Articles | Volume 11, issue 4
https://doi.org/10.5194/essd-11-1947-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-1947-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia
Sixto Herrera
CORRESPONDING AUTHOR
Meteorology Group, Dept. of Applied Mathematics and Computer Science, Universidad de Cantabria, Santander, Spain
Rita Margarida Cardoso
Instituto Dom Luiz (IDL), Facultade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Pedro Matos Soares
Instituto Dom Luiz (IDL), Facultade de Ciências, Universidade de Lisboa, Lisbon, Portugal
Fátima Espírito-Santo
Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
Pedro Viterbo
Instituto Português do Mar e da Atmosfera (IPMA), Lisbon, Portugal
José Manuel Gutiérrez
Meteorology Group, Instituto de Física de Cantabria, CSIC-University of Cantabria, Santander, Spain
Related authors
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio A. Bento, and Angelina Bushenkova
Geosci. Model Dev., 17, 229–259, https://doi.org/10.5194/gmd-17-229-2024, https://doi.org/10.5194/gmd-17-229-2024, 2024
Short summary
Short summary
This study uses deep learning (DL) to downscale global climate models for the Iberian Peninsula. Four DL architectures were evaluated and trained using historical climate data and then used to downscale future projections from the global models. These show agreement with the original models and reveal a warming of 2 ºC to 6 ºC, along with decreasing precipitation in western Iberia after 2040. This approach offers key regional climate change information for adaptation strategies in the region.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
François Clayer, Leah Jackson-Blake, Daniel Mercado-Bettín, Muhammed Shikhani, Andrew French, Tadhg Moore, James Sample, Magnus Norling, Maria-Dolores Frias, Sixto Herrera, Elvira de Eyto, Eleanor Jennings, Karsten Rinke, Leon van der Linden, and Rafael Marcé
Hydrol. Earth Syst. Sci., 27, 1361–1381, https://doi.org/10.5194/hess-27-1361-2023, https://doi.org/10.5194/hess-27-1361-2023, 2023
Short summary
Short summary
We assessed the predictive skill of forecasting tools over the next season for water discharge and lake temperature. Tools were forced with seasonal weather predictions; however, most of the prediction skill originates from legacy effects and not from seasonal weather predictions. Yet, when skills from seasonal weather predictions are present, additional skill comes from interaction effects. Skilful lake seasonal predictions require better weather predictions and realistic antecedent conditions.
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022, https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
Short summary
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI) over the city of Paris and performed a set of offline runs using the SURFEX land surface model. They were compared with observations (satellite and in situ). The SURFEX-TEB runs showed the best performance in representing the UHI, reducing its bias significantly. We demonstrate the ability of the SURFEX-TEB framework to simulate urban climate, which is crucial for studying climate change in cities.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with a recent observational gridded dataset as a reference, covering the entire Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional climate models encouraged this study. For precipitation, most models reveal added value. The gains are even more evident for precipitation extremes, particularly at a more local scale.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2653–2671, https://doi.org/10.5194/gmd-15-2653-2022, https://doi.org/10.5194/gmd-15-2653-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with an observational gridded dataset as a reference covering the Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional models encouraged this study. For the max and min temperature, although most models reveal added value, some display losses. At more local scales, coastal sites display important gains, contrasting with the interior.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Manuel C. Almeida, Yurii Shevchuk, Georgiy Kirillin, Pedro M. M. Soares, Rita M. Cardoso, José P. Matos, Ricardo M. Rebelo, António C. Rodrigues, and Pedro S. Coelho
Geosci. Model Dev., 15, 173–197, https://doi.org/10.5194/gmd-15-173-2022, https://doi.org/10.5194/gmd-15-173-2022, 2022
Short summary
Short summary
In this study, we have evaluated the importance of the input of energy conveyed by river inflows into lakes and reservoirs when modeling surface water energy fluxes. Our results suggest that there is a strong correlation between water residence time and the surface water temperature prediction error and that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes.
Edouard L. Davin, Diana Rechid, Marcus Breil, Rita M. Cardoso, Erika Coppola, Peter Hoffmann, Lisa L. Jach, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Kai Radtke, Mario Raffa, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Tölle, Kirsten Warrach-Sagi, and Volker Wulfmeyer
Earth Syst. Dynam., 11, 183–200, https://doi.org/10.5194/esd-11-183-2020, https://doi.org/10.5194/esd-11-183-2020, 2020
Inês Gomes Marques, João Nascimento, Rita M. Cardoso, Filipe Miguéns, Maria Teresa Condesso de Melo, Pedro M. M. Soares, Célia M. Gouveia, and Cathy Kurz Besson
Hydrol. Earth Syst. Sci., 23, 3525–3552, https://doi.org/10.5194/hess-23-3525-2019, https://doi.org/10.5194/hess-23-3525-2019, 2019
Short summary
Short summary
Mediterranean cork woodlands are very particular agroforestry systems present in a confined area of the Mediterranean Basin. They are of great importance due to their high socioeconomic value; however, a decrease in water availability has put this system in danger. In this paper we build a model that explains this system's tree-species distribution in southern Portugal from environmental variables. This could help predict their future distribution under changing climatic conditions.
