Review article 26 Feb 2018
Review article | 26 Feb 2018
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone
Valery Kashparov et al.
Related authors
No articles found.
Catherine L. Barnett, Nicholas A. Beresford, Michael D. Wood, Maria Izquierdo, Lee A. Walker, and Ross Fawkes
Earth Syst. Sci. Data, 12, 3021–3038, https://doi.org/10.5194/essd-12-3021-2020, https://doi.org/10.5194/essd-12-3021-2020, 2020
Short summary
Short summary
This paper describes data from a study conducted in 2015–2016 to sample terrestrial wildlife, soil and water from two forests in north-eastern England. Sampling was targeted towards species representative of the International Commission on Radiological Protection’s (ICRP) terrestrial Reference Animals and Plants (RAPs): Wild Grass, Pine Tree, Earthworm, Bee, Rat, Deer and Frog. The dataset comprises stable-element and radionuclide activity concentrations.
Valery Kashparov, Sviatoslav Levchuk, Marina Zhurba, Valentyn Protsak, Nicholas A. Beresford, and Jacqueline S. Chaplow
Earth Syst. Sci. Data, 12, 1861–1875, https://doi.org/10.5194/essd-12-1861-2020, https://doi.org/10.5194/essd-12-1861-2020, 2020
Short summary
Short summary
Sampling and analysis methodology and spatial radionuclide deposition data from the 60 km area around the Chernobyl Nuclear Power Plant, sampled in 1987 by the Ukrainian Institute of Agricultural Radiology, are useful for reconstructing doses to human and wildlife populations, answering the current lack of scientific consensus on the effects of radiation on wildlife in the Chernobyl Exclusion Zone and evaluating future management options for the Chernobyl-impacted areas of Ukraine and Belarus.
J. S. Chaplow, N. A. Beresford, and C. L. Barnett
Earth Syst. Sci. Data, 7, 215–221, https://doi.org/10.5194/essd-7-215-2015, https://doi.org/10.5194/essd-7-215-2015, 2015
Short summary
Short summary
The data set ‘Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain’ was developed to enable data collected by the Natural Environment Research Council after the Chernobyl accident to be made publicly available. Data for samples collected between May 1986 (immediately after Chernobyl) to spring 1997 are freely available for non-commercial use under Open Government Licence terms and conditions. doi: 10.5285/d0a6a8bf-68f0-4935-8b43-4e597c3bf251.
Related subject area
Hydrology and Soil Science – Soil Sciences, Soil Chemistry, Soil Biochemistry
An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018
A new dataset of soil carbon and nitrogen stocks and profiles from an instrumented Greenlandic fen designed to evaluate land-surface models
Spatial radionuclide deposition data from the 60 km radial area around the Chernobyl Nuclear Power Plant: results from a sampling survey in 1987
Generalized models to estimate carbon and nitrogen stocks of organic soil horizons in Interior Alaska
Soil moisture and matric potential – an open field comparison of sensor systems
CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0
EstSoil-EH v1.0: An eco-hydrological modelling parameters dataset derived from the Soil Mapof Estonia
Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau
A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves
WoSIS: providing standardised soil profile data for the world
Post-Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain
A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region
The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions
Yongzhe Chen, Xiaoming Feng, and Bojie Fu
Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, https://doi.org/10.5194/essd-13-1-2021, 2021
Short summary
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Xavier Morel, Birger Hansen, Christine Delire, Per Ambus, Mikhail Mastepanov, and Bertrand Decharme
Earth Syst. Sci. Data, 12, 2365–2380, https://doi.org/10.5194/essd-12-2365-2020, https://doi.org/10.5194/essd-12-2365-2020, 2020
Short summary
Short summary
Nuuk fen site is a well-instrumented Greenlandic site where soil physical variables and greenhouse gas fluxes are monitored. But knowledge of soil carbon stocks and profiles is missing. This is a crucial shortcoming for a complete evaluation of models. For the first time we measured soil carbon and nitrogen density, profiles, and stocks in the Nuuk peatland. This new dataset can contribute to further develop joint modeling of greenhouse gas emissions and soil carbon in land-surface models.
