Articles | Volume 12, issue 2
Earth Syst. Sci. Data, 12, 1053–1081, 2020
https://doi.org/10.5194/essd-12-1053-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Paleoclimate data synthesis and analysis of associated uncertainty...
Data description paper 11 May 2020
Data description paper | 11 May 2020
Integrating palaeoclimate time series with rich metadata for uncertainty modelling: strategy and documentation of the PalMod 130k marine palaeoclimate data synthesis
Lukas Jonkers et al.
Related authors
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
L. Jonkers, C. E. Reynolds, J. Richey, and I. R. Hall
Biogeosciences, 12, 3061–3070, https://doi.org/10.5194/bg-12-3061-2015, https://doi.org/10.5194/bg-12-3061-2015, 2015
L. Jonkers and M. Kučera
Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, https://doi.org/10.5194/bg-12-2207-2015, 2015
André Paul, Stefan Mulitza, Rüdiger Stein, and Martin Werner
Clim. Past, 17, 805–824, https://doi.org/10.5194/cp-17-805-2021, https://doi.org/10.5194/cp-17-805-2021, 2021
Short summary
Short summary
Maps and fields of near-sea-surface temperature differences between the past and present can be used to visualize and quantify climate changes and perform simulations with climate models. We used a statistical method to map sparse and scattered data for the Last Glacial Maximum time period (23 000 to 19 000 years before present) to a regular grid. The estimated global and tropical cooling would imply an equilibrium climate sensitivity in the lower to middle part of the currently accepted range.
Markus Raitzsch, Jelle Bijma, Torsten Bickert, Michael Schulz, Ann Holbourn, and Michal Kučera
Clim. Past, 17, 703–719, https://doi.org/10.5194/cp-17-703-2021, https://doi.org/10.5194/cp-17-703-2021, 2021
Short summary
Short summary
At approximately 14 Ma, the East Antarctic Ice Sheet expanded to almost its current extent, but the role of CO2 in this major climate transition is not entirely known. We show that atmospheric CO2 might have varied on 400 kyr cycles linked to the eccentricity of the Earth’s orbit. The resulting change in weathering and ocean carbon cycle affected atmospheric CO2 in a way that CO2 rose after Antarctica glaciated, helping to stabilize the climate system on its way to the “ice-house” world.
Nicholas P. McKay, Julien Emile-Geay, and Deborah Khider
Geochronology, 3, 149–169, https://doi.org/10.5194/gchron-3-149-2021, https://doi.org/10.5194/gchron-3-149-2021, 2021
Short summary
Short summary
This paper describes geoChronR, an R package that streamlines the process of quantifying age uncertainties, propagating uncertainties through several common analyses, and visualizing the results. In addition to describing the structure and underlying theory of the package, we present five real-world use cases that illustrate common workflows in geoChronR. geoChronR is built on the Linked PaleoData framework, is open and extensible, and we welcome feedback and contributions from the community.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Catarina Cavaleiro, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera
Clim. Past, 16, 2017–2037, https://doi.org/10.5194/cp-16-2017-2020, https://doi.org/10.5194/cp-16-2017-2020, 2020
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennet, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urias, Andria Dawson, Bryan N. Shuman, and Daniel G. Gavin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-215, https://doi.org/10.5194/essd-2020-215, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Douglas Lessa, Raphaël Morard, Lukas Jonkers, Igor M. Venancio, Runa Reuter, Adrian Baumeister, Ana Luiza Albuquerque, and Michal Kucera
Biogeosciences, 17, 4313–4342, https://doi.org/10.5194/bg-17-4313-2020, https://doi.org/10.5194/bg-17-4313-2020, 2020
Short summary
Short summary
We observed that living planktonic foraminifera had distinct vertically distributed communities across the Subtropical South Atlantic. In addition, a hierarchic alternation of environmental parameters was measured to control the distribution of planktonic foraminifer's species depending on the water depth. This implies that not only temperature but also productivity and subsurface processes are signed in fossil assemblages, which could be used to perform paleoceanographic reconstructions.
Anna Jentzen, Joachim Schönfeld, Agnes K. M. Weiner, Manuel F. G. Weinkauf, Dirk Nürnberg, and Michal Kučera
J. Micropalaeontol., 38, 231–247, https://doi.org/10.5194/jm-38-231-2019, https://doi.org/10.5194/jm-38-231-2019, 2019
Short summary
Short summary
The study assessed the population dynamics of living planktic foraminifers on a weekly, seasonal, and interannual timescale off the coast of Puerto Rico to improve our understanding of short- and long-term variations. The results indicate a seasonal change of the faunal composition, and over the last decades. Lower standing stocks and lower stable carbon isotope values of foraminifers in shallow waters can be linked to the hurricane Sandy, which passed the Greater Antilles during autumn 2012.
Michael Langner and Stefan Mulitza
Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, https://doi.org/10.5194/cp-15-2067-2019, 2019
Short summary
Short summary
Collections of paleoclimate data provide valuable information on the functioning of the Earth system but are often difficult to manage due to the inconsistency of data formats and reconstruction methods. We present a software toolbox that combines a simple document-based database with functionality for the visualization and management of marine proxy data. The program allows the efficient homogenization of larger paleoceanographic data sets into quality-controlled and transparent data products.
Ellie Broadman, Lorna L. Thurston, Erik Schiefer, Nicholas P. McKay, David Fortin, Jason Geck, Michael G. Loso, Matt Nolan, Stéphanie H. Arcusa, Christopher W. Benson, Rebecca A. Ellerbroek, Michael P. Erb, Cody C. Routson, Charlotte Wiman, A. Jade Wong, and Darrell S. Kaufman
Earth Syst. Sci. Data, 11, 1957–1970, https://doi.org/10.5194/essd-11-1957-2019, https://doi.org/10.5194/essd-11-1957-2019, 2019
Short summary
Short summary
Rapid climate warming is impacting physical processes in Arctic environments. Glacier–fed lakes are influenced by many of these processes, and they are impacted by the changing behavior of weather, glaciers, and rivers. We present data from weather stations, river gauging stations, lake moorings, and more, following 4 years of environmental monitoring in the watershed of Lake Peters, a glacier–fed lake in Arctic Alaska. These data can help us study the changing dynamics of this remote setting.
Mattia Greco, Lukas Jonkers, Kerstin Kretschmer, Jelle Bijma, and Michal Kucera
Biogeosciences, 16, 3425–3437, https://doi.org/10.5194/bg-16-3425-2019, https://doi.org/10.5194/bg-16-3425-2019, 2019
Short summary
Short summary
To be able to interpret the paleoecological signal contained in N. pachyderma's shells, its habitat depth must be known. Our investigation on 104 density profiles of this species from the Arctic and North Atlantic shows that specimens reside closer to the surface when sea-ice and/or surface chlorophyll concentrations are high. This is in contrast with previous investigations that pointed at the position of the deep chlorophyll maximum as the main driver of N. pachyderma vertical distribution.
Haruka Takagi, Katsunori Kimoto, Tetsuichi Fujiki, Hiroaki Saito, Christiane Schmidt, Michal Kucera, and Kazuyoshi Moriya
Biogeosciences, 16, 3377–3396, https://doi.org/10.5194/bg-16-3377-2019, https://doi.org/10.5194/bg-16-3377-2019, 2019
Short summary
Short summary
Photosymbiosis (endosymbiosis with algae) is an evolutionary important ecology for many marine organisms but has poorly been identified among planktonic foraminifera. In this study, we identified and characterized photosymbiosis of various species of planktonic foraminifera by focusing on their photosynthesis–related features. We finally proposed a new framework showing a potential strength of photosymbiosis, which will serve as a basis for future ecological studies of planktonic foraminifera.
Andreia Rebotim, Antje Helga Luise Voelker, Lukas Jonkers, Joanna J. Waniek, Michael Schulz, and Michal Kucera
J. Micropalaeontol., 38, 113–131, https://doi.org/10.5194/jm-38-113-2019, https://doi.org/10.5194/jm-38-113-2019, 2019
Short summary
Short summary
To reconstruct subsurface water conditions using deep-dwelling planktonic foraminifera, we must fully understand how the oxygen isotope signal incorporates into their shell. We report δ18O in four species sampled in the eastern North Atlantic with plankton tows. We assess the size and crust effect on the isotopic δ18O and compared them with predictions from two equations. We reveal different patterns of calcite addition with depth, highlighting the need to perform species-specific calibrations.
Lukas Jonkers and Michal Kučera
Clim. Past, 15, 881–891, https://doi.org/10.5194/cp-15-881-2019, https://doi.org/10.5194/cp-15-881-2019, 2019
Short summary
Short summary
Fossil plankton assemblages have been widely used to reconstruct SST. In such approaches, full taxonomic resolution is often used. We assess whether this is required for reliable reconstructions as some species may not respond to SST. We find that only a few species are needed for low reconstruction errors but that species selection has a pronounced effect on reconstructions. We suggest that the sensitivity of a reconstruction to species pruning can be used as a measure of its robustness.
Aurich Jeltsch-Thömmes, Gianna Battaglia, Olivier Cartapanis, Samuel L. Jaccard, and Fortunat Joos
Clim. Past, 15, 849–879, https://doi.org/10.5194/cp-15-849-2019, https://doi.org/10.5194/cp-15-849-2019, 2019
Short summary
Short summary
A long-standing question in climate science is concerned with what processes contributed to the increase in atmospheric CO2 after the last ice age. From the range of possible processes we try to constrain the change in carbon storage in the land biosphere. By combining ice core and marine sediment data in a modeling framework we show that the carbon storage in the land biosphere increased largely after the last ice age. This will help to further understand processes at work in the Earth system.
Charlotte Breitkreuz, André Paul, Stefan Mulitza, Javier García-Pintado, and Michael Schulz
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-32, https://doi.org/10.5194/gmd-2019-32, 2019
Publication in GMD not foreseen
Short summary
Short summary
We present a technique for ocean state estimation based on the combination of a simple data assimilation method with a state reduction approach. The technique proves to be very efficient and successful in reducing the model-data misfit and reconstructing a target ocean circulation from synthetic observations. In an application to Last Glacial Maximum proxy data the model-data misfit is greatly reduced but some misfit remains. Two different ocean states are found with similar model-data misfit.
Nadia Al-Sabouni, Isabel S. Fenton, Richard J. Telford, and Michal Kučera
J. Micropalaeontol., 37, 519–534, https://doi.org/10.5194/jm-37-519-2018, https://doi.org/10.5194/jm-37-519-2018, 2018
Short summary
Short summary
In this study we investigate consistency in species-level identifications and whether disagreements are predictable. Overall, 21 researchers from across the globe identified sets of 300 specimens or digital images of planktonic foraminifera. Digital identifications tended to be more disparate. Participants trained by the same person often had more similar identifications. Disagreements hardly affected transfer-function temperature estimates but produced larger differences in diversity metrics.
Olivier Cartapanis, Eric D. Galbraith, Daniele Bianchi, and Samuel L. Jaccard
Clim. Past, 14, 1819–1850, https://doi.org/10.5194/cp-14-1819-2018, https://doi.org/10.5194/cp-14-1819-2018, 2018
Short summary
Short summary
A data-based reconstruction of carbon-bearing deep-sea sediment shows significant changes in the global burial rate over the last glacial cycle. We calculate the impact of these deep-sea changes, as well as hypothetical changes in continental shelf burial and volcanic outgassing. Our results imply that these geological fluxes had a significant impact on ocean chemistry and the global carbon isotopic ratio, and that the natural carbon cycle was not in steady state during the Holocene.
Richard H. Levy, Gavin B. Dunbar, Marcus J. Vandergoes, Jamie D. Howarth, Tony Kingan, Alex R. Pyne, Grant Brotherston, Michael Clarke, Bob Dagg, Matthew Hill, Evan Kenton, Steve Little, Darcy Mandeno, Chris Moy, Philip Muldoon, Patrick Doyle, Conrad Raines, Peter Rutland, Delia Strong, Marianna Terezow, Leise Cochrane, Remo Cossu, Sean Fitzsimons, Fabio Florindo, Alexander L. Forrest, Andrew R. Gorman, Darrell S. Kaufman, Min Kyung Lee, Xun Li, Pontus Lurcock, Nicholas McKay, Faye Nelson, Jennifer Purdie, Heidi A. Roop, S. Geoffrey Schladow, Abha Sood, Phaedra Upton, Sharon L. Walker, and Gary S. Wilson
Sci. Dril., 24, 41–50, https://doi.org/10.5194/sd-24-41-2018, https://doi.org/10.5194/sd-24-41-2018, 2018
Short summary
Short summary
A new annually resolvable sedimentary record of southern hemisphere climate has been recovered from Lake Ohau, South Island, New Zealand. The Lake Ohau Climate History (LOCH) Project acquired cores from two sites that preserve an 80 m thick sequence of laminated mud that accumulated since the lake formed ~ 17 000 years ago. Cores were recovered using a purpose-built barge and drilling system designed to recover soft sediment from relatively thick sedimentary sequences at water depths up to 100 m.
Kerstin Kretschmer, Lukas Jonkers, Michal Kucera, and Michael Schulz
Biogeosciences, 15, 4405–4429, https://doi.org/10.5194/bg-15-4405-2018, https://doi.org/10.5194/bg-15-4405-2018, 2018
Short summary
Short summary
The fossil shells of planktonic foraminifera are widely used to reconstruct past climate conditions. To do so, information about their seasonal and vertical habitat is needed. Here we present an updated version of a planktonic foraminifera model to better understand species-specific habitat dynamics under climate change. This model produces spatially and temporally coherent distribution patterns, which agree well with available observations, and can thus aid the interpretation of proxy records.
