Articles | Volume 11, issue 3
https://doi.org/10.5194/essd-11-1069-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-1069-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Age stratigraphy in the East Antarctic Ice Sheet inferred from radio-echo sounding horizons
Anna Winter
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Daniel Steinhage
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Timothy T. Creyts
Lamont-Doherty Earth Observatory, New York, NY, USA
Thomas Kleiner
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Department of Geosciences, Universität Bremen, Bremen, Germany
Related authors
Anna Winter, Daniel Steinhage, Emily J. Arnold, Donald D. Blankenship, Marie G. P. Cavitte, Hugh F. J. Corr, John D. Paden, Stefano Urbini, Duncan A. Young, and Olaf Eisen
The Cryosphere, 11, 653–668, https://doi.org/10.5194/tc-11-653-2017, https://doi.org/10.5194/tc-11-653-2017, 2017
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024, https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary
Short summary
Our study near EastGRIP camp in Greenland shows varying firn properties by direction (crucial for studying ice stream stability, structure, surface mass balance, and past climate conditions). We used dispersion curve analysis of Love and Rayleigh waves to show firn is nonuniform along and across the flow of an ice stream due to wind patterns, seasonal variability, and the proximity to the edge of the ice stream. This method better informs firn structure, advancing ice stream understanding.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Tamara Annina Gerber, David A. Lilien, Niels F. Nymand, Daniel Steinhage, Olaf Eisen, and Dorthe Dahl-Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2276, https://doi.org/10.5194/egusphere-2024-2276, 2024
Short summary
Short summary
This study explores how anisotropic scattering and birefringence affect radar signals in ice sheets. Analyzing data from Northeast Greenland, we found anisotropic scattering, caused by small changes in ice crystals, dominates the azimuthal power response. We observe a strong link between scattering strength, orientation, and ice-sheet stratigraphy. Anisotropic scattering can thus be used to determine ice crystal orientation and distinguish ice units from different climatic periods.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan D. Hawkins, Olaf Eisen, and Reinhard Drews
The Cryosphere, 18, 3875–3889, https://doi.org/10.5194/tc-18-3875-2024, https://doi.org/10.5194/tc-18-3875-2024, 2024
Short summary
Short summary
Mountain glaciers have a layered structure which contains information about past snow accumulation and ice flow. Using ground-penetrating radar instruments, the internal structure can be observed. The detection of layers in the deeper parts of a glacier is often difficult. Here, we present a new approach for imaging the englacial structure of an Alpine glacier (Colle Gnifetti, Switzerland and Italy) using a phase-sensitive radar that can detect reflection depth changes at sub-wavelength scales.
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109, https://doi.org/10.5194/egusphere-2024-2109, 2024
Short summary
Short summary
Basal melting of ice shelves impacts the mass loss of the Antarctic Ice Sheet. This study focuses on the Ekström Ice Shelf in East Antarctica, using multi-year data from an autonomous radar system. Results show a surprising seasonal pattern of high melt rates in winter and spring. Sea-ice growth correlates with melt rates, indicating that in winter, dense water enhances plume activity and melt rates. Understanding these dynamics is crucial for improving future mass balance projections.
Lea-Sophie Höyns, Thomas Kleiner, Andreas Rademacher, Martin Rückamp, Michael Wolovick, and Angelika Humbert
EGUsphere, https://doi.org/10.5194/egusphere-2024-1251, https://doi.org/10.5194/egusphere-2024-1251, 2024
Short summary
Short summary
Glaciers' sliding over bedrock is governed by water pressure in the hydrological system underneath the glacier and the roughness of the land underneath the glacier. We estimate this roughness using a modelling approach, which optimises this unknown parameter. The water pressure is simulated, too, which improves the robustness of the computed drag at the ice sheet base. We provide this data to other modellers and scientists doing geophysical field observations.
Hameed Moqadam and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1674, https://doi.org/10.5194/egusphere-2024-1674, 2024
Short summary
Short summary
This is an overview on methodologies that have been applied to map the internal reflection horizons, or ice-layer boundaries, of ice sheets on earth and other planets. We briefly explain radar applications in glaciology and the methods which have been used and published. There are summaries of the published work of the last two decades. Finally, we conclude by introducing the gaps and opportunities for further advancement in this field, and present possible future directions.
Ailsa Chung, Frédéric Parrenin, Robert Mulvaney, Luca Vittuari, Massimo Frezzotti, Antonio Zanutta, David A. Lilien, Marie G. P. Cavitte, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1650, https://doi.org/10.5194/egusphere-2024-1650, 2024
Short summary
Short summary
We applied an ice flow model to a flow line from the summit of Dome C to the Beyond EPICA ice core drill site on Little Dome C in Antarctica. Results show that the oldest ice at the drill site may be 1.12 Ma (at age density of 20 kyr/m) and originate from around 15 km upstream. We also discuss the nature of the 200–250 m thick basal layer which could be composed of accreted ice, stagnant ice, or even disturbed ice containing debris.
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
The Cryosphere, 18, 1333–1357, https://doi.org/10.5194/tc-18-1333-2024, https://doi.org/10.5194/tc-18-1333-2024, 2024
Short summary
Short summary
The 79° North Glacier in Greenland has experienced significant changes over the last decades. Due to extreme melt rates, the ice has thinned significantly in the vicinity of the grounding line, where a large subglacial channel has formed since 2010. We attribute these changes to warm ocean currents and increased subglacial discharge from surface melt. However, basal melting has decreased since 2018, indicating colder water inflow into the cavity below the glacier.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023, https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
Short summary
The friction underneath ice sheets can be inferred from observed velocity at the top, but this inference requires smoothing. The selection of smoothing has been highly variable in the literature. Here we show how to rigorously select the best smoothing, and we show that the inferred friction converges towards the best knowable field as model resolution improves. We use this to learn about the best description of basal friction and to formulate recommended best practices for other modelers.
Ladina Steiner, Holger Schmithüsen, Jens Wickert, and Olaf Eisen
The Cryosphere, 17, 4903–4916, https://doi.org/10.5194/tc-17-4903-2023, https://doi.org/10.5194/tc-17-4903-2023, 2023
Short summary
Short summary
The present study illustrates the potential of a combined Global Navigation Satellite System reflectometry and refractometry (GNSS-RR) method for accurate, simultaneous, and continuous estimation of in situ snow accumulation, snow water equivalent, and snow density time series. The combined GNSS-RR method was successfully applied on a fast-moving, polar ice shelf. The combined GNSS-RR approach could be highly advantageous for a continuous quantification of ice sheet surface mass balances.
Zhuo Wang, Ailsa Chung, Daniel Steinhage, Frédéric Parrenin, Johannes Freitag, and Olaf Eisen
The Cryosphere, 17, 4297–4314, https://doi.org/10.5194/tc-17-4297-2023, https://doi.org/10.5194/tc-17-4297-2023, 2023
Short summary
Short summary
We combine radar-based observed internal layer stratigraphy of the ice sheet with a 1-D ice flow model in the Dome Fuji region. This results in maps of age and age density of the basal ice, the basal thermal conditions, and reconstructed accumulation rates. Based on modeled age we then identify four potential candidates for ice which is potentially 1.5 Myr old. Our map of basal thermal conditions indicates that melting prevails over the presence of stagnant ice in the study area.
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Ole Zeising, Tamara Annina Gerber, Olaf Eisen, M. Reza Ershadi, Nicolas Stoll, Ilka Weikusat, and Angelika Humbert
The Cryosphere, 17, 1097–1105, https://doi.org/10.5194/tc-17-1097-2023, https://doi.org/10.5194/tc-17-1097-2023, 2023
Short summary
Short summary
The flow of glaciers and ice streams is influenced by crystal fabric orientation. Besides sparse ice cores, these can be investigated by radar measurements. Here, we present an improved method which allows us to infer the horizontal fabric asymmetry using polarimetric phase-sensitive radar data. A validation of the method on a deep ice core from the Greenland Ice Sheet shows an excellent agreement, which is a large improvement over previously used methods.
Vjeran Višnjević, Reinhard Drews, Clemens Schannwell, Inka Koch, Steven Franke, Daniela Jansen, and Olaf Eisen
The Cryosphere, 16, 4763–4777, https://doi.org/10.5194/tc-16-4763-2022, https://doi.org/10.5194/tc-16-4763-2022, 2022
Short summary
Short summary
We present a simple way to model the internal layers of an ice shelf and apply the method to the Roi Baudouin Ice Shelf in East Antarctica. Modeled results are compared to measurements obtained by radar. We distinguish between ice directly formed on the shelf and ice transported from the ice sheet, and we map the spatial changes in the volume of the locally accumulated ice. In this context, we discuss the sensitivity of the ice shelf to future changes in surface accumulation and basal melt.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022, https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary
Short summary
Ice shelves are normally flat structures that fringe the Antarctic continent. At some locations they have channels incised into their underside. On Filchner Ice Shelf, such a channel is more than 50 km long and up to 330 m high. We conducted field measurements of basal melt rates and found a maximum of 2 m yr−1. Simulations represent the geometry evolution of the channel reasonably well. There is no reason to assume that this type of melt channel is destabilizing ice shelves.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Martin Rückamp, Thomas Kleiner, and Angelika Humbert
The Cryosphere, 16, 1675–1696, https://doi.org/10.5194/tc-16-1675-2022, https://doi.org/10.5194/tc-16-1675-2022, 2022
Short summary
Short summary
We present a comparative modelling study between the full-Stokes (FS) and Blatter–Pattyn (BP) approximation applied to the Northeast Greenland Ice Stream. Both stress regimes are implemented in one single ice sheet code to eliminate numerical issues. The simulations unveil minor differences in the upper ice stream but become considerable at the grounding line of the 79° North Glacier. Model differences are stronger for a power-law friction than a linear friction law.