Valery Kashparov, Sviatoslav Levchuk, Marina Zhurba, Valentyn Protsak, Nicholas A. Beresford, and Jacqueline S. Chaplow
Earth Syst. Sci. Data, 12, 1861–1875, https://doi.org/10.5194/essd-12-1861-2020, https://doi.org/10.5194/essd-12-1861-2020, 2020
Short summary
Short summary
Sampling and analysis methodology and spatial radionuclide deposition data from the 60 km area around the Chernobyl Nuclear Power Plant, sampled in 1987 by the Ukrainian Institute of Agricultural Radiology, are useful for reconstructing doses to human and wildlife populations, answering the current lack of scientific consensus on the effects of radiation on wildlife in the Chernobyl Exclusion Zone and evaluating future management options for the Chernobyl-impacted areas of Ukraine and Belarus.
Kristen Manies, Mark Waldrop, and Jennifer Harden
Earth Syst. Sci. Data, 12, 1745–1757, https://doi.org/10.5194/essd-12-1745-2020, https://doi.org/10.5194/essd-12-1745-2020, 2020
Short summary
Short summary
Boreal ecosystems are unique in that their mineral soil is covered by what can be quite thick layers of organic soil. Layers within this organic soil have different bulk densities, carbon composition, and nitrogen composition. We summarize these properties by soil layer and examine if and how they are affected by soil drainage and stand age. These values can be used to initialize and validate models as well as gap fill when these important soil properties are not measured.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-192, https://doi.org/10.5194/essd-2019-192, 2019
Revised manuscript accepted for ESSD
Short summary
Short summary
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We developed software modules and a workflow to extract and derive a wide range of exact numerical variables from the text-encoded soil descriptions from the Soil Map of Estonia and collated them in the EstSoil-EH v1.0 spatial dataset. This new dataset is now ready to use in a variety of mapping, analysis and modelling tasks.
Hong Zhao, Yijian Zeng, Shaoning Lv, and Zhongbo Su
Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, https://doi.org/10.5194/essd-10-1031-2018, 2018
Short summary
Short summary
The Tibet-Obs soil properties dataset was compiled based on in situ and laboratory measurements of soil profiles across three climate zones on the Tibetan Plateau. The appropriate parameterization schemes of soil hydraulic and thermal properties were discussed for their applicability in land surface modeling. The uncertainties of existing soil datasets were evaluated. This paper contributes to land surface modeling and hydro-climatology communities for their studies of the third pole region.
Carsten Montzka, Michael Herbst, Lutz Weihermüller, Anne Verhoef, and Harry Vereecken
Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017, https://doi.org/10.5194/essd-9-529-2017, 2017
Short summary
Short summary
Global climate models require adequate parameterization of soil hydraulic properties, but typical resampling to the model grid introduces uncertainties. Here we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the problems. It preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters that enables modellers to perturb hydraulic parameters for model ensemble generation.
Niels H. Batjes, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars, Tom Hengl, and Jorge Mendes de Jesus
Earth Syst. Sci. Data, 9, 1–14, https://doi.org/10.5194/essd-9-1-2017, https://doi.org/10.5194/essd-9-1-2017, 2017
Short summary
Short summary
Soil is an important provider of ecosystem services. Yet this natural resource is being threatened. Professionals, scientists, and decision makers require quality-assessed soil data to address issues such as food security, land degradation, and climate change. Procedures for safeguarding, standardising, and subsequently serving of consistent soil data to underpin broad-scale mapping and modelling are described. The data are freely accessible at doi:10.17027/isric-wdcsoils.20160003.