E. Katragkou, M. García-Díez, R. Vautard, S. Sobolowski, P. Zanis, G. Alexandri, R. M. Cardoso, A. Colette, J. Fernandez, A. Gobiet, K. Goergen, T. Karacostas, S. Knist, S. Mayer, P. M. M. Soares, I. Pytharoulis, I. Tegoulias, A. Tsikerdekis, and D. Jacob
Geosci. Model Dev., 8, 603–618, https://doi.org/10.5194/gmd-8-603-2015, https://doi.org/10.5194/gmd-8-603-2015, 2015
Related subject area
Meteorology
Estimation of long-term gridded cloud radiative kernel and radiative effects based on cloud fraction
Two sets of bias-corrected regional UK Climate Projections 2018 (UKCP18) of temperature, precipitation and potential evapotranspiration for Great Britain
Homogenized daily sunshine duration over China from 1961 to 2022
Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River watershed during SPLASH, 2021–2023
MDG625: a daily high-resolution meteorological dataset derived by a geopotential-guided attention network in Asia (1940–2023)
The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean
LARA: a Lagrangian Reanalysis based on ERA5 spanning from 1940 to 2023
Global projections of heat stress at high temporal resolution using machine learning
An ensemble-based coupled reanalysis of the climate from 1860 to the present (CoRea1860+)
Low-level atmospheric turbulence dataset in China generated by combining radar wind profiler and radiosonde observations
A new high-resolution multi-drought-index dataset for mainland China
GIRAFE v1: a global climate data record for precipitation accompanied by a daily sampling uncertainty
A new upgraded high-precision gridded precipitation dataset considering spatiotemporal and physical correlations for mainland China
What is climate change doing in Himalaya? Thirty years of the Pyramid Meteorological Network (Nepal)
Global tropical cyclone size and intensity reconstruction dataset for 1959–2022 based on IBTrACS and ERA5 data
HighResClimNevada: a high-resolution climatological dataset for a high-altitude region in Southern Spain (Sierra Nevada)
The PAZ polarimetric radio occultation research dataset for scientific applications
Water vapor Raman lidar observations from multiple sites in the framework of WaLiNeAs
An observational record of global gridded near surface air temperature change over land and ocean from 1781
SARAH-3 – satellite-based climate data records of surface solar radiation
PL1GD-T – gridded dataset of the mean, minimum and maximum daily air temperature at the level of 2 m for the area of Poland at a resolution of 1 km × 1 km
An Updated Reconstruction of Antarctic Near-Surface Air Temperatures at Monthly Intervals Since 1958
A New Database of Extreme European Winter Windstorms
A database of deep convective systems derived from the intercalibrated meteorological geostationary satellite fleet and the TOOCAN algorithm (2012–2020)
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP)
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Multifrequency radar observations of marine clouds during the EPCAPE campaign
Data collected using small uncrewed aircraft systems during the TRacking Aerosol Convection interactions ExpeRiment (TRACER)
GloUTCI-M: a global monthly 1 km Universal Thermal Climate Index dataset from 2000 to 2022
LGHAP v2: a global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big Earth data analytics
Reanalysis of multi-year high-resolution X-band weather radar observations in Hamburg
Earth Virtualization Engines (EVE)
The 2023 National Offshore Wind data set (NOW-23)
Dataset of stable isotopes of precipitation in the Eurasian continent
A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations
Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
A 7-year record of vertical profiles of radar measurements and precipitation estimates at Dumont d'Urville, Adélie Land, East Antarctica
Long-term monthly 0.05° terrestrial evapotranspiration dataset (1982–2018) for the Tibetan Plateau
High-resolution (1 km) all-sky net radiation over Europe enabled by the merging of land surface temperature retrievals from geostationary and polar-orbiting satellites
Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS)
Year-long buoy-based observations of the air–sea transition zone off the US west coast
The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset
Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: a comprehensive long-term dataset of remote sensing observations
Global high-resolution drought indices for 1981–2022
CHESS-SCAPE: high-resolution future projections of multiple climate scenarios for the United Kingdom derived from downscaled United Kingdom Climate Projections 2018 regional climate model output
Quality-controlled meteorological datasets from SIGMA automatic weather stations in northwest Greenland, 2012–2020
A dataset of energy, water vapor, and carbon exchange observations in oasis–desert areas from 2012 to 2021 in a typical endorheic basin
Derivation and compilation of lower-atmospheric properties relating to temperature, wind, stability, moisture, and surface radiation budget over the central Arctic sea ice during MOSAiC
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025, https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Short summary
This study addresses the challenge of how clouds affect the Earth's energy balance, which is vital for understanding climate change. We developed a new method to create long-term cloud radiative kernels to improve the accuracy of measurements of sunlight reaching the surface, which significantly reduces errors. Findings suggest that prior estimates of cloud cooling effects may have been overstated, emphasizing the need for better strategies to manage climate change impacts in the Arctic.
Nele Reyniers, Qianyu Zha, Nans Addor, Timothy J. Osborn, Nicole Forstenhäusler, and Yi He
Earth Syst. Sci. Data, 17, 2113–2133, https://doi.org/10.5194/essd-17-2113-2025, https://doi.org/10.5194/essd-17-2113-2025, 2025
Short summary
Short summary
We present bias-corrected UK Climate Projections 2018 (UKCP18) regional datasets for temperature, precipitation, and potential evapotranspiration (1981–2080). All 12 members of the 12 km ensemble were corrected using quantile mapping and a change-preserving variant. Both methods effectively reduce biases in multiple statistics while maintaining projected climatic changes. We provide guidance on using the bias-corrected datasets for climate change impact assessment.
Yanyi He, Kaicun Wang, Kun Yang, Chunlüe Zhou, Changkun Shao, and Changjian Yin
Earth Syst. Sci. Data, 17, 1595–1611, https://doi.org/10.5194/essd-17-1595-2025, https://doi.org/10.5194/essd-17-1595-2025, 2025
Short summary
Short summary
To address key gaps in data availability and homogeneity with regard to sunshine duration, we compiled raw data and made a homogenization protocol to produce a homogenized daily observational dataset of sunshine duration from 1961 to 2022 in China. The dataset avoids a sharp drop in zero-value frequency after 2019 as caused by the instrument upgrade but is also more continuous for various periods. This dataset is crucial for accurately assessing dimming and brightening and for supporting other applications.
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025, https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
Short summary
Snow is an essential water resource in the intermountain western United States, and predictions are made using models. We made observations to validate, constrain, and develop the models. The data are from the Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaign in Colorado's East River valley, 2021–2023. The measurements include meteorology and variables that quantify energy transfer between the atmosphere and surface. The data are available publicly.
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025, https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
Short summary
It is hard to access long-time series and high-resolution meteorological data for past years. In this paper, we propose the Geopotential-guided Attention Network (GeoAN) for downscaling which can produce high-resolution data using given low-resolution data. Quantitative and visual comparisons reveal our GeoAN produces better results with regard to most metrics. Using GeoAN, a historical meteorological dataset called MDG625 has been produced daily for the period since 1940.