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482, https://doi.org/10.5194/tc-16-1469-2022, https://doi.org/10.5194/tc-16-1469-2022, 2022
Short summary
Short summary
Remote-sensing-derived basal melt rates of ice shelves are of great importance due to their capability to cover larger areas. We performed in situ measurements with a phase-sensitive radar on the southern Filchner Ice Shelf, showing moderate melt rates and low small-scale spatial variability. The comparison with remote-sensing-based melt rates revealed large differences caused by the estimation of vertical strain rates from remote sensing velocity fields that modern fields can overcome.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Johannes Sutter, Hubertus Fischer, and Olaf Eisen
The Cryosphere, 15, 3839–3860, https://doi.org/10.5194/tc-15-3839-2021, https://doi.org/10.5194/tc-15-3839-2021, 2021
Short summary
Short summary
Projections of global sea-level changes in a warming world require ice-sheet models. We expand the calibration of these models by making use of the internal architecture of the Antarctic ice sheet, which is formed by its evolution over many millennia. We propose that using our novel approach to constrain ice sheet models, we will be able to both sharpen our understanding of past and future sea-level changes and identify weaknesses in the parameterisation of current continental-scale models.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021, https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Short summary
We collected radar data between EDC, an ice core spanning ~800 000 years, and BELDC, the site chosen for a new
oldest icecore at nearby Little Dome C. These data allow us to identify 50 % older internal horizons than previously traced in the area. We fit a model to the ages of those horizons at BELDC to determine the age of deep ice there. We find that there is likely to be 1.5 Myr old ice ~265 m above the bed, with sufficient resolution to preserve desired climatic information.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Stefan Kowalewski, Veit Helm, Elizabeth Mary Morris, and Olaf Eisen
The Cryosphere, 15, 1285–1305, https://doi.org/10.5194/tc-15-1285-2021, https://doi.org/10.5194/tc-15-1285-2021, 2021
Short summary
Short summary
This study presents estimates of total mass input for the Pine Island Glacier (PIG) over the period 2005–2014 from airborne radar measurements. Our analysis reveals a total mass input similar to an earlier estimate for the period 1985–2009 and same area. This suggests a stationary total mass input contrary to the accelerated mass loss of PIG over the past decades. However, we also find that its uncertainty is highly sensitive to the geostatistical assumptions required for its calculation.
Christian B. Rodehacke, Madlene Pfeiffer, Tido Semmler, Özgür Gurses, and Thomas Kleiner
Earth Syst. Dynam., 11, 1153–1194, https://doi.org/10.5194/esd-11-1153-2020, https://doi.org/10.5194/esd-11-1153-2020, 2020
Short summary
Short summary
In the warmer future, Antarctica's ice sheet will lose more ice due to enhanced iceberg calving and a warming ocean that melts more floating ice from below. However, the hydrological cycle is also stronger in a warmer world. Hence, more snowfall will precipitate on Antarctica and may balance the amplified ice loss. We have used future climate scenarios from various global climate models to perform numerous ice sheet simulations to show that precipitation may counteract mass loss.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Alexander H. Weinhart, Johannes Freitag, Maria Hörhold, Sepp Kipfstuhl, and Olaf Eisen
The Cryosphere, 14, 3663–3685, https://doi.org/10.5194/tc-14-3663-2020, https://doi.org/10.5194/tc-14-3663-2020, 2020
Short summary
Short summary
From 1 m snow profiles along a traverse on the East Antarctic Plateau, we calculated a representative surface snow density of 355 kg m−3 for this region with an error less than 1.5 %.
This density is 10 % higher and density fluctuations seem to happen on smaller scales than climate model outputs suggest. Our study can help improve the parameterization of surface snow density in climate models to reduce the error in future sea level predictions.
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev., 13, 4491–4501, https://doi.org/10.5194/gmd-13-4491-2020, https://doi.org/10.5194/gmd-13-4491-2020, 2020
Short summary
Short summary
We present enthalpy formulations within the Ice-Sheet and Sea-Level System model that show better performance than earlier implementations. A first experiment indicates that the treatment of discontinuous conductivities of the solid–fluid system with a geometric mean produce accurate results when applied to coarse vertical resolutions. In a second experiment, we propose a novel stabilization formulation that avoids the problem of thin elements. This method provides accurate and stable results.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Achim Heilig, Olaf Eisen, Martin Schneebeli, Michael MacFerrin, C. Max Stevens, Baptiste Vandecrux, and Konrad Steffen
The Cryosphere, 14, 385–402, https://doi.org/10.5194/tc-14-385-2020, https://doi.org/10.5194/tc-14-385-2020, 2020
Short summary
Short summary
We investigate the spatial representativeness of point observations of snow accumulation in SW Greenland. Such analyses have rarely been conducted but are necessary to link regional-scale observations from, e.g., remote-sensing data to firn cores and snow pits. The presented data reveal a low regional variability in density but snow depth can vary significantly. It is necessary to combine pits with spatial snow depth data to increase the regional representativeness of accumulation observations.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Johannes Sutter, Hubertus Fischer, Klaus Grosfeld, Nanna B. Karlsson, Thomas Kleiner, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 13, 2023–2041, https://doi.org/10.5194/tc-13-2023-2019, https://doi.org/10.5194/tc-13-2023-2019, 2019
Short summary
Short summary
The Antarctic Ice Sheet may have played an important role in moderating the transition between warm and cold climate epochs over the last million years. We find that the Antarctic Ice Sheet grew considerably about 0.9 Myr ago, a time when ice-age–warm-age cycles changed from a
40 000 to a 100 000 year periodicity. Our findings also suggest that ice as old as 1.5 Myr still exists at the bottom of the East Antarctic Ice Sheet despite the major climate reorganisations in the past.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Tetsuro Taranczewski, Johannes Freitag, Olaf Eisen, Bo Vinther, Sonja Wahl, and Sepp Kipfstuhl
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-280, https://doi.org/10.5194/tc-2018-280, 2019
Preprint withdrawn
Short summary
Short summary
We used melt layers detected in ice cores from the Renland ice cap in East Greenland to find evidence of past climate trends in this region. Our record provides such information for the past 10,000 years. We developed an attempt to increase the reliability of such a record by correcting deformation-induced biases. It proves that such simple to obtain melt records can be used to gather information about paleoclimate especially for regions where climate records are sparse.
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary
Short summary
The evolution of subglacial channels below ice sheets is very important for the dynamics of glaciers as the water acts as a lubricant. We present a new numerical model (CUAS) that generalizes existing approaches by accounting for two different flow situations within a single porous medium layer: (1) a confined aquifer if sufficient water supply is available and (2) an unconfined aquifer, otherwise. The model is applied to artificial scenarios as well as to the Northeast Greenland Ice Stream.
Reinhard Calov, Sebastian Beyer, Ralf Greve, Johanna Beckmann, Matteo Willeit, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Andrey Ganopolski
The Cryosphere, 12, 3097–3121, https://doi.org/10.5194/tc-12-3097-2018, https://doi.org/10.5194/tc-12-3097-2018, 2018
Short summary
Short summary
We present RCP 4.5 and 8.5 projections for the Greenland glacial system with the new glacial system model IGLOO 1.0, which incorporates the ice sheet model SICOPOLIS 3.3, a model of basal hydrology and a parameterization of submarine melt of outlet glaciers. Surface temperature and mass balance anomalies from the MAR climate model serve as forcing delivering projections for the contribution of the Greenland ice sheet to sea level rise and submarine melt of Helheim and Store outlet glaciers.
Brice Van Liefferinge, Frank Pattyn, Marie G. P. Cavitte, Nanna B. Karlsson, Duncan A. Young, Johannes Sutter, and Olaf Eisen
The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, https://doi.org/10.5194/tc-12-2773-2018, 2018
Short summary
Short summary
Our paper provides an important review of the state of knowledge for oldest-ice prospection, but also adds new basal geothermal heat flux constraints from recently acquired high-definition radar data sets. This is the first paper to contrast the two primary target regions for oldest ice: Dome C and Dome Fuji. Moreover, we provide statistical comparisons of all available data sets and a summary of the community's criteria for the retrieval of interpretable oldest ice since the 2013 effort.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851–1866, https://doi.org/10.5194/tc-12-1851-2018, https://doi.org/10.5194/tc-12-1851-2018, 2018
Short summary
Short summary
This paper presents data on temporal changes in snow and firn, which were not available before. We present data on water infiltration in the percolation zone of the Greenland Ice Sheet that improve our understanding of liquid water retention in snow and firn and mass transfer. We compare those findings with model simulations. It appears that simulated accumulation in terms of SWE is fairly accurate, while modeling of the individual parameters density and liquid water content is incorrect.
Johanna Kerch, Anja Diez, Ilka Weikusat, and Olaf Eisen
The Cryosphere, 12, 1715–1734, https://doi.org/10.5194/tc-12-1715-2018, https://doi.org/10.5194/tc-12-1715-2018, 2018
Short summary
Short summary
We investigate the effect of crystal anisotropy on seismic velocities in glacier ice by calculating seismic phase velocities using the exact c axis angles to describe the crystal orientations in ice-core samples for an alpine and a polar ice core. Our results provide uncertainty estimates for earlier established approximative calculations. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane.
Christoph Florian Schaller, Johannes Freitag, and Olaf Eisen
Clim. Past, 13, 1685–1693, https://doi.org/10.5194/cp-13-1685-2017, https://doi.org/10.5194/cp-13-1685-2017, 2017
Short summary
Short summary
In order to interpret the paleoclimatic record stored in the air enclosed in polar ice cores, it is crucial to understand the fundamental lock-in process. In our study, we present the first extensive data set of direct firn microstructure measurements and use it to show that the critical porosity of gas enclosure is independent of the climatic site conditions (such as temperature and accumulation rate). This leads to significant changes in dating and interpretation of ice-core gas records.