Bryan N. Shuman, Cody Routson, Nicholas McKay, Sherilyn Fritz, Darrell Kaufman, Matthew E. Kirby, Connor Nolan, Gregory T. Pederson, and Jeannine-Marie St-Jacques
Clim. Past, 14, 665–686, https://doi.org/10.5194/cp-14-665-2018, https://doi.org/10.5194/cp-14-665-2018, 2018
Short summary
Short summary
A synthesis of 93 published records reveals that moisture availability increased over large portions of North America over the past 2000 years, the Common Era (CE). In many records, the second millennium CE tended to be wetter than the first millennium CE. The long-term changes formed the background for annual to multi-decade variations, such as "mega-droughts", and also provide a context for amplified rates of hydrologic change today.
Rike Völpel, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz
Geosci. Model Dev., 10, 3125–3144, https://doi.org/10.5194/gmd-10-3125-2017, https://doi.org/10.5194/gmd-10-3125-2017, 2017
Short summary
Short summary
This study presents the implementation of stable water isotopes in the MITgcm and describes the results of an equilibrium simulation under pre-industrial conditions. The model compares well to observational data and measurements of plankton tow records and thus opens wide prospects for long-term simulations in a paleoclimatic context.
Raphaël Morard, Franck Lejzerowicz, Kate F. Darling, Béatrice Lecroq-Bennet, Mikkel Winther Pedersen, Ludovic Orlando, Jan Pawlowski, Stefan Mulitza, Colomban de Vargas, and Michal Kucera
Biogeosciences, 14, 2741–2754, https://doi.org/10.5194/bg-14-2741-2017, https://doi.org/10.5194/bg-14-2741-2017, 2017
Short summary
Short summary
The exploitation of deep-sea sedimentary archive relies on the recovery of mineralized skeletons of pelagic organisms. Planktonic groups leaving preserved remains represent only a fraction of the total marine diversity. Environmental DNA left by non-fossil organisms is a promising source of information for paleo-reconstructions. Here we show how planktonic-derived environmental DNA preserves ecological structure of planktonic communities. We use planktonic foraminifera as a case study.
Lukas Jonkers and Michal Kučera
Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, https://doi.org/10.5194/cp-13-573-2017, 2017
Short summary
Short summary
Planktonic foraminifera – the most important proxy carriers in palaeoceanography – adjust their seasonal and vertical habitat. They are thought to do so in a way that minimises the change in their environment, implying that proxy records based on these organisms may not capture the full amplitude of past climate change. Here we demonstrate that they indeed track a particular thermal habitat and suggest that this could lead to a 40 % underestimation of reconstructed temperature change.
Philipp M. Munz, Stephan Steinke, Anna Böll, Andreas Lückge, Jeroen Groeneveld, Michal Kucera, and Hartmut Schulz
Clim. Past, 13, 491–509, https://doi.org/10.5194/cp-13-491-2017, https://doi.org/10.5194/cp-13-491-2017, 2017
Short summary
Short summary
We present the results of several independent proxies of summer SST and upwelling SST from the Oman margin indicative of monsoon strength during the early Holocene. In combination with indices of carbonate preservation and bottom water redox conditions, we demonstrate that a persistent solar influence was modulating summer monsoon intensity. Furthermore, bottom water conditions are linked to atmospheric forcing, rather than changes of intermediate water masses.
Shuwen Sun, Enno Schefuß, Stefan Mulitza, Cristiano M. Chiessi, André O. Sawakuchi, Matthias Zabel, Paul A. Baker, Jens Hefter, and Gesine Mollenhauer
Biogeosciences, 14, 2495–2512, https://doi.org/10.5194/bg-14-2495-2017, https://doi.org/10.5194/bg-14-2495-2017, 2017
Andreia Rebotim, Antje H. L. Voelker, Lukas Jonkers, Joanna J. Waniek, Helge Meggers, Ralf Schiebel, Igaratza Fraile, Michael Schulz, and Michal Kucera
Biogeosciences, 14, 827–859, https://doi.org/10.5194/bg-14-827-2017, https://doi.org/10.5194/bg-14-827-2017, 2017
Short summary
Short summary
Planktonic foraminifera species depth habitat remains poorly constrained and the existing conceptual models are not sufficiently tested by observational data. Here we present a synthesis of living planktonic foraminifera abundance data in the subtropical eastern North Atlantic from vertical plankton tows. We also test potential environmental factors influencing the species depth habitat and investigate yearly or lunar migration cycles. These findings may impact paleoceanographic studies.
Nicholas P. McKay and Julien Emile-Geay
Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, https://doi.org/10.5194/cp-12-1093-2016, 2016
Short summary
Short summary
The lack of accepted data formats and data standards in paleoclimatology is a growing problem that slows progress in the field. Here, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the proxy and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a data format for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).
L. Jonkers, C. E. Reynolds, J. Richey, and I. R. Hall
Biogeosciences, 12, 3061–3070, https://doi.org/10.5194/bg-12-3061-2015, https://doi.org/10.5194/bg-12-3061-2015, 2015
L. Jonkers and M. Kučera
Biogeosciences, 12, 2207–2226, https://doi.org/10.5194/bg-12-2207-2015, https://doi.org/10.5194/bg-12-2207-2015, 2015
I. Hessler, S. P. Harrison, M. Kucera, C. Waelbroeck, M.-T. Chen, C. Anderson, A. de Vernal, B. Fréchette, A. Cloke-Hayes, G. Leduc, and L. Londeix
Clim. Past, 10, 2237–2252, https://doi.org/10.5194/cp-10-2237-2014, https://doi.org/10.5194/cp-10-2237-2014, 2014
H. S. Sundqvist, D. S. Kaufman, N. P. McKay, N. L. Balascio, J. P. Briner, L. C. Cwynar, H. P. Sejrup, H. Seppä, D. A. Subetto, J. T. Andrews, Y. Axford, J. Bakke, H. J. B. Birks, S. J. Brooks, A. de Vernal, A. E. Jennings, F. C. Ljungqvist, K. M. Rühland, C. Saenger, J. P. Smol, and A. E. Viau
Clim. Past, 10, 1605–1631, https://doi.org/10.5194/cp-10-1605-2014, https://doi.org/10.5194/cp-10-1605-2014, 2014
A. J. Enge, U. Witte, M. Kucera, and P. Heinz
Biogeosciences, 11, 2017–2026, https://doi.org/10.5194/bg-11-2017-2014, https://doi.org/10.5194/bg-11-2017-2014, 2014
M. F. G. Weinkauf, T. Moller, M. C. Koch, and M. Kučera
Biogeosciences, 10, 6639–6655, https://doi.org/10.5194/bg-10-6639-2013, https://doi.org/10.5194/bg-10-6639-2013, 2013
Y. Milker, R. Rachmayani, M. F. G. Weinkauf, M. Prange, M. Raitzsch, M. Schulz, and M. Kučera
Clim. Past, 9, 2231–2252, https://doi.org/10.5194/cp-9-2231-2013, https://doi.org/10.5194/cp-9-2231-2013, 2013
R. J. Telford, C. Li, and M. Kucera
Clim. Past, 9, 859–870, https://doi.org/10.5194/cp-9-859-2013, https://doi.org/10.5194/cp-9-859-2013, 2013
Related subject area
Geosciences – Palaeooceanography, Palaeoclimatology
A review of MIS 5e sea-level proxies around Japan
Last interglacial (MIS 5e) sea-level proxies in southeastern South America
Compilation of relative pollen productivity (RPP) estimates and taxonomically harmonised RPP datasets for single continents and Northern Hemisphere extratropics
A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change
Last Interglacial sea-level proxies in East Africa and the Western Indian Ocean
SISALv2: a comprehensive speleothem isotope database with multiple age–depth models
The Eurasian Modern Pollen Database (EMPD), version 2
A multiproxy database of western North American Holocene paleoclimate records
VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments
The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate
Simple noise estimates and pseudoproxies for the last 21 000 years
The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems
Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance
A database of paleoceanographic sediment cores from the North Pacific, 1951–2016
The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period
A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing
Evan Tam and Yusuke Yokoyama
Earth Syst. Sci. Data, 13, 1477–1497, https://doi.org/10.5194/essd-13-1477-2021, https://doi.org/10.5194/essd-13-1477-2021, 2021
Short summary
Short summary
Changes in sea level during Marine Isotope Stage (MIS) 5e are comparable to modern sea levels in our global climate. Contributing to the World Atlas of Last Interglacial Shorelines (WALIS), this paper reviewed data from over 70 studies detailing sea-level markers for MIS 5e around Japan. Most sea-level markers were found as marine terraces and are often dated by comparison to dated volcanic ash or sediment layers, which has connected Japan’s landforms to global patterns of sea-level change.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Mareike Wieczorek and Ulrike Herzschuh
Earth Syst. Sci. Data, 12, 3515–3528, https://doi.org/10.5194/essd-12-3515-2020, https://doi.org/10.5194/essd-12-3515-2020, 2020
Short summary
Short summary
Relative pollen productivity (RPP) estimates are used to estimate vegetation cover from pollen records. This study provides (i) a compilation of northern hemispheric RPP studies, allowing researchers to identify suitable sets for their study region and to identify data gaps for future research, and (ii) taxonomically harmonized, unified RPP sets for China, Europe, North America, and the whole Northern Hemisphere, generated from the available studies.
Chris S. M. Turney, Richard T. Jones, Nicholas P. McKay, Erik van Sebille, Zoë A. Thomas, Claus-Dieter Hillenbrand, and Christopher J. Fogwill
Earth Syst. Sci. Data, 12, 3341–3356, https://doi.org/10.5194/essd-12-3341-2020, https://doi.org/10.5194/essd-12-3341-2020, 2020
Short summary
Short summary
The Last Interglacial (129–116 ka) experienced global temperatures and sea levels higher than today. The direct contribution of warmer conditions to global sea level (thermosteric) are uncertain. We report a global network of sea surface temperatures. We find mean global annual temperature anomalies of 0.2 ± 0.1˚C and an early maximum peak of 0.9 ± 0.1˚C. Our reconstruction suggests warmer waters contributed on average 0.08 ± 0.1 m and a peak contribution of 0.39 ± 0.1 m to global sea level.
Patrick Boyden, Jennifer Weil-Accardo, Pierre Deschamps, Davide Oppo, and Alessio Rovere
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-349, https://doi.org/10.5194/essd-2020-349, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Sea levels during the Last Interglacial (130 to 73 ka) are seen as possible process analogues for a future sea-level rise scenarios as our world warms. To this end we catalogue previously published ancient shoreline elevations and chronologies in a standardized data format for East Africa and the Western Indian Ocean region. These entries were then contributed to the greater World Atlas of Last Interglacial Shorelines database.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennet, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urias, Andria Dawson, Bryan N. Shuman, and Daniel G. Gavin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-215, https://doi.org/10.5194/essd-2020-215, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Arne Ramisch, Alexander Brauser, Mario Dorn, Cecile Blanchet, Brian Brademann, Matthias Köppl, Jens Mingram, Ina Neugebauer, Norbert Nowaczyk, Florian Ott, Sylvia Pinkerneil, Birgit Plessen, Markus J. Schwab, Rik Tjallingii, and Achim Brauer
Earth Syst. Sci. Data, 12, 2311–2332, https://doi.org/10.5194/essd-12-2311-2020, https://doi.org/10.5194/essd-12-2311-2020, 2020
Short summary
Short summary
Annually laminated lake sediments (varves) record past climate change at seasonal resolution. The VARved sediments DAtabase (VARDA) is created to utilize the full potential of varves for climate reconstructions. VARDA offers free access to a compilation and synchronization of standardized climate-proxy data, with applications ranging from reconstructing regional patterns of past climate change to validating simulations of climate models. VARDA is freely accessible at https://varve.gfz-potsdam.de
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Oliver Bothe, Sebastian Wagner, and Eduardo Zorita
Earth Syst. Sci. Data, 11, 1129–1152, https://doi.org/10.5194/essd-11-1129-2019, https://doi.org/10.5194/essd-11-1129-2019, 2019
Short summary
Short summary
Reconstructions try to extract a climate signal from paleo-observations. It is essential to understand their uncertainties. Similarly, comparing climate simulations and paleo-observations requires approaches to address their uncertainties. We describe a simple but flexible noise model for climate proxies for temperature on millennial timescales, which can assist these goals.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
István Gábor Hatvani, Zoltán Kern, Szabolcs Leél-Őssy, and Attila Demény
Earth Syst. Sci. Data, 10, 139–149, https://doi.org/10.5194/essd-10-139-2018, https://doi.org/10.5194/essd-10-139-2018, 2018
Short summary
Short summary
Evenly spaced carbon and oxygen stable isotope records were produced from central European stalagmites. To mitigate the potential bias of interpolation, the variance spectra were carefully evaluated. The derived data are ready to use with conventional uni- and multivariate statistics, which are usually not prepared to handle the general characteristic of sedimentary paleoclimate records derived from geological sequences unevenly sampled in time.
