002/jgrd.50448, 2013.
Biondi, R., Steiner, A. K., Kirchengast, G., and Rieckh, T.: Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation, Atmos. Chem. Phys., 15, 5181–5193, https://doi.org/10.5194/acp-15-5181-2015, 2015.
Bonafoni, S., Biondi, R., Brenot, H., and Anthes, R.: Radio occultation and
ground-based GNSS products for observing, understanding and predicting
extreme events: A review, Atmos. Res., 230, 104624,
https://doi.org/10.1016/j.atmosres.2019.104624, 2019.
Brueske, K. F. and Velden, C. S.: Satellite-Based Tropical Cyclone Intensity
Estimation Using the NOAA-KLM Series Advanced Microwave Sounding Unit
(AMSU), Mon. Weather Rev., 131, 687–697,
https://doi.org/10.1175/1520-0493(2003)131<0687:SBTCIE>2.0.CO;2,
2003.
Cardinali, C.: Monitoring the observation impact on the short-range
forecast, Q. J. Roy. Meteor. Soc., 135,
239–250, https://doi.org/10.1002/qj.366, 2009.
Chane Ming, F., Ibrahim, C., Barthe, C., Jolivet, S., Keckhut, P., Liou, Y.-A., and Kuleshov, Y.: Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008), Atmos. Chem. Phys., 14, 641–658, https://doi.org/10.5194/acp-14-641-2014, 2014.
Chen, S.-Y., Wee, T.-K., Kuo, Y.-H., and Bromwich, D. H.: An Impact
Assessment of GPS Radio Occultation Data on Prediction of a Rapidly
Developing Cyclone over the Southern Ocean, Mon. Weather Rev., 142,
4187–4206, https://doi.org/10.1175/MWR-D-14-00024.1, 2014.
Chen, S.-Y., Kuo, Y.-H., and Huang, C.-Y.: The Impact of GPS RO Data on the
Prediction of Tropical Cyclogenesis Using a Nonlocal Observation Operator:
An Initial Assessment, Mon. Weather Rev., 148, 2701–2717,
https://doi.org/10.1175/MWR-D-19-0286.1, 2020.
Chen, Y.-C., Hsieh, M.-E., Hsiao, L.-F., Kuo, Y.-H., Yang, M.-J., Huang, C.-Y., and Lee, C.-S.: Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008–2010, Atmos. Meas. Tech., 8, 2531–2542, https://doi.org/10.5194/amt-8-2531-2015, 2015.
Cirac-Claveras, G.: Weather Satellites: Public, Private and Data Sharing.
The Case of Radio Occultation Data, Space Policy, 47, 94–106,
https://doi.org/10.1016/j.spacepol.2018.08.002, 2019.
de La Beaujardière, O.: C/NOFS: a mission to forecast scintillations,
J. Atmos. Sol.-Terr. Phy., 66, 1573–1591,
https://doi.org/10.1016/j.jastp.2004.07.030, 2004.
Demuth, J. L., DeMaria, M., Knaff, J. A., and Vonder Haar, T. H.: Evaluation
of Advanced Microwave Sounding Unit Tropical-Cyclone Intensity and Size
Estimation Algorithms, J. Appl. Meteorol., 43, 282–296,
https://doi.org/10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2,
2004.
Dvorak, V. F.: Tropical Cyclone Intensity Analysis and Forecasting from
Satellite Imagery, Mon. Weather Rev., 103, 420–430,
https://doi.org/10.1175/1520-0493(1975)103< 0420:TCIAAF>2.0.CO;2,
1975.
EOPAC Team: GNSS Radio Occultation Record (OPS 5.6 2001–2018), University of Graz, Austria, https://doi.org/10.25364/WEGC/OPS5.6:2019.1, 2019.
Foelsche, U., Syndergaard, S., Fritzer, J., and Kirchengast, G.: Errors in GNSS radio occultation data: relevance of the measurement geometry and obliquity of profiles, Atmos. Meas. Tech., 4, 189–199, https://doi.org/10.5194/amt-4-189-2011, 2011.
Gorbunov, M. E., Benzon, H.-H., Jensen, A. S., Lohmann, M. S., and Nielsen,
A. S.: Comparative analysis of radio occultation processing approaches based
on Fourier integral operators, Radio Sci., 39, 1–11,
https://doi.org/10.1029/2003RS002916, 2004.