Duncan A. Young, Jason L. Roberts, Catherine Ritz, Massimo Frezzotti, Enrica Quartini, Marie G. P. Cavitte, Carly R. Tozer, Daniel Steinhage, Stefano Urbini, Hugh F. J. Corr, Tas van Ommen, and Donald D. Blankenship
The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, https://doi.org/10.5194/tc-11-1897-2017, 2017
Short summary
Short summary
To find records of the greenhouse gases found in key periods of climate transition, we need to find sites of unmelted old ice at the base of the Antarctic ice sheet for ice core retrieval. A joint US–Australian–EU team performed a high-resolution survey of such a site (1 km line spacing) near Concordia Station in East Antarctica, using airborne ice-penetrating radar. We found promising targets in rough subglacial terrain, surrounded by subglacial lakes restricted below a minimum hydraulic head.
Anna Winter, Daniel Steinhage, Emily J. Arnold, Donald D. Blankenship, Marie G. P. Cavitte, Hugh F. J. Corr, John D. Paden, Stefano Urbini, Duncan A. Young, and Olaf Eisen
The Cryosphere, 11, 653–668, https://doi.org/10.5194/tc-11-653-2017, https://doi.org/10.5194/tc-11-653-2017, 2017
Janin Schaffer, Ralph Timmermann, Jan Erik Arndt, Steen Savstrup Kristensen, Christoph Mayer, Mathieu Morlighem, and Daniel Steinhage
Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, https://doi.org/10.5194/essd-8-543-2016, 2016
Short summary
Short summary
The RTopo-2 data set provides consistent maps of global ocean bathymetry and ice surface topographies for Greenland and Antarctica at 30 arcsec grid spacing. We corrected data from earlier products in the areas of Petermann, Hagen Bræ, and Helheim glaciers, incorporated original data for the floating ice tongue of Nioghalvfjerdsfjorden Glacier, and applied corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available from the PANGAEA database.
Christoph Florian Schaller, Johannes Freitag, Sepp Kipfstuhl, Thomas Laepple, Hans Christian Steen-Larsen, and Olaf Eisen
The Cryosphere, 10, 1991–2002, https://doi.org/10.5194/tc-10-1991-2016, https://doi.org/10.5194/tc-10-1991-2016, 2016
Short summary
Short summary
Along a traverse through North Greenland in May 2015 we collected snow cores up to 2 m in depth and analyzed their properties (e.g., density). A new technique for this sampling and an adapted algorithm for comparing data sets from different positions and aligning stratigraphic features are presented. We find good agreement of the density layering in the snowpack over hundreds of kilometers. This allows the construction of a representative density profile that is statistically validated.
Eythor Gudlaugsson, Angelika Humbert, Thomas Kleiner, Jack Kohler, and Karin Andreassen
The Cryosphere, 10, 751–760, https://doi.org/10.5194/tc-10-751-2016, https://doi.org/10.5194/tc-10-751-2016, 2016
Short summary
Short summary
This paper explores the influence of a subglacial lake on ice dynamics and internal layers by means of numerical modelling as well as simulating the effect of a subglacial drainage event on isochrones. We provide an explanation for characteristic dip and ridge features found at the edges of many subglacial lakes and conclude that draining lakes can result in travelling waves at depth within isochrones, thus indicating the possibility of detecting past drainage events with ice penetrating radar.
Johannes H. Bondzio, Hélène Seroussi, Mathieu Morlighem, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Eric Y. Larour
The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, https://doi.org/10.5194/tc-10-497-2016, 2016
Short summary
Short summary
We implemented a level-set method in the ice sheet system model. This method allows us to dynamically evolve a calving front subject to user-defined calving rates. We apply the method to Jakobshavn Isbræ, West Greenland, and study its response to calving rate perturbations. We find its behaviour strongly dependent on the calving rate, which was to be expected. Both reduced basal drag and rheological shear margin weakening sustain the acceleration of this dynamic outlet glacier.
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015, https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Short summary
A verification of the physics based SNOWPACK model with field observations showed that typical snowpack properties like density and temperature are adequately simulated. Also two water transport schemes were verified, showing that although Richards equation improves snowpack runoff and several aspects of the internal snowpack structure, the bucket scheme appeared to have a higher agreement with the snow microstructure. The choice of water transport scheme may depend on the intended application.
N. Wilkens, J. Behrens, T. Kleiner, D. Rippin, M. Rückamp, and A. Humbert
The Cryosphere, 9, 675–690, https://doi.org/10.5194/tc-9-675-2015, https://doi.org/10.5194/tc-9-675-2015, 2015
A. Diez and O. Eisen
The Cryosphere, 9, 367–384, https://doi.org/10.5194/tc-9-367-2015, https://doi.org/10.5194/tc-9-367-2015, 2015
A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat
The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015, https://doi.org/10.5194/tc-9-385-2015, 2015
T. Kleiner, M. Rückamp, J. H. Bondzio, and A. Humbert
The Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-2015, https://doi.org/10.5194/tc-9-217-2015, 2015
Short summary
Short summary
We present benchmark experiments and analytical solutions to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. The results of the applied models agree well with the analytical solutions if the change in conductivity between cold and temperate ice is properly considered in the model.
B. Sun, J. C. Moore, T. Zwinger, L. Zhao, D. Steinhage, X. Tang, D. Zhang, X. Cui, and C. Martín
The Cryosphere, 8, 1121–1128, https://doi.org/10.5194/tc-8-1121-2014, https://doi.org/10.5194/tc-8-1121-2014, 2014
D. Callens, K. Matsuoka, D. Steinhage, B. Smith, E. Witrant, and F. Pattyn
The Cryosphere, 8, 867–875, https://doi.org/10.5194/tc-8-867-2014, https://doi.org/10.5194/tc-8-867-2014, 2014
H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, and F. Wilhelms
Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, https://doi.org/10.5194/cp-9-2489-2013, 2013
J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage
The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, https://doi.org/10.5194/tc-7-499-2013, 2013
Related subject area
Glaciology
Climate and ablation observations from automatic ablation and weather stations at A. P. Olsen Ice Cap transect, northeast Greenland, for May 2008 through May 2022
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
A newly digitized ice-penetrating radar data set acquired over the Greenland ice sheet in 1971–1979
Multitemporal characterization of a proglacial system: a multidisciplinary approach
Ice thickness and bed topography of Jostedalsbreen ice cap, Norway
Spatial and temporal stable water isotope data from the upper snowpack at the EastGRIP camp site, NE Greenland, sampled in summer 2018
High temporal resolution records of the velocity of Hansbreen, a tidewater glacier in Svalbard
A high-resolution calving front data product for marine-terminating glaciers in Svalbard
Calving front positions for 19 key glaciers of the Antarctic Peninsula: a sub-seasonal record from 2013 to 2023 based on a deep learning application to Landsat multispectral imagery
Spatial and temporal variability of environmental proxies from the top 120 m of two ice cores in Dronning Maud Land (East Antarctica)
Inventory of glaciers and perennial snowfields of the conterminous USA
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Unlocking archival maps of the Hornsund fjord area for monitoring glaciers of the Sørkapp Land peninsula, Svalbard
Antarctic Ice Sheet paleo-constraint database
Ice-core data used for the construction of the Greenland Ice-Core Chronology 2005 and 2021 (GICC05 and GICC21)
Antarctic Bedmap data: Findable, Accessible, Interoperable, and Reusable (FAIR) sharing of 60 years of ice bed, surface, and thickness data
PRODEM: Annual summer DEMs (2019–present) of the marginal areas of the Greenland Ice Sheet
A new inventory of High Mountain Asia surging glaciers derived from multiple elevation datasets since the 1970s
Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years
Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020
Interdecadal glacier inventories in the Karakoram since the 1990s
Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020
Processing methodology for the ITS_LIVE Sentinel-1 ice velocity products
Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery
Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region
A new global dataset of mountain glacier centerlines and lengths
Elevation change of the Antarctic Ice Sheet: 1985 to 2020
2000 years of annual ice core data from Law Dome, East Antarctica
A 41-year (1979–2019) passive-microwave-derived lake ice phenology data record of the Northern Hemisphere
Rescue and homogenization of 140 years of glacier mass balance data in Switzerland
A decade of glaciological and meteorological observations in the Arctic (Werenskioldbreen, Svalbard)
A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers
The Greenland Firn Compaction Verification and Reconnaissance (FirnCover) dataset, 2013–2019
Black carbon and organic carbon dataset over the Third Pole
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet
Greenland ice sheet mass balance from 1840 through next week
Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data
GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland
A 15-year circum-Antarctic iceberg calving dataset derived from continuous satellite observations
Active rock glaciers of the contiguous United States: geographic information system inventory and spatial distribution patterns
Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017
Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data
Greenland ice velocity maps from the PROMICE project
The AntSMB dataset: a comprehensive compilation of surface mass balance field observations over the Antarctic Ice Sheet
Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya, India
Hydrometeorological, glaciological and geospatial research data from the Peyto Glacier Research Basin in the Canadian Rockies
Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017
More dynamic than expected: an updated survey of surging glaciers in the Pamir
Worldwide version-controlled database of glacier thickness observations
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data, 16, 4103–4118, https://doi.org/10.5194/essd-16-4103-2024, https://doi.org/10.5194/essd-16-4103-2024, 2024
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been running since 1995. In 2008, the Glaciological monitoring sub-program GlacioBasis was initiated at the Zackenberg site in northeast Greenland, with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022, the weather stations were replaced with a more standardized set up. Here, we provide the reprocessed and quality-checked data from 2008 to 2022, i.e., the first 15 years of continued monitoring.