Marisa Borreggine, Sarah E. Myhre, K. Allison S. Mislan, Curtis Deutsch, and Catherine V. Davis
Earth Syst. Sci. Data, 9, 739–749, https://doi.org/10.5194/essd-9-739-2017, https://doi.org/10.5194/essd-9-739-2017, 2017
Short summary
Short summary
We created a database of 2134 marine sediment cores above 30° N in the North Pacific from 1951 to 2016 to facilitate paleoceanographic and paleoclimate research. This database allows for accessibility to sedimentary sequences, age models, and proxies produced in the North Pacific. We found community-wide shifts towards multiproxy investigation and increased age model generation. The database consolidates the research efforts of an entire community into an efficient tool for future investigations.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Peter Köhler, Christoph Nehrbass-Ahles, Jochen Schmitt, Thomas F. Stocker, and Hubertus Fischer
Earth Syst. Sci. Data, 9, 363–387, https://doi.org/10.5194/essd-9-363-2017, https://doi.org/10.5194/essd-9-363-2017, 2017
Short summary
Short summary
We document our best available data compilation of published ice core records of the greenhouse gases CO2, CH4, and N2O and recent measurements on firn air and atmospheric samples covering the time window from 156 000 years BP to the beginning of the year 2016 CE. A smoothing spline method is applied to translate the discrete and irregularly spaced data points into continuous time series. The radiative forcing for each greenhouse gas is computed using well-established, simple formulations.
Cited articles
Ahmad, S. M., Babu, G. A., Padmakumari, V. M., and Raza, W.: Surface and
deep water changes in the northeast Indian Ocean during the last 60 ka
inferred from carbon and oxygen isotopes of planktonic and benthic
foraminifera, Palaeogeography, Palaeoclimatology, Palaeoecology, 262,
182–188, https://doi.org/10.1016/j.palaeo.2008.03.007, 2008.
Al-Sabouni, N., Kucera, M., and Schmidt, D. N.: Vertical niche separation
control of diversity and size disparity in planktonic foraminifera, Mar.
Micropaleontol., 63, 75–90,
https://doi.org/10.1016/j.marmicro.2006.11.002, 2007.
Anand, P., Elderfield, H., and Conte, M. H.: Calibration of Mg∕Ca thermometry in planktonic foraminifera from a sediment trap time series,
Paleoceanography, 18, 1050, https://doi.org/10.1029/2002PA000846, 2003.
Arz, H. W., Pätzold, J., and Wefer, G.: Correlated Millennial-Scale
Changes in Surface Hydrography and Terrigenous Sediment Yield Inferred from
Last-Glacial Marine Deposits off Northeastern Brazil, Quaternary Res.,
50, 157–166, https://doi.org/10.1006/qres.1998.1992, 1998.
Arz, H. W., Pätzold, J., and Wefer, G.: The deglacial history of the
western tropical Atlantic as inferred from high resolution stable isotope
records off northeastern Brazil, Earth Planet. Sc. Lett., 167,
105–117, https://doi.org/10.1016/s0012-821x(99)00025-4, 1999.
Baas, J. H., Mienert, J., Abrantes, F., and Prins, M. A.: Late Quaternary
sedimentation on the Portuguese continental margin: climate-related
processes and products, Palaeogeogr. Palaeocl.,
130, 1–23, https://doi.org/10.1016/s0031-0182(96)00135-6, 1997.
Bard, E.: Hydrological Impact of Heinrich Events in the Subtropical
Northeast Atlantic, Science, 289, 1321–1324, https://doi.org/10.1126/science.289.5483.1321,
2000.
Bard, E., Fairbanks, R., Arnold, M., Maurice, P., Duprat, J., Moyes, J., and
Duplessy, J.-C.: Sea-Level Estimates during the Last Deglaciation Based on
δ18O and Accelerator Mass Spectrometry 14C Ages Measured
in Globigerina bulloides, Quaternary Res., 31, 381–391, https://doi.org/10.1016/0033-5894(89)90045-8, 1989.
Bemis, B. E., Spero, H. J., Bijma, J., and Lea, D. W.: Reevaluation of the
Oxygen Isotopic Composition of Planktonic Foraminifera: Experimental Results
and Revised Paleotemperature Equations, Paleoceanography, 13, 150–160, https://doi.org/10.1029/98pa00070, 1998.
Blaauw, M. and Christen, J. A. S.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6, 457–474, 2011.
Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, C., Beaufort, L.,
Kienast, M., Andersen, N., and Garbe-Schönberg, D.: Mindanao Dome
variability over the last 160 kyr: Episodic glacial cooling of the West
Pacific Warm Pool, Paleoceanography, 26, PA1208, https://doi.org/10.1029/2010pa001966, 2011.
Bond, G.: A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and
Glacial Climates, Science, 278, 1257–1266, https://doi.org/10.1126/science.278.5341.1257,
1997.
Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K.: Carbon
isotope evidence for changes in Antarctic Intermediate Water circulation and
ocean ventilation in the southwest Pacific during the last deglaciation,
Paleoceanography, 19, PA4013, https://doi.org/10.1029/2004pa001047, 2004.
Bostock, H. C., Opdyke, B. N., Gagan, M. K., and Fifield, L. K.: Late
Quaternary siliciclastic/carbonate sedimentation model for the Capricorn
Channel, southern Great Barrier Reef province, Australia, Mar. Geol.,
257, 107–123, https://doi.org/10.1016/j.margeo.2008.11.003, 2009.
Bouimetarhan, I., Groeneveld, J., Dupont, L., and Zonneveld, K.: Low- to
high-productivity pattern within Heinrich Stadial 1: Inferences from
dinoflagellate cyst records off Senegal, Global Planet. Change, 106,
64–76, https://doi.org/10.1016/j.gloplacha.2013.03.007, 2013.
Boyle, E. A. and Keigwin, L. D.: Comparison of Atlantic and Pacific
paleochemical records for the last 215,000 years: changes in deep ocean
circulation and chemical inventories, Earth Planet. Sc. Lett.,
76, 135–150, https://doi.org/10.1016/0012-821x(85)90154-2, 1985.
Breitkreuz, C., Paul, A., and Schulz, M.: A dynamical reconstruction of the Last Glacial Maximum ocean state constrained by global oxygen isotope data, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-52, in review, 2019.
Broecker, W. S., Andree, M., Bonani, G., Wolfli, W., Klas, M., Mix, A., and
Oeschger, H.: Comparison between radiocarbon ages obtained on coexisting
planktonic foraminifera, Paleoceanography, 3, 647–657, https://doi.org/10.1029/pa003i006p00647, 1988a.
Broecker, W. S., Andree, M., Bonani, G., Wolfli, W., Oeschger, H., and Klas,
M.: Can the Greenland Climatic Jumps be Identified in Records from Ocean and
Land?, Quaternary Res., 30, 1–16, https://doi.org/10.1016/0033-5894(88)90082-8, 1988b.
Brooks, G. R., Hine, A. C., Mallinson, D., and Drexler, T. M.: Data Report:
Texture and Composition of Quaternary Upper-Slope Sediments in the Great
Australian Bight: Sites 1130 and 1132, in: Proceedings of the Ocean Drilling
Program, 182 Scientific Results, Ocean Drilling Program, 2002.
Brunelle, B. G., Sigman, D. M., Cook, M. S., Keigwin, L. D., Haug, G. H.,
Plessen, B., Schettler, G., and Jaccard, S. L.: Evidence from diatom-bound
nitrogen isotopes for subarctic Pacific stratification during the last ice
age and a link to North Pacific denitrification changes, Paleoceanography,
22, PA1215, https://doi.org/10.1029/2005pa001205, 2007.
Butzin, M., Köhler, P., and Lohmann, G.: Marine radiocarbon reservoir
age simulations for the past 50,000 years, Geophys. Res. Lett., 44,
8473–8480, https://doi.org/10.1002/2017GL074688, 2017.
Cacho, I., Grimalt, J. O., Pelejero, C., Canals, M., Sierro, F. J., Flores,
J. A., and Shackleton, N.: Dansgaard-Oeschger and Heinrich event imprints in
Alboran Sea paleotemperatures, Paleoceanography, 14, 698–705, https://doi.org/10.1029/1999pa900044, 1999.
Cacho, I., Shackleton, N., Elderfield, H., Sierro, F. J., and Grimalt, J.
O.: Glacial rapid variability in deep-water temperature and δ18O
from the Western Mediterranean Sea, Quaternary Sci. Rev., 25,
3294–3311, https://doi.org/10.1016/j.quascirev.2006.10.004, 2006.
Came, R. E., Oppo, D. W., and McManus, J. F.: Amplitude and timing of
temperature and salinity variability in the subpolar North Atlantic over the
past 10 k.y, Geology, 35, 315–318, https://doi.org/10.1130/g23455a.1, 2007.
Carlson, A. E., Oppo, D. W., Came, R. E., LeGrande, A. N., Keigwin, L. D.,
and Curry, W. B.: Subtropical Atlantic salinity variability and Atlantic
meridional circulation during the last deglaciation, Geology, 36, 991–994, https://doi.org/10.1130/g25080a.1, 2008.
Cartapanis, O., Bianchi, D., Jaccard, S. L., and Galbraith, E. D.: Global
pulses of organic carbon burial in deep-sea sediments during glacial maxima,
Nat. Commun., 7, 10796, https://doi.org/10.1038/ncomms10796, 2016.
Castañeda, I. S., Smith, L. M., Kristjánsdóttir, G. B., and
Andrews, J. T.: Temporal changes in Holocene δ18O records from the
northwest and central North Iceland Shelf, J. Quaternary Sci.,
19, 321–334, https://doi.org/10.1002/jqs.841, 2004.
Charles, C. D. and Fairbanks, R. G.: Evidence from Southern Ocean sediments
for the effect of North Atlantic deep-water flux on climate, Nature, 355,
416–419, https://doi.org/10.1038/355416a0, 1992.
CLIMAP: The Surface of the Ice-Age Earth, Science, 191, 1131–1137, https://doi.org/10.1126/science.191.4232.1131, 1976.
CLIMAP project members: Seasonal reconstructions of the Earth's surface at
the last Glacial Maximum, Geol. Soc. Am., Boulder, CO, 1981.
Cline, R. M. L., Hays, J. D., Prell, W. L., Ruddiman, W. F., Moore, T. C.,
Kipp, N. G., Molfino, B. E., Denton, G. H., Hughes, T. J., Balsam, W. L.,
Brunner, C. A., Duplessy, J.-C., Esmay, A. G., Fastook, J. L., Imbrie, J.,
Keigwin, L. D., Kellogg, T. B., McIntyre, A., Matthews, R. K., Mix, A. C.,
Morley, J. J., Shackleton, N. J., Streeter, S. S., and Thompson, P. R.: The
Last Interglacial Ocean, Quaternary Res., 21, 123–224, https://doi.org/10.1016/0033-5894(84)90098-x, 1984.
Cook, M. S., Keigwin, L. D., and Sancetta, C. A.: The deglacial history of
surface and intermediate water of the Bering Sea, Deep-Sea Res. Pt. II, 52, 2163–2173, https://doi.org/10.1016/j.dsr2.2005.07.004,
2005.
Cortijo, E., Lehman, S., Keigwin, L., Chapman, M., Paillard, D., and
Labeyrie, L.: Changes in Meridional Temperature and Salinity Gradients in
the North Atlantic Ocean (30∘-72∘ N) during the Last
Interglacial Period, Paleoceanography, 14, 23–33, https://doi.org/10.1029/1998pa900004,
1999.
Curry, W. B.: Late Quaternary Deep Circulation in the Western Equatorial
Atlantic, in: The South Atlantic, Springer Berlin Heidelberg, 1996.
Curry, W. B. and Crowley, T. J.: The δ13C of equatorial
Atlantic surface waters: Implications for Ice Age pCO2 levels,
Paleoceanography, 2, 489–517, https://doi.org/10.1029/pa002i005p00489, 1987.
Curry, W. B. and Oppo, D. W.: Synchronous, high-frequency oscillations in
tropical sea surface temperatures and North Atlantic Deep Water production
during the Last Glacial Cycle, Paleoceanography, 12, 1–14, https://doi.org/10.1029/96pa02413, 1997.
Curry, W. B. and Oppo, D. W.: Glacial water mass geometry and the
distribution of δ13C of ΣCO2 in the western
Atlantic Ocean, Paleoceanography, 20, PA1017, https://doi.org/10.1029/2004pa001021, 2005.
Curry, W. B., Marchitto, T. M., McManus, J. F., Oppo, D. W., and Laarkamp,
K. L.: Millennial-scale changes in ventilation of the thermocline,
intermediate, and deep waters of the glacial North Atlantic, in: Mechanisms
of Global Climate Change at Millennial Time Scales, American Geophysical
Union, 1999.
Daniau, A. L., Sanchez Goni, M. F., Martinez, P., Urrego, D. H.,
Bout-Roumazeilles, V., Desprat, S., and Marlon, J. R.: Orbital-scale climate
forcing of grassland burning in southern Africa, P. Natl.
Acad. Sci. USA, 110, 5069–5073, https://doi.org/10.1073/pnas.1214292110, 2013.
de Abreu, L., Shackleton, N. J., Schönfeld, J., Hall, M., and Chapman,
M.: Millennial-scale oceanic climate variability off the Western Iberian
margin during the last two glacial periods, Mar. Geol., 196, 1–20, https://doi.org/10.1016/s0025-3227(03)00046-x, 2003.
Dickson, A. J., Beer, C. J., Dempsey, C., Maslin, M. A., Bendle, J. A.,
McClymont, E. L., and Pancost, R. D.: Oceanic forcing of the Marine Isotope
Stage 11 interglacial, Nat. Geosci., 2, 428–433, https://doi.org/10.1038/ngeo527, 2009.
Diz, P., Hall, I. R., Zahn, R., and Molyneux, E. G.: Paleoceanography of the
southern Agulhas Plateau during the last 150 ka: Inferences from benthic
foraminiferal assemblages and multispecies epifaunal carbon isotopes,
Paleoceanography, 22, PA4218, https://doi.org/10.1029/2007pa001511, 2007.