J. S. Chaplow, N. A. Beresford, and C. L. Barnett
Earth Syst. Sci. Data, 7, 215–221, https://doi.org/10.5194/essd-7-215-2015, https://doi.org/10.5194/essd-7-215-2015, 2015
Short summary
Short summary
The data set ‘Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain’ was developed to enable data collected by the Natural Environment Research Council after the Chernobyl accident to be made publicly available. Data for samples collected between May 1986 (immediately after Chernobyl) to spring 1997 are freely available for non-commercial use under Open Government Licence terms and conditions. doi: 10.5285/d0a6a8bf-68f0-4935-8b43-4e597c3bf251.
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
G. Hugelius, C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson
Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, https://doi.org/10.5194/essd-5-3-2013, 2013
Cited articles
Aronov, V. I.: Methods of creation of maps of geological and geophysical
characteristics and application of geometry for mapping of oil and gas
deposits using computers, Book Company “Nedra”, Moscow, Russia, 1990 (in
Russian).
Balashazy, I., Hofmann, W., and Martonen, T. B.: A model of particle
deposition at airway bifurcations, J. Aerosol Med., 1, 190–191, 1988.
Barnett, C. and Welch, S.: Thirty years after the Chernobyl accident: what do
we know about the effects of radiation on the environment?, COMET project,
European Commission, available at:
http://www.radioecology-exchange.org/sites/www.radioecology-exchange.org/files/files/Deliverable_56_COMET_workshop_4_final.pdf
(last access 13 June 2017), 2016.
Beaugelin-Seiller, K., Garnier-Laplace, J., and Beresford, N. A.: Estimating
radiological exposure of wildlife in the field, J. Environ. Radioactiv.,
submitted, 2018.
Begichev, S. N., Borovoy, A. A., Burlakov, E. V., Havrilov, S. L., Dovbenko,
A. A., Levina, L. A., Markushev, D. M., Marchenko, A. E., Stroganov, A. A.,
and Tataurov A. K.: Preprint IAE-5268/3: Reactor Fuel of Unit 4 of the
Chernobyl NPP (a brief handbook), Moscow, Publisher Kurchatov Institute of
Atomic Energy, 21 pp., 1990 (in Russian).
Beresford, N. A. and Copplestone, D.: Effects of ionizing radiation on
wildlife: what knowledge have we gained between the Chernobyl and Fukushima
accidents?, Integr. Environ. Asses., 7, 371–373, soi:10.1002/ieam.238, 2011.
Beresford, N. A., Barnett, C. L., Jones, D. G., Wood, M. D., Appleton, J. D.,
Breward, N., and Copplestone, D.: Background exposure rates of terrestrial
wildlife in England and Wales, J. Environ. Radioactiv., 99, 1430–1439,
https://doi.org/10.1016/j.jenvrad.2008.03.003, 2008.
Beresford, N. A., Barnett, C. L., Howard, B. J., Howard, D. C., Wells, C.,
Tyler, A. N., Bradley, S., and Copplestone, D.: Observations of Fukushima
fallout in Great Britain, J. Environ. Radioactiv., 114, 48–53,
https://doi.org/10.1016/j.jenvrad.2011.12.008, 2012a.
Beresford, N. A., Adam-Guillermin, C., Bonzom, J.-M., Garnier-Laplace, J.,
Hinton, T., Lecomte, C., Copplestone, D., Della Vedova, C., and Ritz, C.:
Response to authors' reply regarding “Abundance of birds in Fukushima as
judged from Chernobyl” by Møller et al., 2012, Environ. Pollut., 169,
139–140, https://doi.org/10.1016/j.envpol.2012.05.013, 2012b.
Beresford, N. A., Fesenko, S., Konoplev, A., Smith, J. T., Skuterud, L., and
Voigt, G.: Thirty years after the Chernobyl accident, J. Environ.
Radioactiv., 157, 38–40, https://doi.org/10.1016/j.jenvrad.2016.01.023, 2016.