Susana Barbosa, Nuno Dias, Carlos Almeida, Guilherme Amaral, António Ferreira, António Camilo, and Eduardo Silva
Earth Syst. Sci. Data, 17, 1393–1405, https://doi.org/10.5194/essd-17-1393-2025, https://doi.org/10.5194/essd-17-1393-2025, 2025
Short summary
Short summary
The electric field in the Earth's atmosphere reflects global planetary conditions. It is influenced by both atmospheric processes (such as thunderstorms, pollution, and aerosols) and space weather. Marine measurements of the electric field are rare. Here, we present a unique dataset of atmospheric electric field measurements taken over the Atlantic Ocean. This dataset is valuable not only for atmospheric electricity studies but also for research on climate and space–Earth interactions.
Lucie Bakels, Michael Blaschek, Marina Dütsch, Andreas Plach, Vincent Lechner, Georg Brack, Leopold Haimberger, and Andreas Stohl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-26, https://doi.org/10.5194/essd-2025-26, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Meteorological reanalyses are crucial datasets. Most reanalyses are Eulerian, providing data at specific, fixed points in space and time. When studying how air moves, it is more convenient to follow air masses through space and time, requiring a Lagrangian reanalysis (LARA). We explain how the LARA dataset is organized, and provide four examples of applications. These include studying the evolution of wind patterns, understanding weather systems, and measuring air mass travel time over land.
Pantelis Georgiades, Theo Economou, Yiannis Proestos, Jose Araya, Jos Lelieveld, and Marco Neira
Earth Syst. Sci. Data, 17, 1153–1171, https://doi.org/10.5194/essd-17-1153-2025, https://doi.org/10.5194/essd-17-1153-2025, 2025
Short summary
Short summary
Climate change is posing increasing challenges in the dairy cattle farming sector, as heat stress adversely affects the animals' health and milk production. To accurately assess these impacts, we developed a machine learning model to downscale daily climate data to hourly Temperature Humidity Index (THI) values. We utilized historical weather data to train our model and applied them to future climate projections, under two climate scenarios.
Yiguo Wang, François Counillon, Lea Svendsen, Ping-Gin Chiu, Noel Keenlyside, Patrick Laloyaux, Mariko Koseki, and Eric de Boisseson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-127, https://doi.org/10.5194/essd-2025-127, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
CoRea1860+ is a new climate dataset that reconstructs past climate conditions from 1860 to today. By using advanced modeling techniques and incorporating sea surface temperature observations, it provides a consistent picture of long-term climate variability. The dataset captures key ocean, sea ice and atmosphere changes, helping scientists understand past climate changes and variability.
Deli Meng, Jianping Guo, Juan Chen, Xiaoran Guo, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Hui Xu, Tianmeng Chen, Rongfang Yang, and Jiajia Hua
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-138, https://doi.org/10.5194/essd-2025-138, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study provides a high-resolution dataset of low-level atmospheric turbulence across China, using radar and weather balloon observations. It reveals regional and seasonal variations in turbulence, with stronger activity in spring and summer. The dataset supports weather forecasting, aviation safety, and low-altitude flight planning, aiding China’s growing low-altitude economy and accessible at https://doi.org/10.5281/zenodo.14959025.
Qi Zhang, Chiyuan Miao, Jiajia Su, Jiaojiao Gou, Jinlong Hu, Xi Zhao, and Ye Xu
Earth Syst. Sci. Data, 17, 837–853, https://doi.org/10.5194/essd-17-837-2025, https://doi.org/10.5194/essd-17-837-2025, 2025
Short summary
Short summary
Our study introduces CHM_Drought, an advanced meteorological drought dataset covering mainland China, offering detailed insights from 1961 to 2022 at a spatial resolution of 0.1°. This dataset incorporates six key drought indices, including multi-scale versions, facilitating early detection and monitoring of droughts. Through the provision of consistent and reliable data, CHM_Drought enhances our understanding of drought patterns, aiding in effective water management and agricultural planning.
Hannes Konrad, Rémy Roca, Anja Niedorf, Stephan Finkensieper, Marc Schröder, Sophie Cloché, Giulia Panegrossi, Paolo Sanò, Christopher Kidd, Rômulo Augusto Jucá Oliveira, Karsten Fennig, Thomas Sikorski, Madeleine Lemoine, and Rainer Hollmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-568, https://doi.org/10.5194/essd-2024-568, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
GIRAFE v1 is a global satellite-based precipitation dataset covering 2002 to 2022. It combines high-accuracy microwave and high-resolution infrared observations for retrieving daily precipitation, a respective sampling uncertainty for a more robust analysis, and monthly means. It is intended and suitable for climate monitoring and research, allowing also studies for water management, agriculture, and disaster risk reduction. A continuous extension from 2023 onwards will be implemented in 2025.
Jinlong Hu, Chiyuan Miao, Jiajia Su, Qi Zhang, Jiaojiao Gou, and Qiaohong Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-20, https://doi.org/10.5194/essd-2025-20, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We developed a high-precision daily precipitation dataset for mainland China called CHM_PRE V2. Using data from 3,476 rain gauges, 11 related precipitation variables and advanced machine learning methods, we created a daily precipitation dataset spanning 1960–2023 with unprecedented accuracy. Compared to existing datasets, it better captures rainfall events while reducing false alarms. This work provides a reliable tool for studying water resources, climate change, and disaster management.
Franco Salerno, Nicolas Guyennon, Nicola Colombo, Maria Teresa Melis, Francesco Gabriele Dessì, Gianpietro Verza, Kaji Bista, Ahmad Sheharyar, and Gianni Tartari
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-591, https://doi.org/10.5194/essd-2024-591, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Climate change is deeply impacting mountain areas around the globe, especially in Himalaya. Here, we present the Pyramid Meteorological Network, located in Himalaya (Nepal), on the southern slopes of Mt. Everest. The network is composed of 7 meteorological stations located between 2660 and 7986 m a.s.l., which have collected continuous climatic data during the last 30 years (1994–2023). The dataset is available freely accessible from https://zenodo.org/records/14450214 (Salerno et al., 2024).