Hajj, G. A., Ao, C. O., Iijima, B. A., Kuang, D., Kursinski, E. R.,
Mannucci, A. J., Meehan, T. K., Romans, L. J., de la Torre Juarez, M., and
Yunck, T. P.: CHAMP and SAC-C atmospheric occultation results and
intercomparisons, J. Geophys. Res.-Atmos., 109, D06109,
https://doi.org/10.1029/2003JD003909, 2004.
Harper, B. A., Kepert, J. D., and Ginger, J. D.: Guidelines for converting
between various wind averaging periods in tropical cyclone conditions, World
Meteorological Organization, Geneva, Switzerland, available at:
https://www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf (last access: 25 February 2020), 2010.
Hima Bindu, H., Venkat Ratnam, M., Yesubabu, V., Narayana Rao, T., Kesarkar,
A., and Naidu, C. V.: Characteristics of cyclone generated gravity waves
observed using assimilated WRF model simulations over Bay of Bengal,
Atmos. Res., 180, 178–188, https://doi.org/10.1016/j.atmosres.2016.05.021,
2016.
Ho, S.-P., Kirchengast, G., Leroy, S., Wickert, J., Mannucci, T., Steiner, A. K., Hunt, D., Schreiner, W., Sokolovskiy, S. V., Ao, C. O., Borsche, M., von Engeln, A., Foelsche, U., Heise, S., Iijima, B., Kuo, Y.-H., Kursinski, E. R., Pirscher, B., Ringer, M., Rocken, C., and Schmidt, T.: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers, J. Geophys. Res.-Atmos., 114, D23107, https://doi.org/10.1029/2009JD011969, 2009.
Hsiao, L.-F., Chen, D.-S., Kuo, Y.-H., Guo, Y.-R., Yeh, T.-C., Hong, J.-S.,
Fong, C.-T., and Lee, C.-S.: Application of WRF 3DVAR to Operational Typhoon
Prediction in Taiwan: Impact of Outer Loop and Partial Cycling Approaches,
Weather Forecast., 27, 1249–1263, https://doi.org/10.1175/WAF-D-11-00131.1, 2012.
Huang, C.-Y., Kuo, Y.-H., Chen, S.-H., and Vandenberghe, F.: Improvements in
Typhoon Forecasts with Assimilated GPS Occultation Refractivity, Weather
Forecast., 20, 931–953, https://doi.org/10.1175/WAF874.1, 2005.
Huang, C.-Y., Kuo, Y.-H., Chen, S.-Y., Terng, C.-T., Chien, F.-C., Lin,
P.-L., Kueh, M.-T., Chen, S.-H., Yang, M.-J., Wang, C.-J., and Prasad Rao, A.
S. K. A. V.: Impact of GPS radio occultation data assimilation on regional
weather predictions, GPS Solut, 14, 35–49, https://doi.org/10.1007/s10291-009-0144-1,
2010.
Kidder, S. Q., Gray, W. M., and Vonder Haar, T. H.: Estimating Tropical
Cyclone Central Pressure and Outer Winds from Satellite Microwave Data, Mon. Weather Rev., 106, 1458–1464, https://doi.org/10.1175/1520-0493(1978)106<1458:ETCCPA>2.0.CO;2, 1978.
King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.: Remote sensing of
cloud, aerosol, and water vapor properties from the moderate resolution
imaging spectrometer (MODIS), IEEE T. Geosci. Remote, 30, 2–27,
1992.
Knaff, J. A., Longmore, S. P., and Molenar, D. A.: An Objective
Satellite-Based Tropical Cyclone Size Climatology, J. Climate, 27,
455–476, https://doi.org/10.1175/JCLI-D-13-00096.1, 2013.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The International Best Track Archive for Climate Stewardship (IBTrACS),
B. Am. Meteorol. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1, 2010 (data available at: https://www.ncdc.noaa.gov/ibtracs/ last access: 31 August 2020).
Knapp, K. R., Diamond, H. J., Kossin, J. P., Kruk, M. C., and Schreck, C. J.
I.: International Best Track Archive for Climate Stewardship (IBTrACS)
Project, Version 4,
https://doi.org/10.25921/82ty-9e16, 2018.
Knibbe, W. J. J., de Haan, J. F., Hovenier, J. W., Stam, D. M., Koelemeijer,
R. B. A., and Stammes, P.: Deriving terrestrial cloud top pressure from
photopolarimetry of reflected light, J. Quant. Spectrosc. Ra., 64, 173–199, https://doi.org/10.1016/S0022-4073(98)00135-6,
2000.