Lea Hartl, Bernd Seiser, Martin Stocker-Waldhuber, Anna Baldo, Marcela Violeta Lauria, and Andrea Fischer
Earth Syst. Sci. Data, 16, 4077–4101, https://doi.org/10.5194/essd-16-4077-2024, https://doi.org/10.5194/essd-16-4077-2024, 2024
Short summary
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Nanna B. Karlsson, Dustin M. Schroeder, Louise Sandberg Sørensen, Winnie Chu, Jørgen Dall, Natalia H. Andersen, Reese Dobson, Emma J. Mackie, Simon J. Köhn, Jillian E. Steinmetz, Angelo S. Tarzona, Thomas O. Teisberg, and Niels Skou
Earth Syst. Sci. Data, 16, 3333–3344, https://doi.org/10.5194/essd-16-3333-2024, https://doi.org/10.5194/essd-16-3333-2024, 2024
Short summary
Short summary
In the 1970s, more than 177 000 km of observations were acquired from airborne radar over the Greenland ice sheet. The radar data contain information on not only the thickness of the ice, but also the properties of the ice itself. This information was recorded on film rolls and subsequently stored. In this study, we document the digitization of these film rolls that shed new and unprecedented detailed light on the Greenland ice sheet 50 years ago.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Mette Kusk Gillespie, Liss Marie Andreassen, Matthias Huss, Simon de Villiers, Kamilla Hauknes Sjursen, Jostein Aasen, Jostein Bakke, Jan Magne Cederstrøm, Halgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd Daniel Nerhus, Torgeir Opeland Røthe, Eivind Nagel Wilhelm Støren, Kåre Øst, and Jacob Clement Yde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-167, https://doi.org/10.5194/essd-2024-167, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an extensive new ice thickness dataset from Jostedalsbreen ice cap which will serve as baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 m ± 22 m and an ice volume of 70.6 ± 10.2 km3. Ice of less than 50 m thickness covers two narrow regions of the ice cap, and Jostedalsbreen is likely to separate into three smaller ice caps in a warming climate.
Alexandra M. Zuhr, Sonja Wahl, Hans Christian Steen-Larsen, Maria Hörhold, Hanno Meyer, Vasileios Gkinis, and Thomas Laepple
Earth Syst. Sci. Data, 16, 1861–1874, https://doi.org/10.5194/essd-16-1861-2024, https://doi.org/10.5194/essd-16-1861-2024, 2024
Short summary
Short summary
We present stable water isotope data from the accumulation zone of the Greenland ice sheet. A spatial sampling scheme covering 39 m and three depth layers was carried out between 14 May and 3 August 2018. The data suggest spatial and temporal variability related to meteorological conditions, such as wind-driven snow redistribution and vapour–snow exchange processes. The data can be used to study the formation of the stable water isotopes signal, which is seen as a climate proxy.
Małgorzata Błaszczyk, Bartłomiej Luks, Michał Pętlicki, Dariusz Puczko, Dariusz Ignatiuk, Michał Laska, Jacek Jania, and Piotr Głowacki
Earth Syst. Sci. Data, 16, 1847–1860, https://doi.org/10.5194/essd-16-1847-2024, https://doi.org/10.5194/essd-16-1847-2024, 2024
Short summary
Short summary
Understanding the glacier response to accelerated climate warming in the Arctic requires data obtained in the field. Here, we present a dataset of velocity measurements of Hansbreen, a tidewater glacier in Svalbard. The glacier's velocity was measured with GPS at 16 stakes mounted on the glacier's surface. The measurements were conducted from about 1 week to about 1 month. The dataset offers unique material for validating numerical models of glacier dynamics and satellite-derived products.
Tian Li, Konrad Heidler, Lichao Mou, Ádám Ignéczi, Xiao Xiang Zhu, and Jonathan L. Bamber
Earth Syst. Sci. Data, 16, 919–939, https://doi.org/10.5194/essd-16-919-2024, https://doi.org/10.5194/essd-16-919-2024, 2024
Short summary
Short summary
Our study uses deep learning to produce a new high-resolution calving front dataset for 149 marine-terminating glaciers in Svalbard from 1985 to 2023, containing 124 919 terminus traces. This dataset offers insights into understanding calving mechanisms and can help improve glacier frontal ablation estimates as a component of the integrated mass balance assessment.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-535, https://doi.org/10.5194/essd-2023-535, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constrain ice modelling. We apply a deep learning framework on multispectral Landsat imagery to create a calving front record for 19 key outlet glaciers of the Antarctic Peninsula. The resulting data product includes 2064 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Sarah Wauthy, Jean-Louis Tison, Mana Inoue, Saïda El Amri, Sainan Sun, François Fripiat, Philippe Claeys, and Frank Pattyn
Earth Syst. Sci. Data, 16, 35–58, https://doi.org/10.5194/essd-16-35-2024, https://doi.org/10.5194/essd-16-35-2024, 2024
Short summary
Short summary
The datasets presented are the density, water isotopes, ions, and conductivity measurements, as well as age models and surface mass balance (SMB) from the top 120 m of two ice cores drilled on adjacent ice rises in Dronning Maud Land, dating from the late 18th century. They offer many development possibilities for the interpretation of paleo-profiles and for addressing the mechanisms behind the spatial and temporal variability of SMB and proxies observed at the regional scale in East Antarctica.
Andrew G. Fountain, Bryce Glenn, and Christopher Mcneil
Earth Syst. Sci. Data, 15, 4077–4104, https://doi.org/10.5194/essd-15-4077-2023, https://doi.org/10.5194/essd-15-4077-2023, 2023
Short summary
Short summary
Glaciers are rapidly shrinking globally. To identify past change and provide a baseline for future change, we inventoried the extent of glaciers and perennial snowfields across the western USA excluding Alaska. Using mostly aerial imagery, we digitized the outlines of all glaciers and perennial snowfields equal to or larger than 0.01 km2 using a geographical information system. We identified 1331 (366.52 km2) glaciers and 1176 (31.00 km2) snowfields.
Finu Shrestha, Jakob F. Steiner, Reeju Shrestha, Yathartha Dhungel, Sharad P. Joshi, Sam Inglis, Arshad Ashraf, Sher Wali, Khwaja M. Walizada, and Taigang Zhang
Earth Syst. Sci. Data, 15, 3941–3961, https://doi.org/10.5194/essd-15-3941-2023, https://doi.org/10.5194/essd-15-3941-2023, 2023
Short summary
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
Justyna Dudek and Michał Pętlicki
Earth Syst. Sci. Data, 15, 3869–3889, https://doi.org/10.5194/essd-15-3869-2023, https://doi.org/10.5194/essd-15-3869-2023, 2023
Short summary
Short summary
In our research, we evaluate the potential of archival maps of Hornsund fjord area, southern Spitsbergen, published by the Polish Academy of Sciences for studying glacier changes. Our analysis concerning glaciers in the north-western part of the Sørkapp Land peninsula revealed that, in the period 1961–2010, a maximum lowering of their surface was about 100 m for the largest land-terminating glaciers and over 120 m for glaciers terminating in the ocean (above the line marking their 1984 extents).
Benoit S. Lecavalier, Lev Tarasov, Greg Balco, Perry Spector, Claus-Dieter Hillenbrand, Christo Buizert, Catherine Ritz, Marion Leduc-Leballeur, Robert Mulvaney, Pippa L. Whitehouse, Michael J. Bentley, and Jonathan Bamber
Earth Syst. Sci. Data, 15, 3573–3596, https://doi.org/10.5194/essd-15-3573-2023, https://doi.org/10.5194/essd-15-3573-2023, 2023
Short summary
Short summary
The Antarctic Ice Sheet Evolution constraint database version 2 (AntICE2) consists of a large variety of observations that constrain the evolution of the Antarctic Ice Sheet over the last glacial cycle. This includes observations of past ice sheet extent, past ice thickness, past relative sea level, borehole temperature profiles, and present-day bedrock displacement rates. The database is intended to improve our understanding of past Antarctic changes and for ice sheet model calibrations.
Sune Olander Rasmussen, Dorthe Dahl-Jensen, Hubertus Fischer, Katrin Fuhrer, Steffen Bo Hansen, Margareta Hansson, Christine S. Hvidberg, Ulf Jonsell, Sepp Kipfstuhl, Urs Ruth, Jakob Schwander, Marie-Louise Siggaard-Andersen, Giulia Sinnl, Jørgen Peder Steffensen, Anders M. Svensson, and Bo M. Vinther
Earth Syst. Sci. Data, 15, 3351–3364, https://doi.org/10.5194/essd-15-3351-2023, https://doi.org/10.5194/essd-15-3351-2023, 2023
Short summary
Short summary
Timescales are essential for interpreting palaeoclimate data. The data series presented here were used for annual-layer identification when constructing the timescales named the Greenland Ice-Core Chronology 2005 (GICC05) and the revised version GICC21. Hopefully, these high-resolution data sets will be useful also for other purposes.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Mai Winstrup, Heidi Ranndal, Signe Hillerup Larsen, Sebastian Bjerregaard Simonsen, Kenneth David Mankoff, Robert Schjøtt Fausto, and Louise Sandberg Sørensen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-224, https://doi.org/10.5194/essd-2023-224, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Surface topography across the marginal zone of the Greenland Ice Sheet is constantly evolving. We here present four 500-meter resolution annual (2019–2022) summer DEMs (PRODEMs) of the Greenland ice sheet marginal zone, capturing all outlet glaciers of the ice sheet. The PRODEMs are based on fusion of CryoSat-2 radar altimetry and ICESat-2 laser altimetry. With their high spatial and temporal resolution, the PRODEMs will enable detailed studies of the changes in marginal ice sheet elevations.