Dokken, T. M. and Jansen, E.: Rapid changes in the mechanism of ocean
convection during the last glacial period, Nature, 401, 458–461, https://doi.org/10.1038/46753, 1999.
Dolman, A. M. and Laepple, T.: Sedproxy: a forward model for sediment-archived climate proxies, Clim. Past, 14, 1851–1868, https://doi.org/10.5194/cp-14-1851-2018, 2018.
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo,
D., and Kallel, N.: Deepwater source variations during the last climatic
cycle and their impact on the global deepwater circulation,
Paleoceanography, 3, 343–360, https://doi.org/10.1029/pa003i003p00343, 1988.
Duplessy, J. C., Labeyrie, L., Arnold, M., Paterne, M., Duprat, J., and van
Weering, T. C. E.: Changes in surface salinity of the North Atlantic Ocean
during the last deglaciation, Nature, 358, 485–488, https://doi.org/10.1038/358485a0, 1992.
Duplessy, J. C., Cortijo, E., Ivanova, E., Khusid, T., Labeyrie, L.,
Levitan, M., Murdmaa, I., and Paterne, M.: Paleoceanography of the Barents
Sea during the Holocene, Paleoceanography, 20, PA4004, https://doi.org/10.1029/2004pa001116, 2005.
Dürkop, A., Holbourn, A., Kuhnt, W., Zuraida, R., Andersen, N., and
Grootes, P. M.: Centennial-scale climate variability in the Timor Sea during
Marine Isotope Stage 3, Mar. Micropaleontol., 66, 208–221, https://doi.org/10.1016/j.marmicro.2007.10.002, 2008.
Ehrmann, W., Schmiedl, G., Hamann, Y., Kuhnt, T., Hemleben, C., and Siebel,
W.: Clay minerals in late glacial and Holocene sediments of the northern and
southern Aegean Sea, Palaeogeogr. Palaeocl., 249,
36–57, https://doi.org/10.1016/j.palaeo.2007.01.004, 2007.
Elderfield, H. and Ganssen, G.: Past temperature and δ18O of
surface ocean waters inferred from foraminiferal Mg∕Ca ratios, Nature, 405,
442–445, 2000.
Elliot, M., Labeyrie, L., Bond, G., Cortijo, E., Turon, J.-L., Tisnerat, N.,
and Duplessy, J.-C.: Millennial-scale iceberg discharges in the Irminger
Basin during the Last Glacial Period: Relationship with the Heinrich events
and environmental settings, Paleoceanography, 13, 433–446, https://doi.org/10.1029/98pa01792, 1998.
Elliot, M., Labeyrie, L., Dokken, T., and Manthé, S.: Coherent patterns
of ice-rafted debris deposits in the Nordic regions during the last glacial
(10–60 ka), Earth Planet. Sc. Lett., 194, 151–163, https://doi.org/10.1016/s0012-821x(01)00561-1, 2001.
Elliot, M., Labeyrie, L., and Duplessy, J.-C.: Changes in North Atlantic
deep-water formation associated with the Dansgaard–Oeschger temperature
oscillations (60–10 ka), Quaternary Sci. Rev., 21, 1153–1165, https://doi.org/10.1016/s0277-3791(01)00137-8, 2002.
Eynaud, F., de Abreu, L., Voelker, A., Schönfeld, J., Salgueiro, E.,
Turon, J.-L., Penaud, A., Toucanne, S., Naughton, F., Sánchez Goñi,
M. F., Malaizé, B., and Cacho, I.: Position of the Polar Front along the
western Iberian margin during key cold episodes of the last 45 ka,
Geochem. Geophy. Geosy., 10, Q07U05, https://doi.org/10.1029/2009gc002398,
2009.
Fink, H. G., Wienberg, C., De Pol-Holz, R., Wintersteller, P., and Hebbeln,
D.: Cold-water coral growth in the Alboran Sea related to high productivity
during the Late Pleistocene and Holocene, Mar. Geol., 339, 71–82, https://doi.org/10.1016/j.margeo.2013.04.009, 2013.
Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T.,
and Beaufort, L.: Precipitation variability within the West Pacific Warm
Pool over the past 120 ka: Evidence from the Davao Gulf, southern
Philippines, Paleoceanography, 29, 1094–1110, https://doi.org/10.1002/2013pa002599, 2014.
Freudenthal, T., Meggers, H., Henderiks, J., Kuhlmann, H., Moreno, A., and
Wefer, G.: Upwelling intensity and filament activity off Morocco during the
last 250,000 years, Deep-Sea Res. Pt. II, 49, 3655–3674, https://doi.org/10.1016/s0967-0645(02)00101-7, 2002.
Friedrich, O., Schiebel, R., Wilson, P. A., Weldeab, S., Beer, C. J.,
Cooper, M. J., and Fiebig, J.: Influence of test size, water depth, and
ecology on Mg∕Ca, Sr∕Ca, δ18O and δ13C in nine modern
species of planktic foraminifers, Earth Planet. Sc. Lett.,
319–320, 133–145, https://doi.org/10.1016/j.epsl.2011.12.002, 2012.
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F. J., Flores, J.
A., and Grimalt, J. O.: Evidence of abrupt changes in Western Mediterranean
Deep Water circulation during the last 50 kyr: A high-resolution marine
record from the Balearic Sea, Quatern. Int., 181, 88–104, https://doi.org/10.1016/j.quaint.2007.06.016, 2008.
Gardner, J. V., Dean, W. E., and Dartnell, P.: Biogenic sedimentation
beneath the California Current System for the past 30 kyr and its
paleoceanographic significance, Paleoceanography, 12, 207–225, https://doi.org/10.1029/96pa03567, 1997.
Gebhardt, H., Sarnthein, M., Grootes, P. M., Kiefer, T., Kuehn, H.,
Schmieder, F., and Röhl, U.: Paleonutrient and productivity records from
the subarctic North Pacific for Pleistocene glacial terminations I to V,
Paleoceanography, 23, PA4212, https://doi.org/10.1029/2007pa001513, 2008.
Gherardi, J. M., Labeyrie, L., Nave, S., Francois, R., McManus, J. F., and
Cortijo, E.: Glacial-interglacial circulation changes inferred
from 231Pa/230Th sedimentary record in the North Atlantic region,
Paleoceanography, 24, PA2204, https://doi.org/10.1029/2008pa001696, 2009.
Gottschalk, J., Skinner, L. C., and Waelbroeck, C.: Contribution of seasonal
sub-Antarctic surface water variability to millennial-scale changes in
atmospheric CO2 over the last deglaciation and Marine Isotope Stage 3,
Earth Planet. Sc. Lett., 411, 87–99, https://doi.org/10.1016/j.epsl.2014.11.051,
2015.
Gottschalk, J., Skinner, L. C., Lippold, J., Vogel, H., Frank, N., Jaccard,
S. L., and Waelbroeck, C.: Biological and physical controls in the Southern
Ocean on past millennial-scale atmospheric CO2 changes, Nat.
Commun., 7, 11539, https://doi.org/10.1038/ncomms11539, 2016.
Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, J.-C., Jansen, E., Labeyrie, L., Landais, A., Marti, O., Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D., and Waelbroeck, C.: Persistent influence of ice sheet melting on high northern latitude climate during the early Last Interglacial, Clim. Past, 8, 483–507, https://doi.org/10.5194/cp-8-483-2012, 2012.
Gray, W. R., Rae, J. W. B., Wills, R. C. J., Shevenell, A. E., Taylor, B.,
Burke, A., Foster, G. L., and Lear, C. H.: Deglacial upwelling, productivity
and CO2 outgassing in the North Pacific Ocean, Nat. Geosci., 11,
340–344, https://doi.org/10.1038/s41561-018-0108-6, 2018a.
Gray, W. R., Weldeab, S., Lea, D. W., Rosenthal, Y., Gruber, N., Donner, B.,
and Fischer, G.: The effects of temperature, salinity, and the carbonate
system on Mg∕Ca in Globigerinoides ruber (white): A global sediment trap calibration, Earth
Planet. Sc. Lett., 482, 607–620,
https://doi.org/10.1016/j.epsl.2017.11.026, 2018b.
Hall, I. R., Bianchi, G. G., and Evans, J. R.: Centennial to millennial
scale Holocene climate-deep water linkage in the North Atlantic, Quaternary
Sci. Rev., 23, 1529–1536, https://doi.org/10.1016/j.quascirev.2004.04.004, 2004.
Hays, J. D., Imbrie, J., and Shackleton, N. J.: Variations in the Earth's
orbit: pacemaker of the ice ages, Science, 194, 1121–1132, 1976.
Heinze, C., Maier-Reimer, E., Winguth, A. M. E., and Archer, D.: A global
oceanic sediment model for long-term climate studies, Global Biogeochem.
Cy., 13, 221–250, https://doi.org/10.1029/98gb02812, 1999.
Henderiks, J., Freudenthal, T., Meggers, H., Nave, S., Abrantes, F.,
Bollmann, J., and Thierstein, H. R.: Glacial–interglacial variability of
particle accumulation in the Canary Basin: a time-slice approach, Deep-Sea
Res. Pt. II, 49, 3675–3705, https://doi.org/10.1016/s0967-0645(02)00102-9, 2002.
Hillaire-Marcel, C. and De Vernal, A.: Proxies in Late Cenozoic
Paleoceanography, Elsevier, 2007.
Holbourn, A., Kuhnt, W., and James, N.: Late Pleistocene bryozoan reef
mounds of the Great Australian Bight: Isotope stratigraphy and benthic
foraminiferal record, Paleoceanography, 17, 14-11–14-13, https://doi.org/10.1029/2001pa000643, 2002.
Holbourn, A., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P., Erlenkeuser,
H., and Xu, J.: Orbitally paced paleoproductivity variations in the Timor
Sea and Indonesian Throughflow variability during the last 460 kyr,
Paleoceanography, 20, PA3002, https://doi.org/10.1029/2004pa001094, 2005.
Hoogakker, B. A. A., Chapman, M. R., McCave, I. N., Hillaire-Marcel, C.,
Ellison, C. R. W., Hall, I. R., and Telford, R. J.: Dynamics of North
Atlantic Deep Water masses during the Holocene, Paleoceanography, 26, https://doi.org/10.1029/2011pa002155, 2011.
Hoogakker, B. A. A., McCave, I. N., Elderfield, H., Hillaire-Marcel, C., and
Simstich, J.: Holocene climate variability in the Labrador Sea, J.
Geol. Soc., 172, 272–277, https://doi.org/10.1144/jgs2013-097, 2014.
Hu, D., Böning, P., Köhler, C. M., Hillier, S., Pressling, N., Wan,
S., Brumsack, H. J., and Clift, P. D.: Deep sea records of the continental
weathering and erosion response to East Asian monsoon intensification since
14 ka in the South China Sea, Chem. Geol., 326–327, 1–18, https://doi.org/10.1016/j.chemgeo.2012.07.024, 2012.
Hüls, M.: Millennial-scale SST variability as inferred from planktonic foraminifera sensus counts in the western subtropical Atlantic, PhD thesis, GEOMAR Research Center for Marine Geosciences, Christian Albrechts University in Kiel, Germany, 118 pp., 2000.
Imbrie, J. and Kipp, N. G.: A new micropaleontological method for
quantitative paleoclimatology: application to a late Pleistocene Caribbean
core, in: The late Cenozoic glacial ages, edited by: Turekian, K. K., Yale
University Press, New Haven, 71–181, 1971.
Ivanova, E.: Late Weichselian to Holocene paleoenvironments in the Barents
Sea, Global Planet. Change, 34, 209–218, https://doi.org/10.1016/s0921-8181(02)00116-9, 2002.
Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1) – PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev., 9, 2563–2587, https://doi.org/10.5194/gmd-9-2563-2016, 2016.
Jansen, E. and Veum, T.: Evidence for two-step deglaciation and its impact
on North Atlantic deep-water circulation, Nature, 343, 612–616, https://doi.org/10.1038/343612a0, 1990.
Jennings, A., Andrews, J., Pearce, C., Wilson, L., and Ólfasdótttir,
S.: Detrital carbonate peaks on the Labrador shelf, a 13–7 ka template for
freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet
into the subpolar gyre, Quaternary Sci. Rev., 107, 62–80, https://doi.org/10.1016/j.quascirev.2014.10.022, 2015.
Jian, Z., Wang, L., Kienast, M., Sarnthein, M., Kuhnt, W., Lin, H., and
Wang, P.: Benthic foraminiferal paleoceanography of the South China Sea over
the last 40,000 years, Mar. Geol., 156, 159–186, https://doi.org/10.1016/s0025-3227(98)00177-7, 1999.
Johnstone, H. J. H., Kiefer, T., Elderfield, H., and Schulz, M.: Calcite
saturation, foraminiferal test mass, and Mg/Ca-based temperatures
dissolution corrected using XDX-A 150 ka record from the western Indian
Ocean, Geochem. Geophy. Geosy., 15, 781–797, https://doi.org/10.1002/2013gc004994, 2014.
Jonkers, L. and Kučera, M.: Quantifying the effect of seasonal and vertical habitat tracking on planktonic foraminifera proxies, Clim. Past, 13, 573–586, https://doi.org/10.5194/cp-13-573-2017, 2017.
Jonkers, L., van Heuven, S., Zahn, R., and Peeters, F. J. C.: Seasonal
patterns of shell flux, δ18O and δ13C of small and
large N. pachyderma (s) and G. bulloides in the subpolar North Atlantic, Paleoceanography, 28,
164–174, https://doi.org/10.1002/palo.20018, 2013.