Koelemeijer, R. B. A., Stammes, P., Hovenier, J. W., and Haan, J. F. de:
Global distributions of effective cloud fraction and cloud top pressure
derived from oxygen A band spectra measured by the Global Ozone Monitoring
Experiment: Comparison to ISCCP data, J. Geophys. Res.-Atmos., 107, AAC 5-1–AAC 5-9, https://doi.org/10.1029/2001JD000840, 2002.
Kunii, M., Seko, H., Ueno, M., Shoji, Y., and Tsuda, T.: Impact of
Assimilation of GPS Radio Occultation Refractivity on the Forecast of
Typhoon Usagi in 2007, J. Meteorol. Soc. Jpn., 90, 255–273, https://doi.org/10.2151/jmsj.2012-207, 2012.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's atmosphere with radio occultation measurements
using the Global Positioning System, J. Geophys. Res.-Atmos., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Landsea, C. W. and Franklin, J. L.: Atlantic Hurricane Database Uncertainty
and Presentation of a New Database Format, Mon. Weather Rev., 141,
3576–3592, https://doi.org/10.1175/MWR-D-12-00254.1, 2013.
Lasota, E., Rohm, W., Liu, C.-Y., and Hordyniec, P.: Cloud Detection from
Radio Occultation Measurements in Tropical Cyclones, Atmosphere, 9, 418,
https://doi.org/10.3390/atmos9110418, 2018.
Lasota, E., Steiner, A. K., Kirchengast, G., and Biondi, R.: A comprehensive
archive of Tropical cyclones vertical structure covering the period
2001–2018, University of Graz, Austria, https://doi.org/10.25364/WEGC/TC-RO1.0:2020.1,
2020.
Li, Y., Kirchengast, G., Scherllin-Pirscher, B., Schwaerz, M., Nielsen, J.
K., Ho, S.-P., and Yuan, Y. B.: A New Algorithm for the Retrieval of
Atmospheric Profiles from GNSS Radio Occultation Data in Moist Air and
Comparison to 1DVar Retrievals, Remote Sens., 11, 2729,
https://doi.org/10.3390/rs11232729, 2019.
Liu, H., Anderson, J., and Kuo, Y.-H.: Improved Analyses and Forecasts of
Hurricane Ernesto's Genesis Using Radio Occultation Data in an Ensemble
Filter Assimilation System, Mon. Weather Rev., 140, 151–166,
https://doi.org/10.1175/MWR-D-11-00024.1, 2012.
Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A.,
Healy, S., von Engeln, A., O'Clerigh, E., and Marquardt, C.: Prospects of the
EPS GRAS Mission For Operational Atmospheric Applications, B. Am.
Meteorol. Soc., 89, 1863–1876, https://doi.org/10.1175/2008BAMS2399.1, 2008.
Poole, L. R., Winker, D. M., Pelon, J. R., and McCormick, M. P.: CALIPSO:
global aerosol and cloud observations from lidar and passive instruments, in
Sensors, Systems, and Next-Generation Satellites VI, International Society for Optics and Photonics, vol. 4881,
419–226, available
at:
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4881/0000/CALIPSO--global-aerosol-and-cloud-observations-from-lidar-and/10.1117/12.462519.short?SSO=1
(last access: 7 April 2020), 2003.
Rakshit, G., Jana, S., and Maitra, A.: Gravity Wave Behavior in Lower
Stratosphere During Tropical Cyclones Over the Bay of Bengal, Radio Sci.,
53, 1356–1367, https://doi.org/10.1029/2018RS006614, 2018.
Ravindra Babu, S., Venkat Ratnam, M., Basha, G., Krishnamurthy, B. V., and Venkateswararao, B.: Effect of tropical cyclones on the tropical tropopause parameters observed using COSMIC GPS RO data, Atmos. Chem. Phys., 15, 10239–10249, https://doi.org/10.5194/acp-15-10239-2015, 2015.
Rieckh, T., Anthes, R., Randel, W., Ho, S.-P., and Foelsche, U.: Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series, Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018, 2018.
Rivoire, L., Birner, T., and Knaff, J. A.: Evolution of the upper-level
thermal structure in tropical cyclones, Geophys. Res. Lett.,
43, 10530–10537, https://doi.org/10.1002/2016GL070622, 2016.