Lei Guo, Jia Li, Amaury Dehecq, Zhiwei Li, Xin Li, and Jianjun Zhu
Earth Syst. Sci. Data, 15, 2841–2861, https://doi.org/10.5194/essd-15-2841-2023, https://doi.org/10.5194/essd-15-2841-2023, 2023
Short summary
Short summary
We established a new inventory of surging glaciers across High Mountain Asia based on glacier elevation changes and morphological changes during 1970s–2020. A total of 890 surging and 336 probably or possibly surging glaciers were identified. Compared to the most recent inventory, this one incorporates 253 previously unidentified surging glaciers. Our results demonstrate a more widespread surge behavior in HMA and find that surging glaciers are prone to have steeper slopes than non-surging ones.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Muchu Lesi, Yong Nie, Dan Hirsh Shugar, Jida Wang, Qian Deng, Huayong Chen, and Jianrong Fan
Earth Syst. Sci. Data, 14, 5489–5512, https://doi.org/10.5194/essd-14-5489-2022, https://doi.org/10.5194/essd-14-5489-2022, 2022
Short summary
Short summary
The China–Pakistan Economic Corridor plays a vital role in foreign trade and faces threats from water shortage and water-related hazards. An up-to-date glacial lake dataset with critical parameters is basic for water resource and flood risk research, which is absent from the corridor. This study created a glacial lake dataset in 2020 from Landsat and Sentinel images from 1990–2000, using a threshold-based mapping method. Our dataset has the potential to be widely applied.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Nora Gourmelon, Thorsten Seehaus, Matthias Braun, Andreas Maier, and Vincent Christlein
Earth Syst. Sci. Data, 14, 4287–4313, https://doi.org/10.5194/essd-14-4287-2022, https://doi.org/10.5194/essd-14-4287-2022, 2022
Short summary
Short summary
Ice loss of glaciers shows in retreating calving fronts (i.e., the position where icebergs break off the glacier and drift into the ocean). This paper presents a benchmark dataset for calving front delineation in synthetic aperture radar (SAR) images. The dataset can be used to train and test deep learning techniques, which automate the monitoring of the calving front. Provided example models achieve front delineations with an average distance of 887 m to the correct calving front.
Mohd Soheb, Alagappan Ramanathan, Anshuman Bhardwaj, Millie Coleman, Brice R. Rea, Matteo Spagnolo, Shaktiman Singh, and Lydia Sam
Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, https://doi.org/10.5194/essd-14-4171-2022, 2022
Short summary
Short summary
This study provides a multi-temporal inventory of glaciers in the Ladakh region. The study records data on 2257 glaciers (>0.5 km2) covering an area of ~7923 ± 106 km2 which is equivalent to ~89 % of the total glacierised area of the Ladakh region. It will benefit both the scientific community and the administration of the Union Territory of Ladakh, in developing efficient mitigation and adaptation strategies by improving the projections of change on timescales relevant to policymakers.
Dahong Zhang, Gang Zhou, Wen Li, Shiqiang Zhang, Xiaojun Yao, and Shimei Wei
Earth Syst. Sci. Data, 14, 3889–3913, https://doi.org/10.5194/essd-14-3889-2022, https://doi.org/10.5194/essd-14-3889-2022, 2022
Short summary
Short summary
The length of a glacier is a key determinant of its geometry; glacier centerlines are crucial inputs for many glaciological applications. Based on the European allocation theory, we present a new global dataset that includes the centerlines and lengths of 198 137 mountain glaciers. The accuracy of the glacier centerlines was 89.68 %. The constructed dataset comprises 17 sub-datasets which contain the centerlines and lengths of glacier tributaries.
Johan Nilsson, Alex S. Gardner, and Fernando S. Paolo
Earth Syst. Sci. Data, 14, 3573–3598, https://doi.org/10.5194/essd-14-3573-2022, https://doi.org/10.5194/essd-14-3573-2022, 2022
Short summary
Short summary
The longest observational record available to study the mass balance of the Earth’s ice sheets comes from satellite altimeters. This record consists of multiple satellite missions with different measurements and quality, and it must be cross-calibrated and integrated into a consistent record for scientific use. Here, we present a novel approach for generating such a record providing a seamless record of elevation change for the Antarctic Ice Sheet that spans the period 1985 to 2020.
Lenneke M. Jong, Christopher T. Plummer, Jason L. Roberts, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Joel B. Pedro, Chelsea A. Long, Meredith Nation, Paul A. Mayewski, and Tas D. van Ommen
Earth Syst. Sci. Data, 14, 3313–3328, https://doi.org/10.5194/essd-14-3313-2022, https://doi.org/10.5194/essd-14-3313-2022, 2022
Short summary
Short summary
Ice core records from Law Dome in East Antarctica, collected over the the last 3 decades, provide high-resolution data for studies of the climate of Antarctica, Australia and the Southern and Indo-Pacific oceans. Here, we present a set of annually dated records from Law Dome covering the last 2000 years. This dataset provides an update and extensions both forward and back in time of previously published subsets of the data, bringing them together into a coherent set with improved dating.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Dariusz Ignatiuk, Małgorzata Błaszczyk, Tomasz Budzik, Mariusz Grabiec, Jacek A. Jania, Marta Kondracka, Michał Laska, Łukasz Małarzewski, and Łukasz Stachnik
Earth Syst. Sci. Data, 14, 2487–2500, https://doi.org/10.5194/essd-14-2487-2022, https://doi.org/10.5194/essd-14-2487-2022, 2022
Short summary
Short summary
This paper presents details of the glaciological and meteorological dataset (2009–2020) from the Werenskioldbreen (Svalbard). These high-quality and long-term observational data already have been used to assess hydrological models and glaciological studies. The objective of releasing these data is to improve their usage for calibration and validation of the remote sensing products and models, as well as to increase data reuse.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Michael J. MacFerrin, C. Max Stevens, Baptiste Vandecrux, Edwin D. Waddington, and Waleed Abdalati
Earth Syst. Sci. Data, 14, 955–971, https://doi.org/10.5194/essd-14-955-2022, https://doi.org/10.5194/essd-14-955-2022, 2022
Short summary
Short summary
The vast majority of the Greenland ice sheet's surface is covered by pluriannual snow, also called firn, that accumulates year after year and is compressed into glacial ice. The thickness of the firn layer changes through time and responds to the surface climate. We present continuous measurement of the firn compaction at various depths for eight sites. The dataset will help to evaluate firn models, interpret ice cores, and convert remotely sensed ice sheet surface height change to mass loss.
Shichang Kang, Yulan Zhang, Pengfei Chen, Junming Guo, Qianggong Zhang, Zhiyuan Cong, Susan Kaspari, Lekhendra Tripathee, Tanguang Gao, Hewen Niu, Xinyue Zhong, Xintong Chen, Zhaofu Hu, Xiaofei Li, Yang Li, Bigyan Neupane, Fangping Yan, Dipesh Rupakheti, Chaman Gul, Wei Zhang, Guangming Wu, Ling Yang, Zhaoqing Wang, and Chaoliu Li
Earth Syst. Sci. Data, 14, 683–707, https://doi.org/10.5194/essd-14-683-2022, https://doi.org/10.5194/essd-14-683-2022, 2022
Short summary
Short summary
The Tibetan Plateau is important to the Earth’s climate. However, systematically observed data here are scarce. To perform more integrated and in-depth investigations of the origins and distributions of atmospheric pollutants and their impacts on cryospheric change, systematic data of black carbon and organic carbon from the atmosphere, glaciers, snow cover, precipitation, and lake sediment cores over the plateau based on the Atmospheric Pollution and Cryospheric Change program are provided.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022, https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Short summary
Accurate knowledge of the Antarctic grounding zone is important for mass balance calculation, ice sheet stability assessment, and ice sheet model projections. Here we present the first ICESat-2-derived high-resolution grounding zone product of the Antarctic Ice Sheet, including three important boundaries. This new data product will provide more comprehensive insights into ice sheet instability, which is valuable for both the cryosphere and sea level science communities.
Diarmuid Corr, Amber Leeson, Malcolm McMillan, Ce Zhang, and Thomas Barnes
Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022, https://doi.org/10.5194/essd-14-209-2022, 2022
Short summary
Short summary
We identify 119 km2 of meltwater area over West Antarctica in January 2017. In combination with Stokes et al., 2019, this forms the first continent-wide assessment helping to quantify the mass balance of Antarctica and its contribution to global sea level rise. We apply thresholds for meltwater classification to satellite images, mapping the extent and manually post-processing to remove false positives. Our study provides a high-fidelity dataset to train and validate machine learning methods.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Peter Friedl, Thorsten Seehaus, and Matthias Braun
Earth Syst. Sci. Data, 13, 4653–4675, https://doi.org/10.5194/essd-13-4653-2021, https://doi.org/10.5194/essd-13-4653-2021, 2021
Short summary
Short summary
Consistent and continuous data on glacier surface velocity are important inputs to time series analyses, numerical ice dynamic modeling and glacier mass flux computations. We present a new data set of glacier surface velocities derived from Sentinel-1 radar satellite data that covers 12 major glaciated regions outside the polar ice sheets. The data comprise continuously updated scene-pair velocity fields, as well as monthly and annually averaged velocity mosaics at 200 m spatial resolution.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Mengzhen Qi, Yan Liu, Jiping Liu, Xiao Cheng, Yijing Lin, Qiyang Feng, Qiang Shen, and Zhitong Yu
Earth Syst. Sci. Data, 13, 4583–4601, https://doi.org/10.5194/essd-13-4583-2021, https://doi.org/10.5194/essd-13-4583-2021, 2021
Short summary
Short summary
A total of 1975 annual calving events larger than 1 km2 were detected on the Antarctic ice shelves from August 2005 to August 2020. The average annual calved area was measured as 3549.1 km2, and the average calving rate was measured as 770.3 Gt yr-1. Iceberg calving is most prevalent in West Antarctica, followed by the Antarctic Peninsula and Wilkes Land in East Antarctica. This annual iceberg calving dataset provides consistent and precise calving observations with the longest time coverage.