Zhiqi Xu, Jianping Guo, Guwei Zhang, Yuchen Ye, Haikun Zhao, and Haishan Chen
Earth Syst. Sci. Data, 16, 5753–5766, https://doi.org/10.5194/essd-16-5753-2024, https://doi.org/10.5194/essd-16-5753-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) are powerful weather systems that can cause extreme disasters. Here we generate a global long-term TC size and intensity reconstruction dataset, covering a time period from 1959 to 2022, with a 3 h temporal resolution, using machine learning models. These can be valuable for filling observational data gaps and advancing our understanding of TC climatology, thereby facilitating risk assessments and defenses against TC-related disasters.
Matilde García-Valdecasas Ojeda, Feliciano Solano-Farias, David Donaire-Montaño, Emilio Romero-Jiménez, Juan José Rosa-Cánovas, Yolanda Castro-Díez, Sonia Raquel Gámiz-Fortis, and María Jesús Esteban-Parra
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-522, https://doi.org/10.5194/essd-2024-522, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This work aims to present a series of climate datasets for Sierra Nevada, a region especially vulnerable to climate change in Southern Spain. The database consists of primary climate variables such as precipitation, temperature, radiation, wind speed, pressure, and atmospheric humidity, but also bioclimatic variables and extreme indices, both useful information for assessing the impact of climate change in this region. These datasets are only available on https://doi.org/10.5281/zenodo.14364865
Ramon Padullés, Estel Cardellach, Antía Paz, Santi Oliveras, Douglas C. Hunt, Sergey Sokolovskiy, Jan-Peter Weiss, Kuo-Nung Wang, F. Joe Turk, Chi O. Ao, and Manuel de la Torre Juárez
Earth Syst. Sci. Data, 16, 5643–5663, https://doi.org/10.5194/essd-16-5643-2024, https://doi.org/10.5194/essd-16-5643-2024, 2024
Short summary
Short summary
This dataset provides, for the first time, combined observations of clouds and precipitation with coincident retrievals of atmospheric thermodynamics obtained from the same space-based instrument. Furthermore, it provides the locations of the ray trajectories of the observations along various precipitation-related products interpolated into them with the aim of fostering the use of such dataset in scientific and operational applications.
Frédéric Laly, Patrick Chazette, Julien Totems, Jérémy Lagarrigue, Laurent Forges, and Cyrille Flamant
Earth Syst. Sci. Data, 16, 5579–5602, https://doi.org/10.5194/essd-16-5579-2024, https://doi.org/10.5194/essd-16-5579-2024, 2024
Short summary
Short summary
We present a dataset of water vapor mixing ratio profiles acquired during the Water Vapor Lidar Network Assimilation campaign in fall and winter 2022 and summer 2023, using three lidar systems deployed on the western Mediterranean coastline. This innovative campaign provides access to lower-tropospheric water vapor variability to constrain meteorological forecasting models. The scientific objective is to improve forecasting of heavy-precipation events that lead to flash floods and landslides.
Colin Peter Morice, David I. Berry, Richard C. Cornes, Kathryn Cowtan, Thomas Cropper, Ed Hawkins, John J. Kennedy, Timothy J. Osborn, Nick A. Rayner, Beatriz R. Rivas, Andrew P. Schurer, Michael Taylor, Praveen R. Teleti, Emily J. Wallis, Jonathan Winn, and Elizabeth C. Kent
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-500, https://doi.org/10.5194/essd-2024-500, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a new data set of global gridded surface air temperature change extending back to the 1780s. This is achieved using marine air temperature observations with newly available estimates of diurnal heating biases together with an updated land station database that includes bias adjustments for early thermometer enclosures. These developments allow the data set to extend further into the past than current data sets that use sea surface temperature rather than marine air temperature data.
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Adam Jaczewski, Michał Marosz, and Mirosław Miętus
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-433, https://doi.org/10.5194/essd-2024-433, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper introduces a high-resolution dataset of daily air temperatures in Poland from 1951 to 2020, with a 1 km2 spatial resolution. PL1GD-T dataset was developed using radial basis functions applied to quality-controlled observations from ground weather stations and evaluated using cross-validation methods. This open-access dataset is crucial for climate change impact studies on a smaller scale and can serve a wide range of users, including researchers, administrative bodies, and society.
David Bromwich, Sheng-Hung Wang, Xun Zou, and Alexandra Ensign
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-353, https://doi.org/10.5194/essd-2024-353, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Antarctica is a major player in Earth’s climate with the most direct influence arising from its potential to raise global sea level by a meter or more in the coming decades. Near-surface air temperature is the primary variable used to monitor the climate of this remote but important region. Continent-wide direct but sparse measurements that started around 1958 are used to construct a monthly air temperature data set for all of Antarctica spanning 1958–2022.
Clare Marie Flynn, Julia Moemken, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-298, https://doi.org/10.5194/essd-2024-298, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We created a new, publicly available database of the Top 50 most extreme European winter windstorms from each of four different meteorological input data sets covering the years 1995–2015. We found variability in all aspects of our database, from which storms were included in the Top 50 storms for each input to their spatial variability. We urge users of our database to consider the storms as identified from two or more input sources within our database, where possible.
Thomas Fiolleau and Rémy Roca
Earth Syst. Sci. Data, 16, 4021–4050, https://doi.org/10.5194/essd-16-4021-2024, https://doi.org/10.5194/essd-16-4021-2024, 2024
Short summary
Short summary
This paper presents a database of tropical deep convective systems over the 2012–2020 period, built from a cloud-tracking algorithm called TOOCAN, which has been applied to homogenized infrared observations from a fleet of geostationary satellites. This database aims to analyze the tropical deep convective systems, the evolution of their associated characteristics over their life cycle, their organization, and their importance in the hydrological and energy cycle.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-112, https://doi.org/10.5194/essd-2024-112, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We develop a high-resolution (4 km and hourly) observational derecho dataset over the United States east of the Rocky Mountains from 2004 to 2021 by using a mesoscale convective system dataset, bow echo detection based on a machine learning method, hourly gust speed measurements, and physically based identification criteria.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, Robert M. Beauchamp, and Arturo Umeyama
Earth Syst. Sci. Data, 16, 2701–2715, https://doi.org/10.5194/essd-16-2701-2024, https://doi.org/10.5194/essd-16-2701-2024, 2024
Short summary
Short summary
This paper describes multifrequency radar observations of clouds and precipitation during the EPCAPE campaign. The data sets were obtained from CloudCube, a Ka-, W-, and G-band atmospheric profiling radar, to demonstrate synergies between multifrequency retrievals. This data collection provides a unique opportunity to study hydrometeors with diameters in the millimeter and submillimeter size range that can be used to better understand the drop size distribution within clouds and precipitation.