Chaplow, J. S., Beresford, N. A., and Barnett, C. L.: Post Chernobyl surveys
of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain,
NERC Environmental Information Data Centre,
https://doi.org/10.5285/d0a6a8bf-68f0-4935-8b43-4e597c3bf251, 2015a.
Chaplow, J. S., Beresford, N. A., and Barnett, C. L.: Post-Chernobyl surveys
of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain,
Earth Syst. Sci. Data, 7, 215–221, https://doi.org/10.5194/essd-7-215-2015,
2015b.
Dabrowska, M., Jaracz, P., Jastrzebski, J., Kaczanowski, J., Mirowski, S.,
Osuch, S., Piasecki, E., Pienkowski, L., Szeflinska, G., Szeflinski, Z.,
Tropilo, J., and Wilhlemi, Z.: Isotopic composition of hot particles
collected in North-East Poland, International Workshop on Hot Particles in
the Chernobyl Fallout, Theuern, Germany, 28–29 October, 1987.
Evangeliou, N., Hamburger, T., Talerko, N., Zibtsev, S., Bondar, Y., Stohl,
A., Balkanski, Y., Mousseau, T. A., and Møller A. P.: Reconstructing the
Chernobyl Nuclear Power Plant (CNPP) accident 30 years after, A unique
database of air concentration and deposition measurements over Europe,
Environ. Pollut., 216, 408–418, 2016.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V., Prizhukov, V. G.,
Shaymukhametova, A. A., Yerinov, A. L., Luchkina, L. E., Konkina, V. L.,
Pankova, N. G., Vasilevskaya, N. V., Pleshkova, A.P., Yakovleva, A. A.,
Gruzdeva, T. S., Chebotareva, N. A., Molkanova, L. I., Soboleva, O. V., and
Kondratieva, G. K.: GOST 26423-85, Soil, Methods for determination of
specific electric conductivity, pH and dense residue of aqueous extract,
Ministry of Agriculture of the USSR, available at:
http://docs.cntd.ru/document/gost-26423-85 (last access: 19 February
2018), 1985a.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V, Prizhukova, V. G.,
Shaymukhametova, A. A., Molkanova, L. I., Chukova, T. V., Belyanina, E. N.,
Mayortz, G. A., Mezhova, N. P., Erinov, A. E., Arsenyeva, M. N., Gruzdeva, T.
S., Vasilevskaya, N. V., Sukhareva, V. N., Pleshkova, A. P., Yakovleva, A.
A., and Orlov, A. N.: GOST 26483-85, Soil, Preparation of salt extract and
determination of its pH by the CINAO method, Ministry of Agriculture of the
USSR, available at: http://docs.cntd.ru/document/gost-26483-85 (last
access: 19 February 2018), 1985b.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V, Prizhukova, V. G.,
Shaymukhametova, A. A., Molkanova, L. I., Chukova, T. V., Belyanina, E. N.,
Mayortz, G. A., Mezhova, N. P., Erinov, A. E., Arsenyeva, M. N., Gruzdeva, T.
S., Vasilevskaya, N. V., Sukhareva, V. N., Pleshkova, A. P., Yakovleva, A.
A., and Orlov, A. N.: GOST 26487-85, Soils, Determination of exchangeable
calcium and exchangeable (mobile) magnesium by CINAO methods, Ministry of
Agriculture of the USSR, available at:
http://docs.cntd.ru/document/gost-26487-85 (last access: 19 February
2018), 1985c.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V., Orlov, A. N., Khabarov,
K. A., Prizhukov, V. G., and Privalenkov S. Y.: GOST 26213-91, Soil, Methods
for the determination of organic matter, Committee for Standardization and
Metrology of the USSR, available at:
http://docs.cntd.ru/document/gost-26213-91 (last access: 19 February
2018), 1991a.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V., Orlov, A. N., Khabarov,
K. A., Sukharev, V. N., Fedotov, M. I., and Sokolov, Y. V.: GOST 26207-91,
Soils, Determination of mobile compounds of phosphorus and potassium by
Kirsanov method modified by CINAO, Committee for Standardization and
Metrology of the USSR, available at:
http://docs.cntd.ru/document/gost-26207-91 (last access: 19 February
2018), 1991b.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V., Orlov, A. N., Khabarov,
K. A., Vasilevskaya, N. V., and Erinov, A. E.: GOST 26212-91, Soils,
Determination of hydrolytic acidity by Kappen method modified by CINAO,
Committee for Standardization and Metrology of the USSR, available at:
http://docs.cntd.ru/document/ gost-26212-91 (last access: 19 February
2018), 1991c.