Gunnar Johnson, Heejun Chang, and Andrew Fountain
Earth Syst. Sci. Data, 13, 3979–3994, https://doi.org/10.5194/essd-13-3979-2021, https://doi.org/10.5194/essd-13-3979-2021, 2021
Short summary
Short summary
We present the Portland State University Active Rock Glacier Inventory (n = 10 343) for the contiguous United States, derived from manual classification of remote sensing imagery. This geospatial inventory will allow past rock glacier research findings to be spatially extrapolated, facilitating rock glacier research by identifying field study sites and serving as a valuable training set for the development of automated rock glacier identification methods applicable to other regional studies.
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Yetang Wang, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Shugui Hou, and Cunde Xiao
Earth Syst. Sci. Data, 13, 3057–3074, https://doi.org/10.5194/essd-13-3057-2021, https://doi.org/10.5194/essd-13-3057-2021, 2021
Short summary
Short summary
Accurate observation of surface mass balance (SMB) under climate change is essential for the reliable present and future assessment of Antarctic contribution to global sea level. This study presents a new quality-controlled dataset of Antarctic SMB observations at different temporal resolutions and is the first ice-sheet-scale compilation of multiple types of measurements. The dataset can be widely applied to climate model validation, remote sensing retrievals, and data assimilation.
Arindam Chowdhury, Milap Chand Sharma, Sunil Kumar De, and Manasi Debnath
Earth Syst. Sci. Data, 13, 2923–2944, https://doi.org/10.5194/essd-13-2923-2021, https://doi.org/10.5194/essd-13-2923-2021, 2021
Short summary
Short summary
This is an integrated watershed-based study of glacier change across the Chhombo Chhu Watershed in the Sikkim Himalaya, 1975–2018. This glacier analysis comprised 74 glaciers with a total area of 44.8 ± 1.5 km2 including 64 debris-free glaciers with an area of 28.4 ± 1.1 km2 (63.4 % of total glacier area) in 2018. Mean glacier area of the watershed stands at 0.61 km2, with dominance of small-sized glaciers. Our mapping revealed that there has been a glacier area recession of 17.9 ± 1.7 km2.
Dhiraj Pradhananga, John W. Pomeroy, Caroline Aubry-Wake, D. Scott Munro, Joseph Shea, Michael N. Demuth, Nammy Hang Kirat, Brian Menounos, and Kriti Mukherjee
Earth Syst. Sci. Data, 13, 2875–2894, https://doi.org/10.5194/essd-13-2875-2021, https://doi.org/10.5194/essd-13-2875-2021, 2021
Short summary
Short summary
This paper presents hydrological, meteorological, glaciological and geospatial data of Peyto Glacier Basin in the Canadian Rockies. They include high-resolution DEMs derived from air photos and lidar surveys and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Cited articles
Arcone, S. A., Jacobel, R., and Hamilton, G.: Unconformable stratigraphy in
East Antarctica: Part I. Large firn cosets, recrystallized growth, and model
evidence for intensified accumulation, J. Glaciol., 58, 240–252,
https://doi.org/10.3189/2012JoJ11J044, 2012a. a
Arcone, S. A., Jacobel, R., and Hamilton, G.: Unconformable stratigraphy in
East Antarctica: Part II. Englacial cosets and recrystallized layers,
J. Glaciol., 58, 253–264, https://doi.org/10.3189/2012JoG11J045,
2012b. a
Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F., Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M.-F., Raynaud, D., Vinther, B., Svensson, A., Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V., Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka, Clim. Past, 9, 1715–1731, https://doi.org/10.5194/cp-9-1715-2013, 2013. a, b, c
Bell, R. E., Ferraccioli, F., Creyts, T. T., Braaten, D., Corr, H., Das, I.,
Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M., and Wolovick,
M.: Widespread persistent thickening of the East Antarctic Ice Sheet by
freezing from the base, Science, 331, 1592–1595,
https://doi.org/10.1126/science.1200109, 2011. a, b
Bingham, R. G., Siegert, M. J., Young, D. A., and Blankenship, D. D.:
Organized flow from the South Pole to the Filchner-Ronne ice shelf: An
assessment of balance velocities in interior East Antarctica using radio echo
sounding data, J. Geophys. Res.-Earth, 112, F03S26,
https://doi.org/10.1029/2006JF000556, 2007. a, b
Brook, E. J., Wolff, E., Dahl-Jensen, D., Fischer, H., and Steig, E. J.:
The future of ice coring: international partnerships in ice core sciences
(IPICS), PAGES news, 14, 6–10, 2006. a
Cavitte, M. G., Blankenship, D. D., Young, D. A., Schroeder, D. M., Parrenin,
F., Lemeur, E., Macgregor, J. A., and Siegert, M. J.: Deep radiostratigraphy
of the East Antarctic plateau: connecting the Dome C and Vostok ice core
sites, J. Glaciol., 62, 1–12, https://doi.org/10.1017/jog.2016.11, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Cavitte, M. G. P., Parrenin, F., Ritz, C., Young, D. A., Van Liefferinge, B., Blankenship, D. D., Frezzotti, M., and Roberts, J. L.: Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr, The Cryosphere, 12, 1401–1414, https://doi.org/10.5194/tc-12-1401-2018, 2018. a
Clarke, T. S., Liu, C., Lord, N. E., and Bentley, C. R.: Evidence for a
recently abandoned shear margin adjacent to ice stream B2, Antarctica, from
ice-penetrating radar measurements, J. Geophys. Res.-Sol.
Ea., 105, 13409–13422, https://doi.org/10.1029/2000JB900037, 2000. a
Clough, J. W.: Radio-echo sounding: reflections from internal layers in ice
sheets, J. Glaciol., 18, 3–14, https://doi.org/10.3189/S002214300002147X,
1977. a
Conway, H., Catania, G., Raymond, C., Gades, A., Scambos, T., and Engelhardt,
H.: Switch of flow direction in an Antarctic ice stream, Nature, 419, 465–467,
https://doi.org/10.1038/nature01081, 2002. a
Cook, C. P., Van De Flierdt, T., Williams, T., Hemming, S. R., Iwai, M.,
Kobayashi, M., Jimenez-Espejo, F. J., Escutia, C., González, J. J., Khim,
B.-K., McKay, R. M., Passchier, S., Bohaty, S. M., Riesselman, C. R., Tauxe, L., Sugisaki, S., Galindo, A. L., Patterson, M. O., Sangiorgi, F., Pierce, E. L., Brinkhuis, H., Klaus, A., Fehr, A., Bendle, J. A. P., Bijl, P. K., Carr, S. A., Dunbar, R. B., Flores, J. A., Hayden, T. G., Katsuki, K., Kong, G. S., Nakai, M., Olney, M. P., Pekar, S. F., Pross, J., Röhl, U., Sakai, T., Shrivastava, P. K., Stickley, C. E., Tuo, S., Welsh, K., and Yamane, M.: Dynamic behaviour of the East Antarctic ice sheet during
Pliocene warmth, Nat. Geosci., 6, 765–769, https://doi.org/10.1038/ngeo1889, 2013. a
Das, I., Bell, R. E., Scambos, T. A., Wolovick, M., Creyts, T. T., Studinger,
M., Frearson, N., Nicolas, J. P., Lenaerts, J. T., and Van Den Broeke, M. R.:
Influence of persistent wind scour on the surface mass balance of
Antarctica, Nat. Geosci., 6, 367–371, https://doi.org/10.1038/ngeo1766, 2013. a, b
Dome Fuji Ice Core Project Members: Kawamura, K., Abe-Ouchi, A., Motoyama, H., Ageta, Y., Aoki, S., Azuma, N., Fujii, Y., Fujita, K., Fujita, S., Fukui, K., Furukawa, T., Furusaki, A., Goto-Azuma, K., Greve, R., Hirabayashi, M., Hondoh, T., Hori, A., Horikawa, S., Horiuchi, K., Igarashi, M., Iizuka, Y., Kameda, T., Kanda, H., Kohno, M., Kuramoto, T., Matsushi, Y., Miyahara, M., Miyake, T., Miyamoto, A., Nagashima, Y., Nakayama, Y., Nakazawa, T., Nakazawa, F., Nishio, F., Obinata, I., Ohgaito, R., Oka, A., Okuno, J., Okuyama, J., Oyabu, I., Parrenin, F., Pattyn, F., Saito, F., Saito, T., Saito, T., Sakurai, T., Sasa, K., Seddik, H., Shibata, Y., Shinbori, K., Suzuki, K., Suzuki, T., Takahashi, A., Takahashi, K., Takahashi, S., Takata, M., Tanaka, Y., Uemura, R., Watanabe, G., Watanabe, O., Yamasaki, T., Yokoyama, K., Yoshimori, M., and Yoshimoto, T.: State dependence of climatic instability over the past 720 000 years
from Antarctic ice cores and climate modeling, Sci. Adv., 3,
e1600446, https://doi.org/10.1126/sciadv.1600446, 2017. a
Eisen, O., Wilhelms, F., Steinhage, D., and Schwander, J.: Improved method to
determine radio-echo sounding reflector depths from ice-core profiles of
permittivity and conductivity, J. Glaciol., 52, 299–310,
https://doi.org/10.3189/172756506781828674, 2006. a, b, c, d
Eisen, O., Hamann, I., Kipfstuhl, S., Steinhage, D., and Wilhelms, F.: Direct evidence for continuous radar reflector originating from changes in crystal-orientation fabric, The Cryosphere, 1, 1–10, https://doi.org/10.5194/tc-1-1-2007, 2007. a
EPICA community members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, https://doi.org/10.1038/nature02599, 2004. a
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.: High
geothermal heat flow, basal melt, and the origin of rapid ice flow in central
Greenland, Science, 294, 2338–2342, https://doi.org/10.1126/science.1065370, 2001. a
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C., Blankenship, D., Chappellaz, J., Creyts, T., Dahl-Jensen, D., Dinn, M., Frezzotti, M., Fujita, S., Gallee, H., Hindmarsh, R., Hudspeth, D., Jugie, G., Kawamura, K., Lipenkov, V., Miller, H., Mulvaney, R., Parrenin, F., Pattyn, F., Ritz, C., Schwander, J., Steinhage, D., van Ommen, T., and Wilhelms, F.: Where to find 1.5 million yr old ice for the IPICS ”Oldest-Ice” ice core, Clim. Past, 9, 2489–2505, https://doi.org/10.5194/cp-9-2489-2013, 2013. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S.,
Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M., Traversi, R., Udisti, R., and Fily, M.: New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements, Clim. Dynam., 23, 803–813, 2004. a
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S.,
Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M., Traversi, R., Udisti, R., and Fily, M.: Spatial and
temporal variability of snow accumulation in East Antarctica from traverse
data, J. Glaciol., 51, 113–124, https://doi.org/10.3189/172756505781829502,
2005. a, b
Frezzotti, M., Urbini, S., Proposito, M., Scarchilli, C., and Gandolfi, S.:
Spatial and temporal variability of surface mass balance near Talos Dome,
East Antarctica, J. Geophys. Res.-Earth, 112, F02032,
https://doi.org/10.1029/2006JF000638, 2007. a
Fujita, S., Matsuoka, T., Ishida, T., Matsuoka, K., and Mae, S.: The Physics
of Ice Core Records. Chap. A summary of the complex dielectric permittivity
of ice in the megahertz range and its application for radar sounding of polar
ice sheets, Hokkaido University Press, Sapporo, Japan, 185–212, 2000. a
Gogineni, S., Chuah, T., Allen, C., Jkzek, K., and Moore, R. K.: Instruments
and Methods: An improved coherent radar depth sounder, J.