Jonkers, L., Zahn, R., Thomas, A., Henderson, G., Abouchami, W.,
François, R., Masque, P., Hall, I. R., and Bickert, T.: Deep circulation
changes in the central South Atlantic during the past 145 kyrs reflected in
a combined 231Pa∕230Th, Neodymium isotope and benthic δ13C record, Earth Planet. Sc. Lett., 419, 14–21, https://doi.org/10.1016/j.epsl.2015.03.004, 2015.
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack,
A., and Kucera, M.: PALMOD 130k marine palaeoclimate data synthesis V1.0,
https://doi.org/10.1594/PANGAEA.908831, 2019.
Jonkers, L., Cartapanis, O., Langner, M., McKay, N., Mulitza, S., Strack, A., and Kucera, M.: Overview of the time series in the PALMOD 130k marine palaeoclimate data synthesis [Data set], Zenodo, https://doi.org/10.5281/zenodo.3739019, 2020.
Jullien, E., Grousset, F. E., Hemming, S. R., Peck, V. L., Hall, I. R.,
Jeantet, C., and Billy, I.: Contrasting conditions preceding MIS3 and MIS2
Heinrich events, Global Planet. Change, 54, 225–238, https://doi.org/10.1016/j.gloplacha.2006.06.021, 2006.
Jung, S. J. A.: Wassermassenaustausch zwischen NE-Atlantik und Nordmeer
während der letzten 300.000/80.000 Jahre im Abbild stabiler 0- und
C-lsotope, Christian-Albrechts-Universität zu Kiel0942-119X,
Veränderungen der Umwelt-Der Nördliche Nordatlantik, 61, ISSN 0942,
1996.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J. H., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan, Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, 2018.
Kaiser, A.: Ozeanographie, Produktivität und Meereisverbreitung im Ochotskischen Meer während der letzten ca. 350 ka, PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany, 114 pp., 2001.
Kawamura, H., Holbourn, A., and Kuhnt, W.: Climate variability and
land–ocean interactions in the Indo Pacific Warm Pool: A 460-ka
palynological and organic geochemical record from the Timor Sea, Marine
Micropaleontology, 59, 1–14, https://doi.org/10.1016/j.marmicro.2005.09.001, 2006.
Keigwin, L. D. and Boyle, E. A.: Surface and deep ocean variability in the
northern Sargasso Sea during marine isotope stage 3, Paleoceanography, 14,
164–170, https://doi.org/10.1029/1998pa900026, 1999.
Keigwin, L. D. and Jones, G. A.: Glacial-Holocene stratigraphy, chronology,
and paleoceanographic observations on some North Atlantic sediment drifts,
Deep-Sea Res. Pt. I, 36, 845–867, https://doi.org/10.1016/0198-0149(89)90032-0, 1989.
Keigwin, L. D. and Jones, G. A.: Western North Atlantic evidence for
millennial-scale changes in ocean circulation and climate, J.
Geophys. Res., 99, 12397, https://doi.org/10.1029/94jc00525, 1994.
Kellogg, T. B., Duplessy, J. C., and Shackleton, N. J.: Planktonic
foraminiferal and oxygen isotopic stratigraphy and paleoclimatology of
Norwegian Sea deep-sea cores, Boreas, 7, 61–73, https://doi.org/10.1111/j.1502-3885.1978.tb00051.x, 1978.
Kennett, J. P., Roark, E. B., Cannariato, K. G., Ingram, B. L., and Tada,
R.: Latest Quaternary paleoclimatic and radiocarbon chronology, Hole 1017E,
southern California margin, in: Proceedings of the Ocean Drilling Program,
Ocean Drilling Program, 2000.
Khider, D., Emile-Geay, J., McKay, N. P., Gil, Y., Garijo, D., Ratnakar, V.,
Alonso-Garcia, M., Bertrand, S., Bothe, O., Brewer, P., Bunn, A., Chevalier,
M., Comas-Bru, L., Csank, A., Dassié, E., DeLong, K., Felis, T.,
Francus, P., Frappier, A., Gray, W., Goring, S., Jonkers, L., Kahle, M.,
Kaufman, D., Kehrwald, N. M., Martrat, B., McGregor, H., Richey, J.,
Schmittner, A., Scroxton, N., Sutherland, E., Thirumalai, K., Allen, K.,
Arnaud, F., Axford, Y., Barrows, T. T., Bazin, L., Pilaar Birch, S. E.,
Bradley, E., Bregy, J., Capron, E., Cartapanis, O., Chiang, H.-W., Cobb, K.,
Debret, M., Dommain, R., Du, J., Dyez, K., Emerick, S., Erb, M. P., Falster,
G., Finsinger, W., Fortier, D., Gauthier, N., George, S., Grimm, E.,
Hertzberg, J., Hibbert, F., Hillman, A., Hobbs, W., Huber, M., Hughes, A. L.
C., Jaccard, S., Ruan, J., Kienast, M., Konecky, B., Le Roux, G., Lyubchich,
V., Novello, V. F., Olaka, L., Partin, J. W., Pearce, C., Phipps, S. J.,
Pignol, C., Piotrowska, N., Poli, M.-S., Prokopenko, A., Schwanck, F.,
Stepanek, C., Swann, G. E. A., Telford, R., Thomas, E., Thomas, Z., Truebe,
S., von Gunten, L., Waite, A., Weitzel, N., Wilhelm, B., Williams, J.,
Williams, J. J., Winstrup, M., Zhao, N., and Zhou, Y.: PaCTS 1.0: A
Crowdsourced Reporting Standard for Paleoclimate Data, Paleoceanography and
Paleoclimatology, 1570–1596, https://doi.org/10.1029/2019pa003632, 2019.
Kiefer, T.: Produktivität und Temperaturen im subtropischen
Nordatlantik: zyklische und abrupte Veränderungen im späten
Quartär, Geologisch-Paläontologisches Institut und Museum,
Christian-Albrechts-Universität, Kiel0175-9302, Kiel, 90, ISSN
0175-9302, 1998.
Kiefer, T., McCave, I. N., and Elderfield, H.: Antarctic control on tropical
Indian Ocean sea surface temperature and hydrography, Geophys. Res.
Lett., 33, L24612, https://doi.org/10.1029/2006gl027097, 2006.
Kienast, S. S., Calvert, S. E., and Pedersen, T. F.: Nitrogen isotope and
productivity variations along the northeast Pacific margin over the last 120 kyr: Surface and subsurface paleoceanography, Paleoceanography, 17,
7-1–7-17, https://doi.org/10.1029/2001pa000650, 2002.
Kim, J.-H., Rimbu, N., Lorenz, S. J., Lohmann, G., Nam, S.-I., Schouten, S.,
Rühlemann, C., and Schneider, R. R.: North Pacific and North Atlantic
sea-surface temperature variability during the Holocene, Quaternary Sci.
Rev., 23, 2141–2154, https://doi.org/10.1016/j.quascirev.2004.08.010, 2004.
Kirst, G. J., Schneider, R. R., Müller, P. J., von Storch, I., and
Wefer, G.: Late Quaternary Temperature Variability in the Benguela Current
System Derived from Alkenones, Quaternary Res., 52, 92–103, https://doi.org/10.1006/qres.1999.2040, 1999.
Knies, J. and Stein, R.: New aspects of organic carbon deposition and its
paleoceanographic implications along the Northern Barents Sea Margin during
the last 30,000 years, Paleoceanography, 13, 384–394, https://doi.org/10.1029/98pa01501,
1998.
Knies, J. and Vogt, C.: Freshwater pulses in the eastern Arctic Ocean
during Saalian and Early Weichselian ice-sheet collapse, Quaternary
Res., 60, 243–251, https://doi.org/10.1016/j.yqres.2003.07.008, 2003.
Knies, J., Nowaczyk, N., Müller, C., Vogt, C., and Stein, R.: A
multiproxy approach to reconstruct the environmental changes along the
Eurasian continental margin over the last 150 000 years, Mar. Geol.,
163, 317–344, https://doi.org/10.1016/s0025-3227(99)00106-1, 2000.
Korte, C. and Hesselbo, S. P.: Shallow marine carbon and oxygen isotope and
elemental records indicate icehouse-greenhouse cycles during the Early
Jurassic, Paleoceanography, 26, PA4219, https://doi.org/10.1029/2011pa002160, 2011.
Koutavas, A. and Lynch-Stieglitz, J.: Glacial-interglacial dynamics of the
eastern equatorial Pacific cold tongue-Intertropical Convergence Zone system
reconstructed from oxygen isotope records, Paleoceanography, 18, 1089, https://doi.org/10.1029/2003pa000894, 2003.
Ku, T.-L., Bischoff, J. L., and Boersma, A.: Age studies of Mid-Atlantic
Ridge sediments near 42∘ N and 20∘ N, Deep Sea Research
and Oceanographic Abstracts, 19, 233–247, https://doi.org/10.1016/0011-7471(72)90033-2,
1972.
Kucera, M., Weinelt, M., Kiefer, T., Pflaumann, U., Hayes, A., Weinelt, M.,
Chen, M.-T., Mix, A. C., Barrows, T. T., Cortijo, E., Duprat, J., Juggins,
S., and Waelbroeck, C.: Reconstruction of sea-surface temperatures from
assemblages of planktonic foraminifera: multi-technique approach based on
geographically constrained calibration data sets and its application to
glacial Atlantic and Pacific Oceans, Quaternary Sci. Rev., 24,
951–998, 2005.
Kurahashi-Nakamura, T., Paul, A., and Losch, M.: Dynamical reconstruction of
the global ocean state during the Last Glacial Maximum, Paleoceanography,
32, 326–350, https://doi.org/10.1002/2016pa003001, 2017.
Kurahashi-Nakamura, T., Paul, A., Munhoven, G., Merkel, U., and Schulz, M.: Coupling of a sediment diagenesis model (MEDUSA) and an Earth system model (CESM1.2): a contribution toward enhanced marine biogeochemical modelling and long-term climate simulations, Geosci. Model Dev., 13, 825–840, https://doi.org/10.5194/gmd-13-825-2020, 2020.
Labeyrie, L. D. and Duplessy, J. C.: Changes in the oceanic ratio during
the last 140 000 years: High-latitude surface water records,
Palaeogeography, Palaeoclimatology, Palaeoecology, 50, 217–240, https://doi.org/10.1016/0031-0182(85)90069-0, 1985.
Labeyrie, L., Vidal, L., Cortijo, E., Paterne, M., Arnold, M., Duplessy, J.
C., Vautravers, M., Labracherie, M., Duprat, J., Turon, J. L., Grousset, F.
E., and van Weering, T. C. E.: Surface and deep hydrology of the Northern
Atlantic Ocean during the past 150000 years, Philos. T. R. Soc. B, 348, 255–264, https://doi.org/10.1098/rstb.1995.0067, 1995.
Labeyrie, L., Labracherie, M., Gorfti, N., Pichon, J. J., Vautravers, M.,
Arnold, M., Duplessy, J.-C., Paterne, M., Michel, E., Duprat, J., Caralp,
M., and Turon, J.-L.: Hydrographic changes of the Southern Ocean (southeast
Indian Sector) Over the last 230 kyr, Paleoceanography, 11, 57–76, https://doi.org/10.1029/95pa02255, 1996.
Labeyrie, L., Leclaire, H., Waelbroeck, C., Cortijo, E., Duplessy, J.-C.,
Vidal, L., Elliot, M., Le Coat, B., and Auffret, G.: Temporal variability of
the surface and deep waters of the North West Atlantic Ocean at orbital and
millenial scales, in: Mechanisms of Global Climate Change at Millennial Time
Scales, American Geophysical Union, 1999.
Labracherie, M., Labeyrie, L. D., Duprat, J., Bard, E., Arnold, M., Pichon,
J.-J., and Duplessy, J.-C.: The Last Deglaciation in the Southern Ocean,
Paleoceanography, 4, 629–638, https://doi.org/10.1029/pa004i006p00629, 1989.
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G.,
Ullermann, J., Martinez-Garcia, A., Lambert, F., and Kilian, R.: Increased
Dust Deposition in the Pacific Southern Ocean During Glacial Periods,
Science, 343, 403–407, https://doi.org/10.1126/science.1245424, 2014.
Langner, M. and Mulitza, S.: Technical note: PaleoDataView – a software toolbox for the collection, homogenization and visualization of marine proxy data, Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019, 2019.
Latif, M., Claussen, M., Schulz, M., and Brüchner, T.: Comprehensive
Earth system models of the last glacial cycle, EOS, 97, https://doi.org/10.1029/2016EO059587, 2016.
Lawrence, K. T.: Evolution of the Eastern Tropical Pacific Through
Plio-Pleistocene Glaciation, Science, 312, 79–83, https://doi.org/10.1126/science.1120395,
2006.
Lea, D. W., Pak, D. K., Belanger, C. L., Spero, H. J., Hall, M. A., and
Shackleton, N. J.: Paleoclimate history of Galápagos surface waters over
the last 135,000 yr, Quaternary Sci. Rev., 25, 1152–1167, https://doi.org/10.1016/j.quascirev.2005.11.010, 2006.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal
Mg/Ca-paleothermometry: a revised core-top calibration, Geochim.
Cosmochim. Ac., 66, 3375–3387,
https://doi.org/10.1016/S0016-7037(02)00941-9, 2002.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography,
20, PA1003, https://doi.org/10.1029/2004pa001071, 2005.
Lisiecki, L. E. and Stern, J. V.: Regional and global benthic δ18O stacks for the last glacial cycle, Paleoceanography, 31,
1368–1394, https://doi.org/10.1002/2016PA003002, 2016.