Derzhavin, L. M., Samohvalov, S. G., Sokolov, N. V., Orlov, A. N., ,
Sukharev, V. N., Fedotov, M. I., and Sokolov, V. V.: GOST 26204-91, Soils,
Determination of mobile compounds of phosphorus and potassium by Chiricov
method modified by CINAO, Committee for Standardization and Metrology of the
USSR, available at: http://docs.cntd.ru/document/gost-26204-91 (last
access: 21 February 2018), 1991d.
Hinton, T. G., Garnier-Laplace, J., Vandenhove, H., Dowdall, M.,
Adam-Guillermin, C., Alonzo, F., Barnett, C., Beaugelin-Seiller, K.,
Beresford, N. A., Bradshaw, C., Brown, J., Eyrolle, F., Fevrier, L., Gariel,
J.-C., Gilbin, R., Hertel-Aas, T., Horemans, N., Howard, B. J.,
Ikäheimonen, T., Mora, J. C., Oughton, D., Real, A., Salbu, B.,
Simon-Cornu, M., Steiner, M., Sweeck, L., and Vives i Batlle, J.: An
invitation to contribute to a strategic research agenda in radioecology,
Environ. Radioactivity, 115, 73–82, https://doi.org/10.1016/j.jenvrad.2012.07.011,
2013.
International Organization for Standardization: Measurement of radioactivity
in the environment – Soil – Part 5: Measurement of strontium 90, ISO
18589-5:2009, available at: https://www.iso.org/standard/40877.html
(last access 17 May 2017), 2013.
Ivanov, Y. A., Lewyckyj, N., Levchuk, S. E., Prister, B. S., Firsakova, S.
K., Arkhipov, N. P., Arkhipov, A. N., Kruglov, S. V., Alexakhin, R. M.,
Sandalls, J., and Askbrant, S.: Migration of 137Cs and 90Sr from
Chernobyl fallout in Ukrainian, Belarussian and Russian soils, J. Environ.
Radioactiv., 35, 1–21, 1997.
Kashparov, V. A.: Hot Particles at Chernobyl, Environ. Sci. Pollut. R., 10,
21–30, 2003.
Kashparov, V. A., Ivanov, Y. A., Zvarich, S. I., Protsak, V. P., Khomutinin,
Y. V., Kurepin, A. D., and Pazukhin, E. M.: Formation of Hot Particles During
the Chernobyl Nuclear Power Plant Accident, Nucl. Technol., 114, 246–253,
1996.
Kashparov, V. A., Ivanov, Y. A., Protsak, V. P., Khomucinin, Y. V.,
Yoschenko, V. I., and Pazukhin, E. M.: Assessment of the maximal temperature
and of the duration of annealing of Chernobyl fuel particles during the
accident, Radiokhimiya (Radiochemistry) 39, 66–70, 1997 (in Russian).
Kashparov, V. A., Oughton, D. H., Zvarich, S. I., Protsak, V. P., and
Levchuk, S. E.: Kinetics of fuel particle weathering and 90Sr mobility
in the Chernobyl 30-km exclusion zone, Health Phys., 76, 251–259, 1999.