Glaciol., 44, 659–669, https://doi.org/10.3189/S0022143000002161, 1998. a
Gudmandsen, P.: Layer echoes in polar ice sheets, J. Glaciol., 15,
95–101, https://doi.org/10.3189/S0022143000034304, 1975. a
Gulick, S. P., Shevenell, A. E., Montelli, A., Fernandez, R., Smith, C., Warny,
S., Bohaty, S. M., Sjunneskog, C., Leventer, A., Frederick, B., and Blankenship, D. D.:
Initiation and long-term instability of the East Antarctic Ice Sheet,
Nature, 552, 225–229, https://doi.org/10.1038/nature25026, 2017. a
Harrison, C.: Radio echo sounding of horizontal layers in ice, J.
Glaciol., 12, 383–397, https://doi.org/10.3189/S0022143000031804, 1973. a
Hindmarsh, R. C., Leysinger Vieli, G. J., and Parrenin, F.: A large-scale
numerical model for computing isochrone geometry, Ann. Glaciol., 50,
130–140, https://doi.org/10.3189/172756409789097450, 2009. a
Holschuh, N., Christianson, K., and Anandakrishnan, S.: Power loss in dipping
internal reflectors, imaged using ice-penetrating radar, Ann.
Glaciol., 55, 49–56, https://doi.org/10.3189/2014AoG67A005, 2014. a, b
Huybrechts, P., Rybak, O., Steinhage, D., and Pattyn, F.: Past and present
accumulation rate reconstruction along the Dome Fuji–Kohnen radio-echo
sounding profile, Dronning Maud Land, East Antarctica, Ann. Glaciol.,
50, 112–120, https://doi.org/10.3189/172756409789097513, 2009. a, b
Jacobel, R. W. and Hodge, S. M.: Radar internal layers from the Greenland
summit, Geophys. Res. Lett., 22, 587–590, https://doi.org/10.1029/95GL00110,
1995. a, b
Jacobel, R. W., Scambos, T., Nereson, N., and Raymond, C.: Changes in the margin
of Ice Stream C, Antarctica, J. Glaciol., 46, 102–110,
https://doi.org/10.3189/172756500781833485, 2000. a
Karlsson, N. B., Rippin, D. M., Bingham, R. G., and Vaughan, D. G.: A
‘continuity-index’ for assessing ice-sheet dynamics from radar-sounded
internal layers, Earth Planet. Sc. Lett., 335, 88–94,
https://doi.org/10.1016/j.epsl.2012.04.034, 2012. a
Karlsson, N. B., Binder, T., Eagles, G., Helm, V., Pattyn, F., Van Liefferinge, B., and Eisen, O.: Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”, The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, 2018. a
Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus,
J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., and Watanabe, O.: Northern
Hemisphere forcing of climatic cycles in Antarctica over the past 360,000
years, Nature, 448, 912–916, https://doi.org/10.1038/nature06015,
2007. a
Koutnik, M. R., Fudge, T., Conway, H., Waddington, E. D., Neumann, T. A.,
Cuffey, K. M., Buizert, C., and Taylor, K. C.: Holocene accumulation and ice
flow near the West Antarctic Ice Sheet Divide ice core site, J.
Geophys. Res.-Earth, 121, 907–924,
https://doi.org/10.1002/2015JF003668, 2016. a
Leysinger Vieli, G. J., Hindmarsh, R. C., Siegert, M. J., and Bo, S.:
Time-dependence of the spatial pattern of accumulation rate in East
Antarctica deduced from isochronic radar layers using a 3-D numerical ice
flow model, J. Geophys. Res.-Earth, 116, F02018,
https://doi.org/10.1029/2010JF001785, 2011. a, b, c, d, e
Lohoefener, A.: Design and development of a multi-channel radar depth
sounder, PhD thesis, University of Kansas, Lawrence, Kansas, USA, 2006. a
MacGregor, J. A., Matsuoka, K., Koutnik, M. R., Waddington, E. D., Studinger,
M., and Winebrenner, D. P.: Millennially averaged accumulation rates for the
Vostok Subglacial Lake region inferred from deep internal layers, Ann.
Glaciol., 50, 25–34, 2009. a
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Paden, J. D.,
Prasad Gogineni, S., Young, S. K., Rybarski, S. C., Mabrey, A. N., Wagman,
B. M., and Morlighem, M.: Radiostratigraphy and age structure of the
Greenland Ice Sheet, J. Geophys. Res.-Earth, 120,
212–241, https://doi.org/10.1002/2014JF003215, 2015a. a, b, c, d, e
MacGregor, J. A., Li, J., Paden, J. D., Catania, G. A., Clow, G. D.,
Fahnestock, M. A., Prasad Gogineni, S., Grimm, R. E., Morlighem, M., Nandi,
S., Seroussi, H., and Stillman, D. E.: Radar attenuation and temperature within the Greenland Ice
Sheet, J. Geophys. Res.-Earth, 120, 983–1008,
https://doi.org/10.1002/2014JF003418, 2015b. a
MacGregor, J. A., Colgan, W. T., Fahnestock, M. A., Morlighem, M., Catania,
G. A., Paden, J. D., and Gogineni, S. P.: Holocene deceleration of the
Greenland Ice Sheet, Science, 351, 590–593, https://doi.org/10.1126/science.aab1702,
2016a. a
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow,
G. D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S. M., Paden,
J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal thermal state of the Greenland Ice
Sheet, J. Geophys. Res.-Earth, 121, 1328–1350,
https://doi.org/10.1002/2015JF003803, 2016b. a
Millar, D.: Radio-echo layering in polar ice sheets and past volcanic
activity, Letters to Nature, 292, 441–443, https://doi.org/10.1038/292441a0, 1981. a, b
NEEM community members: Eemian interglacial reconstructed from a Greenland
folded ice core, Nature, 493, 489–494, https://doi.org/10.1038/nature11789, 2013. a
Neumann, T., Conway, H., Price, S., Waddington, E., Catania, G., and Morse, D.:
Holocene accumulation and ice sheet dynamics in central West Antarctica,
J. Geophys. Res.-Earth, 113, F02018,
https://doi.org/10.1029/2007JF000764, 2008. a
Nixdorf, U., Steinhage, D., Meyer, U., Hempel, L., Jenett, M., Wachs, P., and
Miller, H.: The newly developed airborne radio-echo sounding system of the
AWI as a glaciological tool, Ann. Glaciol., 29, 231–238,
https://doi.org/10.3189/172756499781821346, 1999. a, b
Oerter, H., Graf, W., Meyer, H., and Wilhelms, F.: The EPICA ice core from
Dronning Maud Land: first results from stable-isotope measurements, Ann. Glaciol., 39, 307–312, https://doi.org/10.3189/172756404781814032, 2004. a
Paren, J. and Robin, G. d. Q.: Internal reflections in polar ice sheets,
J. Glaciol., 14, 251–259,
https://doi.org/10.3189/S0022143000021730, 1975. a
Parrenin, F., Remy, F., Ritz, C., Siegert, M. J., and Jouzel, J.: New modeling
of the Vostok ice flow line and implication for the glaciological chronology
of the Vostok ice core, J. Geophys. Res.-Atmos., 109, D20102,
https://doi.org/10.1029/2004JD004561, 2004. a
Parrenin, F., Cavitte, M. G. P., Blankenship, D. D., Chappellaz, J., Fischer, H., Gagliardini, O., Masson-Delmotte, V., Passalacqua, O., Ritz, C., Roberts, J., Siegert, M. J., and Young, D. A.: Is there 1.5-million-year-old ice near Dome C, Antarctica?, The Cryosphere, 11, 2427–2437, https://doi.org/10.5194/tc-11-2427-2017, 2017. a, b, c, d
Peters, M. E., Blankenship, D. D., and Morse, D. L.: Analysis techniques for
coherent airborne radar sounding: Application to West Antarctic ice streams,
J. Geophys. Res.-Sol. Ea., 110, B06303,
https://doi.org/10.1029/2004JB003222, 2005. a
Raymond, C. F.: Deformation in the vicinity of ice divides, J.