Little, M. G., Schneider, R. R., Kroon, D., Price, B., Bickert, T., and
Wefer, G.: Rapid palaeoceanographic changes in the Benguela Upwelling System
for the last 160,000 years as indicated by abundances of planktonic
foraminifera, Palaeogeography, Palaeoclimatology, Palaeoecology, 130,
135–161, https://doi.org/10.1016/s0031-0182(96)00136-8, 1997.
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P.
U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D.,
Jacob, R., Kutzbach, J., and Cheng, J.: Transient Simulation of Last
Deglaciation with a New Mechanism for Bolling-Allerod Warming, Science, 325,
310–314, https://doi.org/10.1126/science.1171041, 2009.
Lo Giudice Cappelli, E., Holbourn, A., Kuhnt, W., and Regenberg, M.: Changes
in Timor Strait hydrology and thermocline structure during the past 130 ka,
Palaeogeography, Palaeoclimatology, Palaeoecology, 462, 112–124, https://doi.org/10.1016/j.palaeo.2016.09.010, 2016.
Lund, D. C. and Mix, A. C.: Millennial-scale deep water oscillations:
Reflections of the North Atlantic in the deep Pacific from 10 to 60 ka,
Paleoceanography, 13, 10–19, https://doi.org/10.1029/97pa02984, 1998.
Lyle, M., Zahn, R., Prahl, F., Dymond, J., Collier, R., Pisias, N., and
Suess, E.: Paleoproductivity and carbon burial across the California
Current: The multitracers transect, 42∘ N, Paleoceanography, 7,
251–272, https://doi.org/10.1029/92pa00696, 1992.
Lyle, M., Mix, A., Ravelo, A. C., Andreasen, D., Heusser, L., and Olivarez,
A.: Millennial-scale CaCO3 and Corg events along the northern and
central California margins: stratigraphy and origins, in: Proceedings of the
Ocean Drilling Program, Ocean Drilling Program, 2000.
Lyle, M., Mix, A., and Pisias, N.: Patterns of CaCO3 deposition in the
eastern tropical Pacific Ocean for the last 150 kyr: Evidence for a
southeast Pacific depositional spike during marine isotope stage (MIS) 2,
Paleoceanography, 17, 3-1–3-13, https://doi.org/10.1029/2000pa000538, 2002.
Lynch-Stieglitz, J., Curry, W. B., and Lund, D. C.: Florida Straits density
structure and transport over the last 8000 years, Paleoceanography, 24, PA3209, https://doi.org/10.1029/2008pa001717, 2009.
Marchitto, T. M., Curry, W. B., Lynch-Stieglitz, J., Bryan, S. P., Cobb, K.
M., and Lund, D. C.: Improved oxygen isotope temperature calibrations for
cosmopolitan benthic foraminifera, Geochim. Cosmochim. Ac., 130,
1–11, https://doi.org/10.1016/j.gca.2013.12.034, 2014.
Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A
Reconstruction of Regional and Global Temperature for the Past 11,300 Years,
Science, 339, 1198–1201, https://doi.org/10.1126/science.1228026, 2013.
MARGO project: Constraints on the magnitude and patterns of ocean cooling at
the Last Glacial Maximum, Nat. Geosci., 2, 127–132, 2009.
Martínez, I., Keigwin, L., Barrows, T. T., Yokoyama, Y., and Southon,
J.: La Niña-like conditions in the eastern equatorial Pacific and a
stronger Choco jet in the northern Andes during the last glaciation,
Paleoceanography, 18, 1033, https://doi.org/10.1029/2002pa000877, 2003.
Martrat, B., Grimalt, J. O., Villanueva, J., van Kreveld, S., and Sarnthein,
M.: Climatic dependence of the organic matter contributions in the north
eastern Norwegian Sea over the last 15,000 years, Org. Geochem., 34,
1057–1070, https://doi.org/10.1016/s0146-6380(03)00084-6, 2003.
Martrat, B., Jimenez-Amat, P., Zahn, R., and Grimalt, J. O.: Similarities
and dissimilarities between the last two deglaciations and interglaciations
in the North Atlantic region, Quaternary Sci. Rev., 99, 122–134, https://doi.org/10.1016/j.quascirev.2014.06.016, 2014.
Max, L., Riethdorf, J.-R., Tiedemann, R., Smirnova, M., Lembke-Jene, L.,
Fahl, K., Nürnberg, D., Matul, A., and Mollenhauer, G.: Sea surface
temperature variability and sea-ice extent in the subarctic northwest
Pacific during the past 15,000 years, Paleoceanography, 27, PA3213, https://doi.org/10.1029/2012pa002292, 2012.
Max, L., Belz, L., Tiedemann, R., Fahl, K., Nürnberg, D., and Riethdorf,
J.-R.: Rapid shifts in subarctic Pacific climate between 138 and 70 ka,
Geology, 42, 899–902, https://doi.org/10.1130/g35879.1, 2014a.
Max, L., Lembke-Jene, L., Riethdorf, J.-R., Tiedemann, R., Nürnberg, D., Kühn, H., and Mackensen, A.: Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation, Clim. Past, 10, 591–605, https://doi.org/10.5194/cp-10-591-2014, 2014b.
McCave, I. N., Kiefer, T., Thornalley, D. J. R., and Elderfield, H.: Deep
flow in the Madagascar–Mascarene Basin over the last 150000 years,
Philos. T. R. Soc. A, 363, 81–99, https://doi.org/10.1098/rsta.2004.1480, 2005.
McKay, N. P. and Emile-Geay, J.: Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology, Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, 2016.
McManus, J. F., Oppo, D. W., and Cullen, J. L.: A 0.5-Million-Year Record of
Millennial-Scale Climate Variability in the North Atlantic, Science, 283,
971–975, https://doi.org/10.1126/science.283.5404.971, 1999.
Millo, C., Sarnthein, M., Voelker, A., and Erlenkeuser, H.: Variability of
the Denmark Strait Overflow during the Last Glacial Maximum, Boreas, 35,
50–60, https://doi.org/10.1111/j.1502-3885.2006.tb01112.x, 2008.
Mix, A. C.: The oxygen-isotope record of glaciation, The Geology of North
America, 3, 111–135, 1987.
Mix, A. C., Le, J., and Shackleton, N. J.: Benthic Foraminiferal Stable
Isotope Stratigraphy of Site 846: 0–1.8 Ma, in: Proceedings of the Ocean
Drilling Program, 138 Scientific Results, Ocean Drilling Program, 1995.
Moffa-Sánchez, P., Moreno-Chamarro, E., Reynolds, D. J., Ortega, P.,
Cunningham, L., Swingedouw, D., Amrhein, D. E., Halfar, J., Jonkers, L.,
Jungclaus, J. H., Perner, K., Wanamaker, A., and Yeager, S.: Variability in
the Northern North Atlantic and Arctic Oceans Across the Last Two Millennia:
A Review, Paleoceanography and Paleoclimatology, 1399–1436, https://doi.org/10.1029/2018pa003508,
2019.
Mollier-Vogel, E., Leduc, G., Böschen, T., Martinez, P., and Schneider,
R. R.: Rainfall response to orbital and millennial forcing in northern Peru
over the last 18 ka, Quaternary Sci. Rev., 76, 29–38, https://doi.org/10.1016/j.quascirev.2013.06.021, 2013.
Molyneux, E. G., Hall, I. R., Zahn, R., and Diz, P.: Deep water variability
on the southern Agulhas Plateau: Interhemispheric links over the past 170 ka, Paleoceanography, 22, PA4209, https://doi.org/10.1029/2006pa001407, 2007.
Moreno, E., Thouveny, N., Delanghe, D., McCave, I. N., and Shackleton, N.
J.: Climatic and oceanographic changes in the Northeast Atlantic reflected
by magnetic properties of sediments deposited on the Portuguese Margin
during the last 340 ka, Earth Planet. Sc. Lett., 202, 465-480, https://doi.org/10.1016/s0012-821x(02)00787-2, 2002.
Mulitza, S., Prange, M., Stuut, J.-B., Zabel, M., von Dobeneck, T., Itambi,
A. C., Nizou, J., Schulz, M., and Wefer, G.: Sahel megadroughts triggered by
glacial slowdowns of Atlantic meridional overturning, Paleoceanography, 23, PA4206,
https://doi.org/10.1029/2008pa001637, 2008.
Müller, J. and Stein, R.: High-resolution record of late glacial and
deglacial sea ice changes in Fram Strait corroborates ice–ocean
interactions during abrupt climate shifts, Earth Planet. Sc.
Lett., 403, 446–455, https://doi.org/10.1016/j.epsl.2014.07.016, 2014.
Nam, S.-I.: Late Quaternary glacial history and paleoceanographic
reconstructions along the East Greenland continental margin: Evidence from
high-resolution records of stable isotopes and ice-rafted debris
(Spätquartäre Vereisungsgeschichte und paläozeanographische
Rekonstruktionen am ostgrönlandischen Kontinentalrand),
Alfred-Wegener-Institut für Polar- und Meeresforschung, 1997.
Niedermeyer, E. M., Prange, M., Mulitza, S., Mollenhauer, G., Schefuß,
E., and Schulz, M.: Extratropical forcing of Sahel aridity during Heinrich
stadials, Geophys. Res. Lett., 36, L20707, https://doi.org/10.1029/2009gl039687, 2009.
Nowaczyk, N. R., Antonow, M., Knies, J., and Spielhagen, R. F.: Further rock
magnetic and chronostratigraphic results on reversal excursions during the
last 50 ka as derived from northern high latitudes and discrepancies in
precise AMS14C dating, Geophys. J. Int., 155, 1065–1080, https://doi.org/10.1111/j.1365-246x.2003.02115.x, 2003.
Nürnberg, D. and Tiedemann, R.: Environmental change in the Sea of
Okhotsk during the last 1.1 million years, Paleoceanography, 19, PA4011, https://doi.org/10.1029/2004pa001023, 2004.
Nürnberg, D., Schönfeld, J., and Dullo, W.: RASTA Rapid climate changes in the western tropical Atlantic – Assessment of the biogenous and sedimentary record, R/V SONNE cruise report SO164, GEOMAR Forschungszentrum für Marine Geowissenschaften, 151, 2003.
Nürnberg, D., Böschen, T., Doering, K., Mollier-Vogel, E., Raddatz,
J., and Schneider, R.: Sea surface and subsurface circulation dynamics off
equatorial Peru during the last ∼17 kyr, Paleoceanography,
30, 984–999, https://doi.org/10.1002/2014pa002706, 2015.
Oba, T. and Murayama, M.: Sea-surface temperature and salinity changes in
the northwest Pacific since the Last Glacial Maximum, J. Quaternary
Sci., 19, 335–346, https://doi.org/10.1002/jqs.843, 2004.
Oppo, D. W. and Horowitz, M.: Glacial deep water geometry: South Atlantic
benthic foraminiferal Cd/Ca and δ13C evidence,
Paleoceanography, 15, 147–160, https://doi.org/10.1029/1999pa000436, 2000.
Oppo, D. W. and Lehman, S. J.: Suborbital timescale variability of North
Atlantic Deep Water during the past 200,000 years, Paleoceanography, 10,
901–910, https://doi.org/10.1029/95pa02089, 1995.
Oppo, D. W. and Sun, Y.: Amplitude and timing of sea-surface temperature
change in the northern South China Sea: Dynamic link to the East Asian
monsoon, Geology, 33, 785–788, https://doi.org/10.1130/g21867.1, 2005.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Deepwater variability in the
Holocene epoch, Nature, 422, p. 277, https://doi.org/10.1038/422277b, 2003.
Oppo, D. W., McManus, J. F., and Cullen, J. L.: Evolution and demise of the
Last Interglacial warmth in the subpolar North Atlantic, Quaternary Sci.
Rev., 25, 3268–3277, https://doi.org/10.1016/j.quascirev.2006.07.006, 2006.
Ortiz, J., Mix, A., Harris, S., and O'Connell, S.: Diffuse spectral
reflectance as a proxy for percent carbonate content in North Atlantic
sediments, Paleoceanography, 14, 171–186, https://doi.org/10.1029/1998pa900021, 1999.
Pahnke, K.: 340,000-Year Centennial-Scale Marine Record of Southern
Hemisphere Climatic Oscillation, Science, 301, 948–952, https://doi.org/10.1126/science.1084451, 2003.
Pahnke, K.: Southern Hemisphere Water Mass Conversion Linked with North
Atlantic Climate Variability, Science, 307, 1741–1746, https://doi.org/10.1126/science.1102163, 2005.
Pahnke, K. and Sachs, J. P.: Sea surface temperatures of southern
midlatitudes 0–160 kyr B.P, Paleoceanography, 21, PA2003, https://doi.org/10.1029/2005pa001191,
2006.
Pailler, D. and Bard, E.: High frequency palaeoceanographic changes during
the past 140 000 yr recorded by the organic matter in sediments of the
Iberian Margin, Palaeogeography, Palaeoclimatology, Palaeoecology, 181,
431–452, https://doi.org/10.1016/s0031-0182(01)00444-8, 2002.
Pedersen, T. F., Pickering, M., Vogel, J. S., Southon, J. N., and Nelson, D.
E.: The response of benthic foraminifera to productivity cycles in the
eastern equatorial Pacific: Faunal and geochemical constraints on glacial
bottom water oxygen levels, Paleoceanography, 3, 157–168, https://doi.org/10.1029/pa003i002p00157, 1988.