Scherllin-Pirscher, B., Kirchengast, G., Steiner, A. K., Kuo, Y.-H., and Foelsche, U.: Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model, Atmos. Meas. Tech., 4, 2019–2034, https://doi.org/10.5194/amt-4-2019-2011, 2011.
Schwärz, M., Kirchengast, G., Scherllin-Pirscher, B., Schwarz, J.,
Ladstädter, F., and Angerer, B.: Multi-Mission Validation by Satellite
Radio Occultation–Extension Project, Final Report for ESA/ESRIN No. 01/2016, Wegener Center, University of Graz, Austria,
2016.
Simpson, R. H.: The Hurricane Disaster Potential Scale, Weatherwise, 27, 169–186, https://doi.org/10.1080/00431672.1974.9931702, 1974.
Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B.,
Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate
monitoring and change detection, Radio Sci., 46, 1–17,
https://doi.org/10.1029/2010RS004614, 2011.
Steiner, A. K., Hunt, D., Ho, S.-P., Kirchengast, G., Mannucci, A. J., Scherllin-Pirscher, B., Gleisner, H., von Engeln, A., Schmidt, T., Ao, C., Leroy, S. S., Kursinski, E. R., Foelsche, U., Gorbunov, M., Heise, S., Kuo, Y.-H., Lauritsen, K. B., Marquardt, C., Rocken, C., Schreiner, W., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Quantification of structural uncertainty in climate data records from GPS radio occultation, Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, 2013.
Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, 2020.
Velden, C., Harper, B., Wells, F., Beven, J. L., Zehr, R., Olander, T.,
Mayfield, M., Guard, C. “CHIP,” Lander, M., Edson, R., Avila, L., Burton,
A., Turk, M., Kikuchi, A., Christian, A., Caroff, P., and McCrone, P.: The
Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based
Method that Has Endured for over 30 Years, B. Am. Meteorol. Soc., 87,
1195–1210, https://doi.org/10.1175/BAMS-87-9-1195, 2006.
Venkat Ratnam, M., Ravindra Babu, S., Das, S. S., Basha, G., Krishnamurthy, B. V., and Venkateswararao, B.: Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean, Atmos. Chem. Phys., 16, 8581–8591, https://doi.org/10.5194/acp-16-8581-2016, 2016.
Vergados, P., Mannucci, A. J., and Su, H.: A validation study for GPS radio
occultation data with moist thermodynamic structure of tropical cyclones,
J. Geophys. Res.-Atmos., 118, 9401–9413,
https://doi.org/10.1002/jgrd.50698, 2013.
Vergados, P., Luo, Z. J., Emanuel, K., and Mannucci, A. J.: Observational
tests of hurricane intensity estimations using GPS radio occultations,
J. Geophys. Res.-Atmos., 119, 1936–1948,
https://doi.org/10.1002/2013JD020934, 2014.
Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C.,
Schmidt, T., Grunwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and
Hocke, K.: Atmosphere sounding by GPS radio occultation: First results from
CHAMP, Geophys. Res. Lett., 28, 3263–3266,
https://doi.org/10.1029/2001GL013117, 2001.
Winterbottom, H. R. and Xiao, Q.: An Intercomparison of GPS RO Retrievals
with Colocated Analysis and In Situ Observations within Tropical Cyclones,
Adv. Meteorol., 2010, e715749,
https://doi.org/10.1155/2010/715749, 2010.
World Meteorological Organization: Tropical Cyclone Programme, available
at: https://www.wmo.int/pages/prog/www/tcp/ (last access: 17 May 2020), 1980.
Zeng, Z., Sokolovskiy, S., Schreiner, W. S., and Hunt, D.: Representation of
Vertical Atmospheric Structures by Radio Occultation Observations in the
Upper Troposphere and Lower Stratosphere: Comparison to High-Resolution
Radiosonde Profiles, J. Atmos. Ocean. Tech., 36, 655–670,
https://doi.org/10.1175/JTECH-D-18-0105.1, 2019.
Zou, X. and Tian, X.: Hurricane Warm-Core Retrievals from AMSU-A and
Remapped ATMS Measurements with Rain Contamination Eliminated, J.
Geophys. Res.-Atmos., 123, 10815–10829,
https://doi.org/10.1029/2018JD028934, 2018.
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the...
Altmetrics
Final-revised paper
Preprint