Glaciol., 29, 357–373, https://doi.org/10.3189/S0022143000030288, 1983. a
Rippin, D. M., Siegert, M. J., and Bamber, J. L.: The englacial stratigraphy
of Wilkes Land, East Antarctica, as revealed by internal radio-echo sounding
layering, and its relationship with balance velocities, Ann.
Glaciol., 36, 189–196, https://doi.org/10.3189/172756403781816356, 2003. a
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and Hindmarsh,
R. C.: Potential sea-level rise from Antarctic ice-sheet instability
constrained by observations, Nature, 528, 115–118, https://doi.org/10.1038/nature16147,
2015. a
Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., and Wolff, E.: “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years, Clim. Past, 3, 475–484, https://doi.org/10.5194/cp-3-475-2007, 2007. a
Scambos, T. A., Frezzotti, M., Haran, T., Bohlander, J., Lenaerts, J., Van
Den Broeke, M., Jezek, K., Long, D., Urbini, S., Farness, K., Neumann, T., Albert, M., and Winther, J.-G.: Extent
of low-accumulation'wind glaze'areas on the East Antarctic plateau:
implications for continental ice mass balance, J. Glaciol., 58,
633–647, https://doi.org/10.3189/2012JoG11J232, 2012. a
Siegert, M. J.: Glacial–interglacial variations in central East Antarctic ice
accumulation rates, Quaternary Sci. Rev., 22, 741–750,
https://doi.org/10.1016/S0277-3791(02)00191-9, 2003. a
Siegert, M. J. and Payne, A. J.: Past rates of accumulation in central West
Antarctica, Geophys. Res. Lett., 31, L12403, https://doi.org/10.1029/2004GL020290,
2004. a
Siegert, M. J., Hodgkins, R., and Dowdeswell, J. A.: A chronology for the Dome C deep ice-core site through radio-echo layer Correlation with the Vostok Ice Core, Antarctica, Geophys. Res. Lett., 25, 1019–1022,
https://doi.org/10.1029/98GL00718, 1998a. a
Siegert, M. J., Hodgkinst, R., and Dowdeswell, J. A.: Internal radio-echo
layering at Vostok station, Antarctica, as an independent stratigraphie
control on the ice-core record, Ann. Glaciol., 27, 360–364,
https://doi.org/10.3189/1998AoG27-1-360-364, 1998b. a, b, c, d
Siegert, M. J., Hindmarsh, R. C., and Hamilton, G. S.: Evidence for a large
surface ablation zone in central East Antarctica during the last Ice Age,
Quaternary Res., 59, 114–121, https://doi.org/10.1016/S0033-5894(02)00014-5, 2003. a
Siegert, M. J., Welch, B., Morse, D., Vieli, A., Blankenship, D. D., Joughin,
I., King, E. C., Gwendolyn, J.-M., Payne, A. J., and Jacobel, R.: Ice flow
direction change in interior West Antarctica, Science, 305, 1948–1951,
https://doi.org/10.1126/science.1101072, 2004. a
Siegert, M. J., Pokar, M., Dowdeswell, J. A., and Benham, T.: Radio-echo
layering in West Antarctica: a spreadsheet dataset, Earth Surf. Proc. Land.,
30, 1583–1591, https://doi.org/10.1002/esp.1238, 2005. a
Steinhage, D.: Beiträge aus geophysikalischen Messungen in Dronning Maud
Land, Antarktis, zur Auffindung eines optimalen Bohrpunktes für eine
Eiskerntiefbohrung = Contributions of geophysical measurements in Dronning
Maud Land, Antarctica, locating an optimal drill site for a deep ice core
drilling, Berichte zur Polar-und Meeresforschung (Reports on Polar and
Marine Research), Alfred Wegener Institute for Polar and Marine Research, vol. 384, 91 pp., https://doi.org/10.2312/BzPM_0384_2001, 2001. a
Steinhage, D., Nixdorf, U., Meyer, U., and Miller, H.: Subglacial topography
and internal structure of central and western Dronning Maud Land, Antarctica,
determined from airborne radio echo sounding, J. Appl. Geophys.,
47, 183–189, https://doi.org/10.1016/S0926-9851(01)00063-5, 2001. a, b, c, d
Steinhage, D., Kipfstuhl, S., Nixdorf, U., and Miller, H.: Internal structure
of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed
by airborne radio-echo sounding, Ann. Glaciol., 54, 163–167,
https://doi.org/10.3189/2013AoG64A113, 2013. a, b, c
Studinger, M., Bell, R. E., Karner, G. D., Tikku, A. A., Holt, J. W., Morse,
D. L., Richter, T. G., Kempf, S. D., Peters, M. E., Blankenship, D. D.,
Sweeney, R. E., and Rystrom, V. L.: Ice cover, landscape setting, and geological framework of Lake
Vostok, East Antarctica, Earth Planet. Sc. Lett., 205, 195–210,
https://doi.org/10.1016/S0012-821X(02)01041-5, 2003. a
Sutter, J., Thoma, M., and Lohmann, G.: Integration of passive tracers in a
three-dimensional ice sheet model, in: Towards an Interdisciplinary Approach
in Earth System Science, 161–170, Springer, Cham, Switzerland, 2015. a
Sutter, J., Grosfeld, K., Karlsson, N. B., Kleiner, T., and Eisen, O.: Oldest
Ice in Antarctica –- the 3d continental ice sheet modelling perspective,
Geophysical Research Abstracts, EGU General Assembly, 4–13 April 2018, Vienna, Austria, 2018. a
Svensson, A., Bigler, M., Blunier, T., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Fujita, S., Goto-Azuma, K., Johnsen, S. J., Kawamura, K., Kipfstuhl, S., Kohno, M., Parrenin, F., Popp, T., Rasmussen, S. O., Schwander, J., Seierstad, I., Severi, M., Steffensen, J. P., Udisti, R., Uemura, R., Vallelonga, P., Vinther, B. M., Wegner, A., Wilhelms, F., and Winstrup, M.: Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP), Clim. Past, 9, 749–766, https://doi.org/10.5194/cp-9-749-2013, 2013. a
Urbini, S., Frezzotti, M., Gandolfi, S., Vincent, C., Scarchilli, C., Vittuari,
L., and Fily, M.: Historical behaviour of Dome C and Talos Dome (East
Antarctica) as investigated by snow accumulation and ice velocity
measurements, Global Planet. Change, 60, 576–588,
https://doi.org/10.1016/j.gloplacha.2007.08.002, 2008. a
Van Liefferinge, B. and Pattyn, F.: Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica, Clim. Past, 9, 2335–2345, https://doi.org/10.5194/cp-9-2335-2013, 2013. a
Van Liefferinge, B., Pattyn, F., Cavitte, M. G. P., Karlsson, N. B., Young, D. A., Sutter, J., and Eisen, O.: Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling, The Cryosphere, 12, 2773–2787, https://doi.org/10.5194/tc-12-2773-2018, 2018. a
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013. a, b, c
Waddington, E. D., Neumann, T. A., Koutnik, M. R., Marshall, H.-P., and Morse,
D. L.: Inference of accumulation-rate patterns from deep layers in glaciers
and ice sheets, J. Glaciol., 53, 694–712,
https://doi.org/10.3189/002214307784409351, 2007. a
Weertman, J.: Sliding-no sliding zone effect and age determination of ice
cores, Quaternary Res., 6, 203–207, 1976. a
Whillans, I. M.: Radio-echo layers and the recent stability of the West
Antarctic ice sheet, Nature, 264, 152–155, 1976. a
Winter, A., Steinhage, D., Arnold, E. J., Blankenship, D. D., Cavitte, M. G. P., Corr, H. F. J., Paden, J. D., Urbini, S., Young, D. A., and Eisen, O.: Comparison of measurements from different radio-echo sounding systems and synchronization with the ice core at Dome C, Antarctica, The Cryosphere, 11, 653–668, https://doi.org/10.5194/tc-11-653-2017, 2017.
a, b, c, d, e, f
Winter, A., Steinhage, D., Creyts, T. T., and Eisen, O.: Radio-echo
sounding isochrone depths in the East Antarctic Ice Sheet, PANGAEA,
https://doi.org/10.1594/PANGAEA.895528, 2018. a, b
Young, D. A., Roberts, J. L., Ritz, C., Frezzotti, M., Quartini, E., Cavitte, M. G. P., Tozer, C. R., Steinhage, D., Urbini, S., Corr, H. F. J., van Ommen, T., and Blankenship, D. D.: High-resolution boundary conditions of an old ice target near Dome C, Antarctica, The Cryosphere, 11, 1897–1911, https://doi.org/10.5194/tc-11-1897-2017, 2017. a
Altmetrics
Final-revised paper
Preprint