Pedersen, T. F., Nielsen, B., and Pickering, M.: Timing of Late Quaternary
productivity pulses in the Panama Basin and implications for atmospheric
CO2, Paleoceanography, 6, 657–677, https://doi.org/10.1029/91pa02532, 1991.
Peterson, C. D. and Lisiecki, L. E.: Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka), Clim. Past, 14, 1229–1252, https://doi.org/10.5194/cp-14-1229-2018, 2018.
Pichevin, L., Martinez, P., Bertrand, P., Schneider, R., Giraudeau, J., and
Emeis, K.: Nitrogen cycling on the Namibian shelf and slope over the last
two climatic cycles: Local and global forcings, Paleoceanography, 20, PA2006,
https://doi.org/10.1029/2004pa001001, 2005.
Pichon, J.-J., Labeyrie, L. D., Bareille, G., Labracherie, M., Duprat, J.,
and Jouzel, J.: Surface water temperature changes in the high latitudes of
the southern hemisphere over the Last Glacial-Interglacial Cycle,
Paleoceanography, 7, 289–318, https://doi.org/10.1029/92pa00709, 1992.
Praetorius, S. K., McManus, J. F., Oppo, D. W., and Curry, W. B.: Episodic
reductions in bottom-water currents since the last ice age, Nat.
Geosci., 1, 449–452, https://doi.org/10.1038/ngeo227, 2008.
Prahl, F. G., Muehlhausen, L. A., and Zahnle, D. L.: Further evaluation of
long-chain alkenones as indicators of paleoceanographic conditions,
Geochim. Cosmochim. Ac., 52, 2303–2310,
https://doi.org/10.1016/0016-7037(88)90132-9, 1988.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton,
T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer,
B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
BP, Radiocarbon, 55, 1869–1887, 2013.
Richter, T.: Sedimentary fluxes at the Mid-Atlantic Ridge: sediment sources,
accumulation rates, and geochemical characterisation, GEOMAR
Forschungszentrum für marine Geowissenschaften, 1998.
Rickaby, R. E. M. and Elderfield, H.: Evidence from the high-latitude North
Atlantic for variations in Antarctic Intermediate water flow during the last
deglaciation, Geochem. Geophy. Geosy., 6, Q05001, https://doi.org/10.1029/2004gc000858, 2005.
Riethdorf, J.-R., Max, L., Nürnberg, D., Lembke-Jene, L., and Tiedemann,
R.: Deglacial development of (sub) sea surface temperature and salinity in
the subarctic northwest Pacific: Implications for upper-ocean
stratification, Paleoceanography, 28, 91–104, https://doi.org/10.1002/palo.20014, 2013a.
Riethdorf, J.-R., Nürnberg, D., Max, L., Tiedemann, R., Gorbarenko, S. A., and Malakhov, M. I.: Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr, Clim. Past, 9, 1345–1373, https://doi.org/10.5194/cp-9-1345-2013, 2013b.
Riethdorf, J.-R., Thibodeau, B., Ikehara, M., Nürnberg, D., Max, L.,
Tiedemann, R., and Yokoyama, Y.: Surface nitrate utilization in the Bering
sea since 180 kA BP: Insight from sedimentary nitrogen isotopes, Deep-Sea
Res. Pt. II, 125–126, 163–176, https://doi.org/10.1016/j.dsr2.2015.03.007, 2016.
Risebrobakken, B., Dokken, T., and Jansen, E.: Extent and variability of the
meridional Atlantic circulation in the eastern Nordic seas during Marine
Isotope Stage 5 and its influence on the inception of the last glacial, in:
The Nordic Seas: An Integrated Perspective Oceanography, Climatology,
Biogeochemistry, and Modeling, American Geophysical Union, 2005.
Roberts, J., Gottschalk, J., Skinner, L. C., Peck, V. L., Kender, S.,
Elderfield, H., Waelbroeck, C., Vázquez Riveiros, N., and Hodell, D. A.:
Evolution of South Atlantic density and chemical stratification across the
last deglaciation, P. Natl. Acad. Sci. USA, 113,
514–519, https://doi.org/10.1073/pnas.1511252113, 2016.
Romahn, S., Mackensen, A., Groeneveld, J., and Pätzold, J.: Deglacial intermediate water reorganization: new evidence from the Indian Ocean, Clim. Past, 10, 293–303, https://doi.org/10.5194/cp-10-293-2014, 2014.
Ronge, T. A., Steph, S., Tiedemann, R., Prange, M., Merkel, U.,
Nürnberg, D., and Kuhn, G.: Pushing the boundaries: Glacial/interglacial
variability of intermediate and deep waters in the southwest Pacific over
the last 350,000 years, Paleoceanography, 30, 23–38, https://doi.org/10.1002/2014pa002727,
2015.
Ronge, T. A., Tiedemann, R., Lamy, F., Köhler, P., Alloway, B. V., De
Pol-Holz, R., Pahnke, K., Southon, J., and Wacker, L.: Radiocarbon
constraints on the extent and evolution of the South Pacific glacial carbon
pool, Nat. Commun., 7, 11487, https://doi.org/10.1038/ncomms11487, 2016.
Rosell-Melé, A. and Prahl, F. G.: Seasonality of temperature estimates
as inferred from sediment trap data, Quaternary Sci. Rev., 72,
128–136, https://doi.org/10.1016/j.quascirev.2013.04.017, 2013.
Routson, C. C., McKay, N. P., Kaufman, D. S., Erb, M. P., Goosse, H.,
Shuman, B. N., Rodysill, J. R., and Ault, T.: Mid-latitude net precipitation
decreased with Arctic warming during the Holocene, Nature, 568, 83–87, https://doi.org/10.1038/s41586-019-1060-3, 2019.
Sachs, J. P. and Anderson, R. F.: Increased productivity in the
subantarctic ocean during Heinrich events, Nature, 434, 1118–1121, https://doi.org/10.1038/nature03544, 2005.
Saikku, R., Stott, L., and Thunell, R.: A bi-polar signal recorded in the
western tropical Pacific: Northern and Southern Hemisphere climate records
from the Pacific warm pool during the last Ice Age, Quaternary Sci.
Rev., 28, 2374–2385, https://doi.org/10.1016/j.quascirev.2009.05.007, 2009.
Salgueiro, E., Naughton, F., Voelker, A. H. L., de Abreu, L., Alberto, A.,
Rossignol, L., Duprat, J., Magalhães, V. H., Vaqueiro, S., Turon, J. L.,
and Abrantes, F.: Past circulation along the western Iberian margin: a time
slice vision from the Last Glacial to the Holocene, Quaternary Sci.
Rev., 106, 316–329, https://doi.org/10.1016/j.quascirev.2014.09.001, 2014.
Samson, C. R., Sikes, E. L., and Howard, W. R.: Deglacial paleoceanographic
history of the Bay of Plenty, New Zealand, Paleoceanography, 20, PA4017, https://doi.org/10.1029/2004pa001088, 2005.
Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R.: Global
variations of surface ocean productivity in low and mid latitudes: Influence
on CO2 reservoirs of the deep ocean and atmosphere during the last
21,000 years, Paleoceanography, 3, 361–399, https://doi.org/10.1029/pa003i003p00361, 1988.
Sarnthein, M., Winn, K., Jung, S. J. A., Duplessy, J.-C., Labeyrie, L.,
Erlenkeuser, H., and Ganssen, G.: Changes in East Atlantic Deepwater
Circulation over the last 30,000 years: Eight time slice reconstructions,
Paleoceanography, 9, 209–267, https://doi.org/10.1029/93pa03301, 1994.
Sarnthein, M., Gebhardt, H., Kiefer, T., Kucera, M., Cook, M., and
Erlenkeuser, H.: Mid Holocene origin of the sea-surface salinity low in the
subarctic North Pacific, Quaternary Sci. Rev., 23, 2089–2099, https://doi.org/10.1016/j.quascirev.2004.08.008, 2004.
Sarnthein, M., Kreveld, S., Erlenkeuser, H., Grootes, P. M., Kucera, M.,
Pflaumann, U., and Schulz, M.: Centennial-to-millennial-scale periodicities
of Holocene climate and sediment injections off the western Barents shelf,
75∘ N, Boreas, 32, 447–461, https://doi.org/10.1111/j.1502-3885.2003.tb01227.x,
2008.
Sarnthein, M., Schneider, B., and Grootes, P. M.: Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean, Clim. Past, 9, 2595–2614, https://doi.org/10.5194/cp-9-2595-2013, 2013.
Sarnthein, M., Balmer, S., Grootes, P. M., and Mudelsee, M.: Planktic and
Benthic 14C Reservoir Ages for Three Ocean Basins, Calibrated by a
Suite of 14C Plateaus in the Glacial-to-Deglacial Suigetsu Atmospheric
14C Record, Radiocarbon, 57, 129-151, https://doi.org/10.2458/azu_rc.57.17916, 2015.
Schlung, S. A., Christina Ravelo, A., Aiello, I. W., Andreasen, D. H., Cook,
M. S., Drake, M., Dyez, K. A., Guilderson, T. P., LaRiviere, J. P.,
Stroynowski, Z., and Takahashi, K.: Millennial-scale climate change and
intermediate water circulation in the Bering Sea from 90 ka: A
high-resolution record from IODP Site U1340, Paleoceanography, 28, 54–67, https://doi.org/10.1029/2012pa002365, 2013.
Schönfeld, J., Zahn, R., and de Abreu, L.: Surface and deep water
response to rapid climate changes at the Western Iberian Margin, Global
Planet. Change, 36, 237–264, https://doi.org/10.1016/s0921-8181(02)00197-2, 2003.
Schulz, H.: Meeresoberflächentemperaturen vor 10.000 Jahren –
Auswirkungen des frühholozänen Insolationsmaximums,
Geologisch-Paläontologisches Institut und Museum,
Christian-Albrechts-Universität, Kiel0175-9302, Kiel, 73, ISSN
0175-9302, 1995.
Shackleton, N. J. and Pisias, N. G.: Atmospheric Carbon Dioxide, Orbital
Forcing, and Climate, in: The Carbon Cycle and Atmospheric CO2:
Natural Variations Archean to Present, American Geophysical Union, 2013.
Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z.,
Otto-Bliesner, B., Schmittner, A., and Bard, E.: Global warming preceded by
increasing carbon dioxide concentrations during the last deglaciation,
Nature, 484, 49–54, 2012.
Sierro, F. J., Hodell, D. A., Curtis, J. H., Flores, J. A., Reguera, I.,
Colmenero-Hidalgo, E., Bárcena, M. A., Grimalt, J. O., Cacho, I.,
Frigola, J., and Canals, M.: Impact of iceberg melting on Mediterranean
thermohaline circulation during Heinrich events, Paleoceanography, 20, PA2019, https://doi.org/10.1029/2004pa001051, 2005.
Sikes, E. L., Howard, W. R., Neil, H. L., and Volkman, J. K.:
Glacial-interglacial sea surface temperature changes across the subtropical
front east of New Zealand based on alkenone unsaturation ratios and
foraminiferal assemblages, Paleoceanography, 17, 2-1–2-13, https://doi.org/10.1029/2001pa000640, 2002.
Sikes, E. L., Howard, W. R., Samson, C. R., Mahan, T. S., Robertson, L. G.,
and Volkman, J. K.: Southern Ocean seasonal temperature and Subtropical
Front movement on the South Tasman Rise in the late Quaternary,
Paleoceanography, 24, PA2201, https://doi.org/10.1029/2008pa001659, 2009.
Simstich, J., Stanovoy, V., Bauch, D., Erlenkeuser, H., and Spielhagen, R.
F.: Holocene variability of bottom water hydrography on the Kara Sea shelf
(Siberia) depicted in multiple single-valve analyses of stable isotopes in
ostracods, Mar. Geol., 206, 147–164, https://doi.org/10.1016/j.margeo.2004.01.008, 2004.
Simstich, J., Erlenkeuser, H., Harms, I., Spielhagen, R. F., and Stanovoy,
V.: Modern and Holocene hydrographic characteristics of the shallow Kara Sea
shelf (Siberia) as reflected by stable isotopes of bivalves and benthic
foraminifera, Boreas, 34, 252–263, https://doi.org/10.1111/j.1502-3885.2005.tb01099.x, 2008.
Sirocko, F.: Processes controlling trace element geochemistry of Arabian Sea
sediments during the last 25,000 years, Global Planet. Change, 26,
217–303, https://doi.org/10.1016/s0921-8181(00)00046-1, 2000.
Sirocko, F., Sarnthein, M., Lange, H., and Erlenkeuser, H.: Atmospheric
summer circulation and coastal upwelling in the Arabian Sea during the
Holocene and the last glaciation, Quaternary Res., 36, 72–93, https://doi.org/10.1016/0033-5894(91)90018-z, 1991.
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., and
Duplessy, J. C.: Century-scale events in monsoonal climate over the past
24,000 years, Nature, 364, 322–324, https://doi.org/10.1038/364322a0, 1993.
Snyder, C. W.: Evolution of global temperature over the past two million
years, Nature, 538, 226–228, https://doi.org/10.1038/nature19798, 2016.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater
carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature,
390, 497–500, 1997.
Spielhagen, R. F., Werner, K., Sorensen, S. A., Zamelczyk, K., Kandiano, E.,
Budeus, G., Husum, K., Marchitto, T. M., and Hald, M.: Enhanced Modern Heat
Transfer to the Arctic by Warm Atlantic Water, Science, 331, 450–453, https://doi.org/10.1126/science.1197397, 2011.
Stott, L.: Super ENSO and Global Climate Oscillations at Millennial Time
Scales, Science, 297, 222–226, https://doi.org/10.1126/science.1071627, 2002.