Kashparov, V. A., Lundin, S. M., Khomutinin, Y. V., Kaminsky, S. P.,
Levtchuk, S. E., Protsak, V. P., Kadygrib, A. M., Zvarich, S. I., Yoschenko,
V. I., and Tschiersch, J.: Soil contamination with 90Sr in the near zone
of the Chernobyl accident, J. Environ. Radioactiv., 56, 285–298, 2001.
Kashparov, V. A., Ahamdach, N., Zvarich, S. I., Yoschenko, V. I., Maloshtan,
I. M., and Dewiere, L.: Kinetics of dissolution of Chernobyl fuel particles
in soil in natural conditions, J. Environ. Radioact., 72, 335–353,
https://doi.org/10.1016/j.jenvrad.2003.08.002, 2004.
Kashparov, V. A.: Assessment of ecological risk caused by the long-living
radionuclides in the environment, in: Ecotoxicology, Ecological Risk
Assessment and Multiple Stressors, edited by: Arapis, G., Goncharova, N., and
Baveye, P., Nato Sci. Peace Secur., 6, 155–164, 2006.
Kashparov, V. A., Levchuk, S., Protsak, V., Khomutinin, Yu, Maloshtan, I.,
Yoshenko, L., Otreshko, L., Pavlushenko, N., Kadygryb, A., Glukhovsky, A.,
Landshyn, V., Korol, V., and Lyubatchevskii, S. V.: Mapping the contamination
of Ivankiv district territory with radionuclides Final report November
2013–September 2014 on the studies carried out by UIAR within the frameworks
of contract No. 2013-04 from 19 November 2013, 2014.
Kashparov, V., Levchuk, S., Zhurba, M., Protsak, V., Khomutinin, Y.,
Beresford, N. A., and Chaplow, J. S.: Spatial datasets of radionuclide
contamination in the Ukrainian Chernobyl Exclusion Zone, NERC-Environmental
Information Data Centre, https://doi.org/10.5285/782ec845-2135-4698-8881-b38823e533bf,
2017.
Kerekes, A., Falk, R., and Suomela, J.: Analysis of hot particles collected
in Sweden after the Chernobyl accident, Statens Stralskyddinstitut,
SSI-rapport 91-02, 1991.
Khomutinin, Y. V., Kashparov, V. A., and Zhebrovska, K. I.: Sampling
optimisation when radioecological monitoring, Book publisher “VIPOL” Kiev,
Ukraine, available at: http://www.uiar.org.ua/Eng/7.pdf (last access:
19 February 2018), 2004.
Kuriny, V. D., Ivanov, Y. A., Kashparov, V. A., Loschilov, N. A., Protsak, V.
P., Yudin, E. B., Zhurba, M. A., and Parshakov, A. E.: Particle associated
Chernobyl fall-out in the local and intermediate zones, Ann. Nucl. Energy,
20, 415–420, 1993.
Loshchilov, N. A., Kashparov, V. A., Yudin, Y. B., Protsak, V. P., Zhurba, M.
A., and Parshakov, A. E.: Experimental assessment of radioactive fallout from
the Chernobyl accident, Sicurezza e Protezione, 25–26, 46–49, 1991.
Mandjoukov, I. G., Burin, K., Mandjoukova, B., Vapirev, E. I., and Tsacheva
T. S.: Spectrometry and visualization of “standard” hot particles from the
Chernobyl accident, Radiat. Prot. Dosim., 40, 235—244, 1992.
Møller, A. P. and Mousseau, T. A.: Efficiency of bio-indicators for
low-level radiation under field conditions, Ecol. Indicators, 11, 424–430,
2011.
Osuch, S., Dabrovska, M., Jaracz, P., Kaczanowski, J., Le Van Khoi.,
Mirowski, S., Piasecki, E., Szeflinska, G., Szeflinski, Z., Tropilo, J.,
Wilheimi, Z., Jastrzebski, J., and Pienkowski, L.: Isotopic composition of
high-activity particles released in the Chernobyl accident, Health Phys., 57,
707–716, 1989.