Francesca Lappin, Gijs de Boer, Petra Klein, Jonathan Hamilton, Michelle Spencer, Radiance Calmer, Antonio R. Segales, Michael Rhodes, Tyler M. Bell, Justin Buchli, Kelsey Britt, Elizabeth Asher, Isaac Medina, Brian Butterworth, Leia Otterstatter, Madison Ritsch, Bryony Puxley, Angelina Miller, Arianna Jordan, Ceu Gomez-Faulk, Elizabeth Smith, Steven Borenstein, Troy Thornberry, Brian Argrow, and Elizabeth Pillar-Little
Earth Syst. Sci. Data, 16, 2525–2541, https://doi.org/10.5194/essd-16-2525-2024, https://doi.org/10.5194/essd-16-2525-2024, 2024
Short summary
Short summary
This article provides an overview of the lower-atmospheric dataset collected by two uncrewed aerial systems near the Gulf of Mexico coastline south of Houston, TX, USA, as part of the TRacking Aerosol Convection interactions ExpeRiment (TRACER) campaign. The data were collected through boundary layer transitions, through sea breeze circulations, and in the pre- and near-storm environment to understand how these processes influence the coastal environment.
Zhiwei Yang, Jian Peng, Yanxu Liu, Song Jiang, Xueyan Cheng, Xuebang Liu, Jianquan Dong, Tiantian Hua, and Xiaoyu Yu
Earth Syst. Sci. Data, 16, 2407–2424, https://doi.org/10.5194/essd-16-2407-2024, https://doi.org/10.5194/essd-16-2407-2024, 2024
Short summary
Short summary
We produced a monthly Universal Thermal Climate Index dataset (GloUTCI-M) boasting global coverage and an extensive time series spanning March 2000 to October 2022 with a high spatial resolution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. GloUTCI-M can enhance our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications.
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 16, 2425–2448, https://doi.org/10.5194/essd-16-2425-2024, https://doi.org/10.5194/essd-16-2425-2024, 2024
Short summary
Short summary
A global gap-free high-resolution air pollutant dataset (LGHAP v2) was generated to provide spatially contiguous AOD and PM2.5 concentration maps with daily 1 km resolution from 2000 to 2021. This gap-free dataset has good data accuracies compared to ground-based AOD and PM2.5 concentration observations, which is a reliable database to advance aerosol-related studies and trigger multidisciplinary applications for environmental management, health risk assessment, and climate change analysis.
Finn Burgemeister, Marco Clemens, and Felix Ament
Earth Syst. Sci. Data, 16, 2317–2332, https://doi.org/10.5194/essd-16-2317-2024, https://doi.org/10.5194/essd-16-2317-2024, 2024
Short summary
Short summary
Knowledge of small-scale rainfall variability is needed for hydro-meteorological applications in urban areas. Therefore, we present an open-access data set covering reanalyzed radar reflectivities and rainfall estimates measured by a weather radar at high spatio-temporal resolution in the urban environment of Hamburg between 2013 and 2021. We describe the data reanalysis, outline the measurement’s performance for long time periods, and discuss open issues and limitations of the data set.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024, https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Short summary
This article presents the 2023 National Offshore Wind data set (NOW-23), an updated resource for offshore wind information in the US. It replaces the Wind Integration National Dataset (WIND) Toolkit, offering improved accuracy through advanced weather prediction models. The data underwent regional tuning and validation and can be accessed at no cost.
Longhu Chen, Qinqin Wang, Guofeng Zhu, Xinrui Lin, Dongdong Qiu, Yinying Jiao, Siyu Lu, Rui Li, Gaojia Meng, and Yuhao Wang
Earth Syst. Sci. Data, 16, 1543–1557, https://doi.org/10.5194/essd-16-1543-2024, https://doi.org/10.5194/essd-16-1543-2024, 2024
Short summary
Short summary
We have compiled data regarding stable precipitation isotopes from 842 sampling points throughout the Eurasian continent since 1961, accumulating a total of 51 753 data records. The collected data have undergone pre-processing and statistical analysis. We also analysed the spatiotemporal distribution of stable precipitation isotopes across the Eurasian continent and their interrelationships with meteorological elements.
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024, https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Short summary
The vertical structure of clouds has a major impact on global energy flows, air circulation, and the hydrologic cycle. Two satellite instruments, CloudSat radar and CALIPSO lidar, have taken complementary measurements of cloud vertical structure for over a decade. Here, we present the 3S-GEOPROF-COMB product, a globally gridded satellite data product combining CloudSat and CALIPSO observations of cloud vertical structure.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas R. Leroux, Matteo Colli, and Vincent Vionnet
Earth Syst. Sci. Data, 15, 5785–5806, https://doi.org/10.5194/essd-15-5785-2023, https://doi.org/10.5194/essd-15-5785-2023, 2023
Short summary
Short summary
The Saint John River experiment on Cold Season Storms was conducted in northwest New Brunswick, Canada, to investigate the types of precipitation that can lead to ice jams and flooding along the river. We deployed meteorological instruments, took precipitation measurements and photographs of snowflakes, and launched weather balloons. These data will help us to better understand the atmospheric conditions that can affect local communities and townships downstream during the spring melt season.
Raghavendra Krishnamurthy, Gabriel García Medina, Brian Gaudet, William I. Gustafson Jr., Evgueni I. Kassianov, Jinliang Liu, Rob K. Newsom, Lindsay M. Sheridan, and Alicia M. Mahon
Earth Syst. Sci. Data, 15, 5667–5699, https://doi.org/10.5194/essd-15-5667-2023, https://doi.org/10.5194/essd-15-5667-2023, 2023
Short summary
Short summary
Our understanding and ability to observe and model air–sea processes has been identified as a principal limitation to our ability to predict future weather. Few observations exist offshore along the coast of California. To improve our understanding of the air–sea transition zone and support the wind energy industry, two buoys with state-of-the-art equipment were deployed for 1 year. In this article, we present details of the post-processing, algorithms, and analyses.
Baptiste Vandecrux, Jason E. Box, Andreas P. Ahlstrøm, Signe B. Andersen, Nicolas Bayou, William T. Colgan, Nicolas J. Cullen, Robert S. Fausto, Dominik Haas-Artho, Achim Heilig, Derek A. Houtz, Penelope How, Ionut Iosifescu Enescu, Nanna B. Karlsson, Rebecca Kurup Buchholz, Kenneth D. Mankoff, Daniel McGrath, Noah P. Molotch, Bianca Perren, Maiken K. Revheim, Anja Rutishauser, Kevin Sampson, Martin Schneebeli, Sandy Starkweather, Simon Steffen, Jeff Weber, Patrick J. Wright, Henry Jay Zwally, and Konrad Steffen
Earth Syst. Sci. Data, 15, 5467–5489, https://doi.org/10.5194/essd-15-5467-2023, https://doi.org/10.5194/essd-15-5467-2023, 2023
Short summary
Short summary
The Greenland Climate Network (GC-Net) comprises stations that have been monitoring the weather on the Greenland Ice Sheet for over 30 years. These stations are being replaced by newer ones maintained by the Geological Survey of Denmark and Greenland (GEUS). The historical data were reprocessed to improve their quality, and key information about the weather stations has been compiled. This augmented dataset is available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2022).
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Motoshi Nishimura, Teruo Aoki, Masashi Niwano, Sumito Matoba, Tomonori Tanikawa, Tetsuhide Yamasaki, Satoru Yamaguchi, and Koji Fujita
Earth Syst. Sci. Data, 15, 5207–5226, https://doi.org/10.5194/essd-15-5207-2023, https://doi.org/10.5194/essd-15-5207-2023, 2023
Short summary
Short summary
We presented the method of data quality checks and the dataset for two ground weather observations in northwest Greenland. We found that the warm and clear weather conditions in the 2015, 2019, and 2020 summers caused the snowmelt and the decline in surface reflectance of solar radiation at a low-elevated site (SIGMA-B; 944 m), but those were not seen at the high-elevated site (SIGMA-A; 1490 m). We hope that our data management method and findings will help climate scientists.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Gina C. Jozef, Robert Klingel, John J. Cassano, Björn Maronga, Gijs de Boer, Sandro Dahlke, and Christopher J. Cox
Earth Syst. Sci. Data, 15, 4983–4995, https://doi.org/10.5194/essd-15-4983-2023, https://doi.org/10.5194/essd-15-4983-2023, 2023
Short summary
Short summary
Observations from the MOSAiC expedition relating to lower-atmospheric temperature, wind, stability, moisture, and surface radiation budget from radiosondes, a meteorological tower, radiation station, and ceilometer were compiled to create a dataset which describes the thermodynamic and kinematic state of the central Arctic lower atmosphere between October 2019 and September 2020. This paper describes the methods used to develop this lower-atmospheric properties dataset.
Cited articles
Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of
Global Precipitation Products for Orographic Effects, J. Climate, 19,
15–38, https://doi.org/10.1175/JCLI3604.1, 2006. a
Beguería, S., Vicente-Serrano, S. M., Tomás-Burguera, M., and Maneta,
M.: Bias in the variance of gridded data sets leads to misleading conclusions
about changes in climate variability, Int. J. Climatol.,
36, 3413–3422, https://doi.org/10.1002/joc.4561, 2016. a, b
Belo-Pereira, M., Dutra, E., and Viterbo, P.: Evaluation of global
precipitation data sets over the Iberian Peninsula, J. Geophys.
Res.-Atmos., 116, D20101, https://doi.org/10.1029/2010JD015481,
2011. a
Cardoso, R., Soares, P., Miranda, P., and Belo-Pereira, M.: WRF high resolution
simulation of Iberian mean and extreme precipitation climate, Int. J. Climatol., 33, 2591–2608, https://doi.org/10.1002/joc.3616,
2013. a
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data
Sets, J. Geophys. Res.-Atmos., 123, 9391–9409,
https://doi.org/10.1029/2017JD028200, 2018. a, b
Craven, P. and Wahba, G.: Smoothing noisy data with spline functions,
Numer. Math., 31, 377–403, 1979. a
Durand, Y., Brun, E., Merindol, L., Guyomarc'h, G., Lesaffre, B., and Martin,
E.: A meteorological estimation of relevant parameters for snow models,
Ann. Glaciol., 18, 65–71, https://doi.org/10.3189/S0260305500011277, 1993. a
Esteban-Parra, M., Rodrigo, F., and Castro-Diez, Y.: Spatial and temporal
patterns of precipitation in Spain for the period 1880–1992, Int. J. Climatol., 18, 1557–1574,
https://doi.org/10.1002/(SICI)1097-0088(19981130)18:14<1557::AID-JOC328>3.0.CO;2-J, 1998. a
Frei, C.: Interpolation of temperature in a mountainous region using nonlinear
profiles and non-Euclidean distances, Int. J. Climatol.,
34, 1585–1605, https://doi.org/10.1002/joc.3786, 2014. a, b, c
Frei, C., Christensen, J. H., Déqué, M., Jacob, D., Jones, R. G., and
Vidale, P. L.: Daily precipitation statistics in regional climate models:
Evaluation and intercomparison for the European Alps, J. Geophys.
Res.-Atmos., 108, https://doi.org/10.1029/2002JD002287, 2003. a
Frick, C., Steiner, H., Mazurkiewicz, A., Riediger, U., Rauthe, M., Reich, T.,
and Gratzki, A.: Central European high-resolution gridded daily data sets
(HYRAS): Mean temperature and relative humidity, Meteorol. Z.,
23, 15–32, https://doi.org/10.1127/0941-2948/2014/0560, 2014. a
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information needs
at the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175–183, 2009. a
Häggmark, L., Ivarsson, K.-I., Gollvik, S., and Olofsson, P.-O.: Mesan, an
operational mesoscale analysis system, Tellus A, 52, 2–20, https://doi.org/10.3402/tellusa.v52i1.12250, 2000. a
Harris, I., Jones, P., Osborn, T., and Lister, D.: Updated high-resolution
grids of monthly climatic observations – the CRU TS3.10 Dataset,
Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711,
2014. a
Haylock, M., Hofstra, N., Klein-Tank, A., Klok, E. J., Jones, P., and New, M.:
A European daily high-resolution gridded data set of surface temperature and
precipitation for 1950–2006, J. Geophys. Res., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008. a, b
Herrera, S.: Desarrollo, Validación Y Aplicaciones de Spain02:
Una Rejilla de Alta Resolución de Observaciones Interpoladas Para
Precipitación Y Temperatura en España, PhD thesis,
Universidad de Cantabria, available at:
http://www.meteo.unican.es/tesis/herrera (last access: 22 September 2019), 2011 (in Spanish). a, b, c
Herrera, S., Fernández, J., and Gutierrez, J. M.: Update of the Spain02 gridded
observational dataset for EURO-CORDEX evaluation: assessing the effect of the
interpolation methodology, Int. J. Climatol., 36,
900–908, https://doi.org/10.1002/joc.4391, 2015. a, b, c
Herrera, S., Cardoso, R. M., Soares, P. M. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: Daily gridded (0.1∘ resolution)
dataset of precipitation and temperatures over the Iberian Peninsula, DIGITAL.CSIC, https://doi.org/10.20350/digitalCSIC/8641, 2019a. a, b
Herrera, S., Kotlarski, S., Soares, P. M. M., Cardoso, R. M., Jaczewski, A.,
Gutiérrez, J. M., and Maraun, D.: Uncertainty in gridded precipitation
products: Influence of station density, interpolation method and grid
resolution, Int. J. Climatol., 39, 3717–3729,
https://doi.org/10.1002/joc.5878, 2019b. a, b, c
Hofstra, N., Haylock, M., New, M., and Jones, P.: Testing E-OBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Res., 114, D21101,
https://doi.org/10.1029/2009JD011799, 2009. a
Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and
station network density on the distributions and trends of climate variables
in gridded daily data, Clim. Dynam., 35, 841–858,
https://doi.org/10.1007/s00382-009-0698-1, 2010. a
Hutchinson, M.: Interpolation of rainfall data with thin plate smoothing
splines – Part I: two dimensional smoothing of data with short range
correlation, Journal of Geographic Information and Decision Analysis, 2,
139–151, 1998a. a
Hutchinson, M.: Interpolation of rainfall data with thin plate smoothing
splines – Part II: analysis of topographic dependence, Journal of
Geographic Information and Decision Analysis, 2, 152–167,
1998b. a
Iturbide, M., Bedia, J., Herrera, S., Baño-Medina, J., Fernández, J., Frías,
M. D., Manzanas, R., San-Martín, D., Cimadevilla, E., Cofiño, A. S., and
Gutiérrez, J. M.: The R-based climate4R open framework for reproducible
climate data access and post-processing, Environ. Model. Softw.,
111, 42–54, https://doi.org/10.1016/j.envsoft.2018.09.009,
2019. a
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L.,
Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet,
A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler,
K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van
Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C.,
Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana,
J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.:
EURO-CORDEX: new high-resolution climate change projections for European
impact research, Reg. Environ. Change, 14, 563–578,
https://doi.org/10.1007/s10113-013-0499-2, 2014. a
Johansson, B.: Areal Precipitation and Temperature in the Swedish Mountains: An Evaluation from a Hydrological Perspective, Hydrol. Res., 31, 207,
https://doi.org/10.2166/nh.2000.0013, 2000. a
Johansson, B. and Chen, D.: The influence of wind and topography on
precipitation distribution in Sweden: statistical analysis and modelling,
Int. J. Climatol., 23, 1523–1535, https://doi.org/10.1002/joc.951,
2003. a
Jones, P. D., Wigley, T. M. L., and Kelly, P. M.: Variations in Surface Air
Temperatures: Part 1. Northern Hemisphere, 1881–1980, Mon. Weather
Rev., 110, 59–70, https://doi.org/10.1175/1520-0493(1982)110<0059:VISATP>2.0.CO;2,
1982. a
Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kellyo, P. M., and
Wigley, T. M. L.: Northern Hemisphere Surface Air Temperature Variations:
1851–1984, J. Climate Appl. Meteorol., 25, 161–179,
https://doi.org/10.1175/1520-0450(1986)025<0161:NHSATV>2.0.CO;2, 1986a. a
Jones, P. D., Raper, S. C. B., and Wigley, T. M. L.: Southern Hemisphere
Surface Air Temperature Variations: 1851–1984, J. Climate
Appl. Meteorol., 25, 1213–1230, https://doi.org/10.1175/1520-0450(1986)025<1213:SHSATV>2.0.CO;2, 1986b. a
Kidd, C., Bauer, P., Turk, J., Huffman, G. J., Joyce, R., Hsu, K.-L., and
Braithwaite, D.: Intercomparison of High-Resolution Precipitation Products
over Northwest Europe, J. Hydrometeor., 13, 67–83, https://doi.org/10.1175/JHM-D-11-042.1, 2011. a
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée,
G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C.,
Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai,
S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M.,
Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E.,
Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T.,
Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A.,
Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of
20th-century surface air temperature and precipitation series for the
European Climate Assessment, Int. J. Climatol., 22,
1441–1453, https://doi.org/10.1002/joc.773,
2002. a
Klok, E. J. and Klein Tank, A. M. G.: Updated and extended European dataset of daily climate observations, Int. J. Climatol., 29,
1182–1191, https://doi.org/10.1002/joc.1779, 2009. a, b
Kotlarski, S., Szabó, P., Herrera, S., Räty, O., Keuler, K., Soares,
P. M., Cardoso, R. M., Bosshard, T., Pagé, C., Boberg, F., Gutiérrez,
J. M., Isotta, F. A., Jaczewski, A., Kreienkamp, F., Liniger, M. A., Lussana,
C., and Pianko-Kluczynska, K.: Observational uncertainty and regional climate model
evaluation: A pan-European perspective, Int. J. Climatol., 39, 3730–3749, https://doi.org/10.1002/joc.5249, 2019. a
Krige, D. G.: A statistical approach to some basic mine valuation problems on
the Witwatersrand, Journal of the Chemical, Metallurgical and Mining Society
of South Africa, 52, 119–139, 1951. a
Lakatos, M., Szentimrey, T., Bihari, Z., and Szalai, S.: Creation of a homogenized climate database for the Carpathian region by applying the MASH procedure and
the preliminary analysis of the data, Q. J. Hungarian
Meteorol. Serv., 117, 143–158, 2013. a
Lorente, P., Hernández, E., Queralt, S., and Ribera, P.: The flood event
that affected Badajoz in November 1997, Adv. Geosci., 16, 73–80,
2008. a
Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day, Earth Syst. Sci. Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018, 2018. a
Matheron, G.: Traité de Géostatistique appliquée, Tome 1–2,
Editions Technip, Paris, France, 1962. a
MeteoSwiss: Documentation of MeteoSwiss Grid-Data Products: Daily Mean, Minimum
and Maximum Temperature: TabsD, TminD, TmaxD, Tech. rep., Federal Office of
Meteorology and Climatology MeteoSwiss, Federal Department of Home Affairs
FDHA, Switzerland, available at: https://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-temperatur/doc/ProdDoc_TabsD.pdf (last access: 22 September 2019), 2013a. a
MeteoSwiss: Documentation of MeteoSwiss Grid-Data Products: Daily Precipitation
(final analysis): RhiresD, Tech. rep., Federal Office of Meteorology and
Climatology MeteoSwiss, Federal Department of Home Affairs FDHA, Switzerland, available at: https://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-niederschlag/doc/ProdDoc_RhiresD.pdf (last access: 22 September 2019), 2013b. a
Muñoz-Díaz, D. and Rodrigo, F. S.: Spatio-temporal patterns of seasonal rainfall in Spain (1912-2000) using cluster and principal component analysis: comparison, Ann. Geophys., 22, 1435–1448, https://doi.org/10.5194/angeo-22-1435-2004, 2004. a
Peral, C., Navascués, B., and Ramos, P.: Serie de precipitación diaria en
rejilla con fines climáticos., Nota técnica de AEMET 24/2017, Ministerio de
Agricultura y Pesca, Alimentación y Medio Ambiente – Agencia Estatal de
Meteorología, C/ Leonardo Prieto Castro, 8, 28040 Madrid, available at:
http://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/NT_24_AEMET/NT_24_AEMET.pdf (last access: 22 September 2019), 2017 (in Spanish). a
Prein, A. F. and Gobiet, A.: Impacts of uncertainties in European gridded
precipitation observations on regional climate analysis, Int. J. Climatol., 37, 305–327, https://doi.org/10.1002/joc.4706, 2017. a
Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F.,
Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of
Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over
France, J. Appl. Meteorol. Climatol., 47, 92–107,
https://doi.org/10.1175/2007JAMC1636.1, 2008. a
Quintana-Seguí, P., Turco, M., Herrera, S., and Miguez-Macho, G.: Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim, Hydrol. Earth Syst. Sci., 21, 2187–2201, https://doi.org/10.5194/hess-21-2187-2017, 2017. a, b
Ramos, A. M., Trigo, R., Liberato, M. L., and Tomé, R.: Daily Precipitation
Extreme Events in the Iberian Peninsula and Its Association with Atmospheric
Rivers, J. Hydrometeorol., 16, 579–597,
https://doi.org/10.1175/JHM-D-14-0103.1, 2015. a
Ramos, C. and Reis, E.: Floods in southern Portugal: their physical and human
causes, impacts and human response, in: Mitigation and Adaptation Strategies for Global Change, 7, 267–284, https://doi.org/10.1023/A:1024475529524, 2002. a
Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A
Central European precipitation climatology – Part I: Generation and
validation of a high-resolution gridded daily data set (HYRAS),
Meteorol. Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436, 2013. a
Rudolf, B., Hauschild, H., Rueth, W., and Schneider, U.: Terrestrial
Precipitation Analysis: Operational Method and Required Density of Point
Measurements, in: Global Precipitations and Climate Change, edited by:
Desbois, M. and Désalmand, F., Springer Berlin Heidelberg,
Berlin, Heidelberg, 173–186, 1994. a
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian,
S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data
Sources, Estimation, and Intercomparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018. a
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014. a
Uboldi, F., Lussana, C., and Salvati, M.: Three-dimensional spatial
interpolation of surface meteorological observations from high-resolution
local networks, Meteorol. Appl., 15, 331–345,
https://doi.org/10.1002/met.76, 2008. a
van den Besselaar, E. J. M., Haylock, M. R., van der Schrier, G., and
Klein Tank, A. M. G.: A European daily high-resolution observational gridded
data set of sea level pressure, J. Geophys. Res.-Atmos.,
116, D11110, https://doi.org/10.1029/2010JD015468, 2011. a
Vidal, J.-P., Martin, E., Franchisteguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010. a
Wahba, G.: Spline models for Observational Data, in: CBMS-NSF Regional
Conference Series in Applied Mathematics, Society for
Industrial and Applied Mathematics, Philadelphia, https://doi.org/10.1137/1.9781611970128, 1990. a
Whiteman, C. D.: Breakup of Temperature Inversions in Deep Mountain Valleys:
Part I. Observations, J. Appl. Meteorol., 21, 270–289,
https://doi.org/10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2,
1982. a
Whiteman, C. D.: Observations of Thermally Developed Wind Systems in
Mountainous Terrain, American Meteorological Society, Boston, MA, 5–42,
https://doi.org/10.1007/978-1-935704-25-6_2, 1990. a
Whiteman, C. D. and McKee, T. B.: Breakup of Temperature Inversions in Deep
Mountain Valleys: Part II. Thermodynamic Model, J. Appl.
Meteorol., 21, 290–302,
https://doi.org/10.1175/1520-0450(1982)021<0290:BOTIID>2.0.CO;2, 1982. a
Short summary
A new observational dataset of daily precipitation and temperatures for the Iberian Peninsula and the Balearic Islands has been developed and made publicly available for the community. In this work the capabilities of the new dataset to reproduce the mean and extreme regimes of precipitation and temperature are assessed and compared with the E-OBS dataset (including the ensemble version for observational uncertainty assessment).
A new observational dataset of daily precipitation and temperatures for the Iberian Peninsula...
Altmetrics
Final-revised paper
Preprint