Stott, L., Timmermann, A., and Thunell, R.: Southern Hemisphere and Deep-Sea
Warming Led Deglacial Atmospheric CO2 Rise and Tropical Warming, Science,
318, 435-438, https://doi.org/10.1126/science.1143791, 2007.
Stott, L. D.: Comment on “Anomalous radiocarbon ages for foraminifera
shells” by W. Broecker et al.: A correction to the western tropical Pacific
MD9821-81 record, Paleoceanography, 22, PA1211, https://doi.org/10.1029/2006pa001379, 2007.
Stott, L. D., Neumann, M., and Hammond, D.: Intermediate water ventilation
on the Northeastern Pacific Margin during the Late Pleistocene inferred from
benthic foraminiferal δ13C, Paleoceanography, 15, 161–169, https://doi.org/10.1029/1999pa000375, 2000.
Stuiver, M. and Polach, H. A.: Discussion Reporting of 14C Data,
Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Tada, R., Sato, S., Irino, T., Matsui, H., and Kennett, J. P.:
Millennial-scale compositional variations in late Quaternary sediments at
Site 1017, Southern California, in: Proceedings of the Ocean Drilling
Program, Ocean Drilling Program, 2000.
Tapia, R., Nürnberg, D., Ronge, T., and Tiedemann, R.: Disparities in
glacial advection of Southern Ocean Intermediate Water to the South Pacific
Gyre, Earth Planet. Sc. Lett., 410, 152–164, https://doi.org/10.1016/j.epsl.2014.11.031, 2015.
Telesiński, M. M., Spielhagen, R. F., and Lind, E. M.: A high-resolution
Lateglacial and Holocene palaeoceanographic record from the Greenland Sea,
Boreas, 43, 273–285, https://doi.org/10.1111/bor.12045, 2013.
Telesiński, M. M., Spielhagen, R. F., and Bauch, H. A.: Water mass evolution of the Greenland Sea since late glacial times, Clim. Past, 10, 123–136, https://doi.org/10.5194/cp-10-123-2014, 2014.
Telford, R. J. and Birks, H. J. B.: A novel method for assessing the
statistical significance of quantitative reconstructions inferred from
biotic assemblages, Quaternary Sci. Rev., 30, 1272–1278,
https://doi.org/10.1016/j.quascirev.2011.03.002, 2011.
Thomson, J., Nixon, S., Summerhayes, C. P., Schönfeld, J., Zahn, R., and
Grootes, P.: Implications for sedimentation changes on the Iberian margin
over the last two glacial/interglacial transitions from
(230Thexcess)0 systematics, Earth Planet. Sc.
Lett., 165, 255–270, https://doi.org/10.1016/s0012-821x(98)00265-9, 1999.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Intermediate and
deep water paleoceanography of the northern North Atlantic over the past
21,000 years, Paleoceanography, 25, PA1211, https://doi.org/10.1029/2009pa001833, 2010a.
Thornalley, D. J. R., McCave, I. N., and Elderfield, H.: Freshwater input
and abrupt deglacial climate change in the North Atlantic, Paleoceanography,
25, PA1201, https://doi.org/10.1029/2009pa001772, 2010b.
Thornalley, D. J. R., Elderfield, H., and McCave, I. N.: Reconstructing
North Atlantic deglacial surface hydrography and its link to the Atlantic
overturning circulation, Global Planet. Change, 79, 163–175, https://doi.org/10.1016/j.gloplacha.2010.06.003, 2011.
Ullermann, J., Lamy, F., Ninnemann, U., Lembke-Jene, L., Gersonde, R., and
Tiedemann, R.: Pacific-Atlantic Circumpolar Deep Water coupling during the
last 500 ka, Paleoceanography, 31, 639–650, https://doi.org/10.1002/2016pa002932, 2016.
Urey, H. C.: Oxygen isotopes in nature and in the laboratory, Science, 108,
489–496, 1948.
van Kreveld, S., Sarnthein, M., Erlenkeuser, H., Grootes, P., Jung, S.,
Nadeau, M. J., Pflaumann, U., and Voelker, A.: Potential links between
surging ice sheets, circulation changes, and the Dansgaard-Oeschger Cycles
in the Irminger Sea, 60–18 Kyr, Paleoceanography, 15, 425–442, https://doi.org/10.1029/1999pa000464, 2000.
Vidal, L., Schneider, R. R., Marchal, O., Bickert, T., Stocker, T. F., and
Wefer, G.: Link between the North and South Atlantic during the Heinrich
events of the last glacial period, Clim. Dynam., 15, 909–919, https://doi.org/10.1007/s003820050321, 1999.
Voelker, A. H. L. and workshop participants: Global distribution of centennial-scale
records for Marine Isotope Stage (MIS) 3: a database, Quaternary Sci.
Rev., 21, 1185–1212, https://doi.org/10.1016/S0277-3791(01)00139-1, 2002.
Voelker, A., Lebreiro, S., Schonfeld, J., Cacho, I., Erlenkeuser, H., and
Abrantes, F.: Mediterranean outflow strengthening during northern hemisphere
coolings: A salt source for the glacial Atlantic?, Earth Planet.
Sc. Lett., 245, 39–55, https://doi.org/10.1016/j.epsl.2006.03.014, 2006.
Voelker, A. H. L., de Abreu, L., Schönfeld, J., Erlenkeuser, H., and
Abrantes, F.: Hydrographic conditions along the western Iberian margin
during marine isotope stage 2, Geochem. Geophy. Geosy., 10, Q12U08,
https://doi.org/10.1029/2009gc002605, 2009.
Voelker, A. H. L. and de Abreu, L.: A Review of Abrupt Climate Change
Events in the Northeastern Atlantic Ocean (Iberian Margin): Latitudinal,
Longitudinal, and Vertical Gradients, in: Abrupt Climate Change: Mechanisms,
Patterns, and Impacts, American Geophysical Union, 2011.
Vogelsang, E., Sarnthein, M., and Pflaumann, U.: δ18O Stratigraphy,
chronology, and sea surface temperatures of Atlantic sediment records
(GLAMAP-2000 Kiel), Institut für Geowissenschaften,
Christian-Albrechts-Universität, Kiel, 0175-930 2, Institut für
Geowissenschaften, 13, ISSN 0175-9302, 2001.
Waddell, L. M., Hendy, I. L., Moore, T. C., and Lyle, M. W.: Ventilation of
the abyssal Southern Ocean during the late Neogene: A new perspective from
the subantarctic Pacific, Paleoceanography, 24, PA3206, https://doi.org/10.1029/2008pa001661, 2009.
Waelbroeck, C., Labeyrie, L., Duplessy, J. C., Guiot, J., Labracherie, M.,
Leclaire, H., and Duprat, J.: Improving past sea surface temperature
estimates based on planktonic fossil faunas, Paleoceanography, 13, 272–283, https://doi.org/10.1029/98pa00071, 1998.
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D., and
Duprat, J.: The timing of the last deglaciation in North Atlantic climate
records, Nature, 412, 724–727, https://doi.org/10.1038/35089060, 2001.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J. F.,
Lambeck, K., Balbon, E., and Labracherie, M.: Sea-level and deep water
temperature changes derived from benthic foraminifera isotopic records,
Quaternary Sci. Rev., 21, 295–305,
https://doi.org/10.1016/S0277-3791(01)00101-9, 2002.
Waelbroeck, C., Skinner, L. C., Labeyrie, L., Duplessy, J. C., Michel, E.,
Vazquez Riveiros, N., Gherardi, J. M., and Dewilde, F.: The timing of
deglacial circulation changes in the Atlantic, Paleoceanography, 26, PA3213,
https://doi.org/10.1029/2010pa002007, 2011.
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig,
S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U.: East Asian
monsoon climate during the Late Pleistocene: high-resolution sediment
records from the South China Sea, Mar. Geol., 156, 245–284, https://doi.org/10.1016/s0025-3227(98)00182-0, 1999a.
Wang, L., Sarnthein, M., Grootes, P. M., and Erlenkeuser, H.: Millennial
reoccurrence of century-scale abrupt events of East Asian Monsoon: A
possible heat conveyor for the global deglaciation, Paleoceanography, 14,
725–731, https://doi.org/10.1029/1999pa900028, 1999b.
Weaver, P. P. E., Carter, L., and Neil, H. L.: Response of surface water
masses and circulation to Late Quaternary climate change east of New
Zealand, Paleoceanography, 13, 70–83, https://doi.org/10.1029/97pa02982, 1998.
Weber, M. E., Mayer, L. A., Hillaire-Marcel, C., Bilodeau, G., Rack, F.,
Hiscott, R. N., and Aksu, A. E.: Derivation of δ18O from
sediment core log data: Implications for millennial-scale climate change in
the Labrador Sea, Paleoceanography, 16, 503–514, https://doi.org/10.1029/2000pa000560, 2001.
Weinelt, M., Rosell-Melé, A., Pflaumann, U., Sarnthein, M., and Kiefer,
T.: The role of productivity in the Northeast Atlantic on abrupt climate
change over the last 80,000 years, Zeitschrift der Deutschen Geologischen
Gesellschaft, 154, 47–66, https://doi.org/10.1127/zdgg/154/2003/47, 2003.
Weitzel, N., Wagner, S., Sjolte, J., Klockmann, M., Bothe, O., Andres, H.,
Tarasov, L., Rehfeld, K., Zorita, E., Widmann, M., Sommer, P., Schädler,
G., Ludwig, P., Kapp, F., Jonkers, L., García-Pintado, J., Fuhrmann,
F., Dolman, A., Dallmeyer, A., and Brücher, T.: Diving into the Past: A
Paleo Data–Model Comparison Workshop on the Late Glacial and Holocene,
B. Am. Meteorol. Soc., 100, ES1–ES4, https://doi.org/10.1175/bams-d-18-0169.1, 2019.
Wells, P. and Okada, H.: Response of nannoplankton to major changes in
sea-surface temperature and movements of hydrological fronts over Site DSDP
594 (south Chatham Rise, southeastern New Zealand), during the last 130 kyr,
Mar. Micropaleontol., 32, 341–363, https://doi.org/10.1016/s0377-8398(97)00025-x, 1997.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., Kandiano, E., and
Zamelczyk, K.: Atlantic Water advection to the eastern Fram Strait –
Multiproxy evidence for late Holocene variability, Palaeogeography,
Palaeoclimatology, Palaeoecology, 308, 264–276, https://doi.org/10.1016/j.palaeo.2011.05.030, 2011.
Werner, K., Spielhagen, R. F., Bauch, D., Hass, H. C., and Kandiano, E.:
Atlantic Water advection versus sea-ice advances in the eastern Fram Strait
during the last 9 ka: Multiproxy evidence for a two-phase Holocene,
Paleoceanography, 28, 283–295, https://doi.org/10.1002/palo.20028, 2013.
Werner, K., Müller, J., Husum, K., Spielhagen, R. F., Kandiano, E. S.,
and Polyak, L.: Holocene sea subsurface and surface water masses in the Fram
Strait – Comparisons of temperature and sea-ice reconstructions, Quaternary
Sci. Rev., 147, 194–209, https://doi.org/10.1016/j.quascirev.2015.09.007, 2016.
Wollenburg, J. E., Kuhnt, W., and Mackensen, A.: Changes in Arctic Ocean
paleoproductivity and hydrography during the last 145 kyr: The benthic
foraminiferal record, Paleoceanography, 16, 65–77, https://doi.org/10.1029/1999pa000454,
2001.
Xu, J., Kuhnt, W., Holbourn, A., Andersen, N., and Bartoli, G.: Changes in
the vertical profile of the Indonesian Throughflow during Termination II:
Evidence from the Timor Sea, Paleoceanography, 21, PA4202, https://doi.org/10.1029/2006pa001278,
2006.
Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., and Kawamura, H.: Changes in the
thermocline structure of the Indonesian outflow during Terminations I and
II, Earth Planet. Sc. Lett., 273, 152–162, https://doi.org/10.1016/j.epsl.2008.06.029, 2008.
Zahn-Knoll, R.: Spätquartäre Entwicklung von Küstenauftrieb und Tiefenwasserzirkulation im Nordost-Atlantik, Rekonstruktion anhand stabiler Isotope kalkschaliger Foraminiferen., Geologisch-Paläontologisches Institut, Christian-Albrechts-Universität, Kiel, Germany, 111 pp., 1986.
Zarriess, M. and Mackensen, A.: The tropical rainbelt and productivity
changes off northwest Africa: A 31,000-year high-resolution record, Mar.
Micropaleontol., 76, 76–91, https://doi.org/10.1016/j.marmicro.2010.06.001, 2010.
Zarriess, M. and Mackensen, A.: Testing the impact of seasonal
phytodetritus deposition on δ13C of epibenthic
foraminiferCibicidoides wuellerstorfi: A 31,000 year high-resolution record
from the northwest African continental slope, Paleoceanography, 26, PA2202, https://doi.org/10.1029/2010pa001944, 2011.
Zarriess, M., Johnstone, H., Prange, M., Steph, S., Groeneveld, J., Mulitza,
S., and Mackensen, A.: Bipolar seesaw in the northeastern tropical Atlantic
during Heinrich stadials, Geophys. Res. Lett., 38, L04706, https://doi.org/10.1029/2010gl046070, 2011.
Zuraida, R., Holbourn, A., Nürnberg, D., Kuhnt, W., Dürkop, A., and
Erichsen, A.: Evidence for Indonesian Throughflow slowdown during Heinrich
events 3–5, Paleoceanography, 24, PA2205, https://doi.org/10.1029/2008pa001653, 2009.