Pavlotskaya, F. I.: Main principles of radiochemical analysis of
environmental objects and methods of measurements of strontium and
transuranium elements radionuclides, J. Anal. Chem., 52, 126–143, 1997 (in
Russian).
Salbu, B., Krekling, T., Oughton, D. H., Ostby, G., Kashparov, V. A., Brand,
T. L., and Day, J. P.: Hot particles in accidental releases from Chernobyl
and Windscale nuclear installations, Analyst, 119, 125–130, 1994.
Schubert, P. and Behrend, U.: Investigations of radioactive particles from
the Chernobyl fall-out, Radiochim. Acta, 41, 149–155, 1987.
Shestopalov, V. M., Kashparov, V. A., and Ivanov, Y. A.: Radionuclide
Migration into the Geological Environment and Biota Accident, Environ. Sci.
Pollut. R., 10, 39–47, 2003.
Smith, J. T. and Beresford, N. A.: Radioactive fallout and environmental
transfers, in: Chernobyl – catastrophe and consequences, edited by: Smith,
J. T. and Beresford, N. A., Chichester, Praxis Publishing/Springer, 35–80,
2005.
Steiner, M., Willrodt, C., Wichterey, K., Ikäheimonen, T., Ioshchenko,
V., Hutri, K. L., Muikku, M., Outola, I., Beresford, N. A., Bradshaw, C.,
Dowdall, M., Eyrolle-Boyer, F., Guillevic, J., Hinton, T., Howard, B. J.,
Liland, A., Michalik, B., Mora, J. C., Oughton, D., Real, A., Robles, B.,
Salbu, B., Stark, K., and Sweeck, L.: Observatories for Radioecological
Research – Description, STAR project, European Commission, available at:
http://www.radioecology-exchange.org/sites/www.radioecology-exchange.org/files/STAR_Deliverable-2.3.pdf
(last access: 3 June 2017), 2013.
Stolbovoi, V.: Soils of Russia: Correlated with the revised legend of the FAO
soil map of the world and world reference base for soil resources, IIASA
Research Report, IIASA, Laxenburg, Austria: RR-00-013, available at:
http://pure.iiasa.ac.at/6111 (last access: 10 July 2017), 2000.
UIAR: The map of the 30-km Chernobyl zone terrestrial density of
contamination with strontium-90 (in 1997), UIAR, Kyiv, Ukraine, 1998.
United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR): UNSCEAR 1977 Report, Sources and effects of ionizing radiation,
available at: http://www.unscear.org/unscear/en/publications/1977.html
(last access: 7 June 2017), 1977.
United Nations Scientific Committee on the Effects of Atomic Radiation
(UNSCEAR): UNSCEAR 1988 Report, Sources, effects and risks of ionizing
radiation, available at:
http://www.unscear.org/unscear/en/publications/1988.html (last access:
June 2017), 1988.
United States Nuclear Regulatory Commmission (USNRC): Uranium Enrichment,
available at:
https://www.nrc.gov/materials/fuel-cycle-fac/ur-enrichment.html, last
access: 12 June 2017.
Zhurba, M., Kashparov, V., Ahamdach, N., Salbu, B., Yoschenko, V., and
Levchuk, S.: The “hot particles” data base. Radioactive Particles in the
Environment, NATO Science for Peace and Security Series C: Environmental
Security, edited by: Oughton, D. and Kashparov, V., Springer, the Netherlands
187–195 https://doi.org/10.1007/978-90-481-2949-2_12, 2009.
Short summary
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone describe data from analysis of samples collected by the Ukrainian Institute of Agricultural Radiology after the Chernobyl nuclear accident between May 1986 and 2014 at sites inside the Chernobyl Exclusion Zone and other areas of interest. The data and supporting documentation are freely available from the Environmental Information Data Centre: https://doi.org/10.5285/782ec845-2135-4698-8881-b38823e533bf.
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone...