Articles | Volume 10, issue 2
https://doi.org/10.5194/essd-10-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses
Satellite-Based Climate Monitoring, Deutscher Wetterdienst, 63067
Offenbach, Germany
Maarit Lockhoff
Satellite-Based Climate Monitoring, Deutscher Wetterdienst, 63067
Offenbach, Germany
Frank Fell
Informus GmbH, Berlin, Germany
John Forsythe
Cooperative Institute for Research in the Atmosphere, Colorado
State University, Fort Collins CO, USA
Tim Trent
Earth Observation Science,
Department of Physics and Astronomy, University of Leicester,
University Road, Leicester, LE1 7RH, UK
National Centre for Earth
Observation, Department of Physics and Astronomy, University of Leicester,
University Road, Leicester, LE1 7RH, UK
Ralf Bennartz
Earth & Environmental
Sciences Department, Vanderbilt University, Nashville TN, USA
Cooperative Institute for Meteorological Satellite Studies, Space
Science and Engineering Center, University of Wisconsin –
Madison, USA
Eva Borbas
Cooperative Institute for Meteorological Satellite Studies, Space
Science and Engineering Center, University of Wisconsin –
Madison, USA
Michael G. Bosilovich
Global Modelling and Assimilation Office, Goddard
Space Flight Center, National Aeronautics and Space
Administration, Greenbelt MD, USA
Elisa Castelli
Institute of Atmospheric
Sciences and Climate, National Research Council of Italy, Bologna, Italy
Hans Hersbach
European Centre for Medium-Range Weather Forecasts, Reading, UK
Misako Kachi
Earth Observation Research Center, Japan Aerospace Exploration
Agency, Tsukuba, Japan
Shinya Kobayashi
Japan Meteorological Agency, Tokyo, Japan
E. Robert Kursinski
Space Sciences and Engineering, Golden CO, USA
Diego Loyola
Remote
Sensing Technology Institute, German Aerospace Center, Oberpfaffenhofen,
Germany
Carl Mears
Remote Sensing Systems, Santa Rosa CA, USA
Rene Preusker
Institute for Space Sciences, Free University of Berlin, Berlin,
Germany
William B. Rossow
CUNY Remote Sensing Science and Technology Institute,
City College of New York, New York NY, USA
Suranjana Saha
Environmental Modeling
Center, NCEP/NWS/NOAA, NCWCP, College Park MD, USA
Related authors
Hannes Konrad, Rémy Roca, Anja Niedorf, Stephan Finkensieper, Marc Schröder, Sophie Cloché, Giulia Panegrossi, Paolo Sanò, Christopher Kidd, Rômulo Augusto Jucá Oliveira, Karsten Fennig, Thomas Sikorski, Madeleine Lemoine, and Rainer Hollmann
Earth Syst. Sci. Data, 17, 4097–4124, https://doi.org/10.5194/essd-17-4097-2025, https://doi.org/10.5194/essd-17-4097-2025, 2025
Short summary
Short summary
GIRAFE v1 is a global satellite-based precipitation dataset covering 2002 to 2022. It combines high-accuracy microwave and high-resolution infrared observations for retrieving daily precipitation, a respective sampling uncertainty for a more robust analysis, and monthly means. It is intended and suitable for climate monitoring and research and allows studies on water management, agriculture, and disaster risk reduction. A continuous extension from 2023 onwards will be implemented in 2025.
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Jan El Kassar, Cintia Carbajal Henken, Xavier Calbet, Pilar Rípodas, Rene Preusker, and Jürgen Fischer
Atmos. Meas. Tech., 19, 135–155, https://doi.org/10.5194/amt-19-135-2026, https://doi.org/10.5194/amt-19-135-2026, 2026
Short summary
Short summary
Water vapour (WV) is a key ingredient in virtually all meteorological processes. We present an algorithm which uses observations of the Flexible Combined Imager (FCI) to estimate the total column of WV (TCWV) over sun-lit, clear-sky pixels. FCI is a satellite instrument, and every 10 min it takes an image which covers Europe, Africa, and the Atlantic with a resolution of 1 km. Such high-resolution WV fields will provide valuable information for weather forecasters and researchers.
François Poulet, Giuseppe Piccioni, Yves Langevin, Cydalise Dumesnil, Vincent Carlier, Benoit Seignovert, Marc Dexet, Leigh N. Fletcher, Cédric Leyrat, Francesca Altieri, John Carter, Emiliano D’Aversa, Maria De Sanctis, Davide Grassi, Sandrine Guerlet, Stéphane Le Mouélic, Alessandra Migliorini, Fabrizio Oliva, Clément Royer, Sébastien Rodriguez, Katrin Stephan, Federico Tosi, Francesca Zambon, Alberto Adriani, Gabriele Arnold, Jean-Pierre Bibring, Dominique Bockelée, Rosario Brunetto, Fabrizio Capaccioni, Cristian Carli, Thibault Cavalié, Miriam Cisneros González, Mauro Ciarnello, Simone De Angelis, Pierre Drossart, Gianrico Filacchione, Thierry Fouchet, Jean-Claude Gérard, Denis Grodent, Patrick Irwin, Sophie Jacquinod, Ozgur Karatekin, Emmanuel Lellouch, Nicolas Ligier, Nicolas Mangold, Magali Mebsout, Frédéric Merlin, Alessandro Morbidelli, Alessandro Mura, Andreas Nathues, Maria E. Palumbo, Cédric Pilorget, Olivier Poch, Eric Quirico, Andrea Raponi, Séverine Robert, Elias Roussos, Agustin Sanchez-Lavega, Bernard Schmitt, Giuseppe Sindoni, Marcel Snels, Roberto Sordini, Stefania Stefani, Giovanni Strazzulla, Tim Trent, Gabriel Tobie, Diego Turrini, Ann-Carine Vandaele, Mathieu Vincendon, Olivier Witasse, Claire Vallat, and Alessandro Moraino
EGUsphere, https://doi.org/10.5194/egusphere-2025-6191, https://doi.org/10.5194/egusphere-2025-6191, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
During the double Lunar-Earth Gravitational Assist with the ESA/JUICE spacecraft in August 2024, we acquired hyperspectral data cubes of both the Moon and Earth with the MAJIS imaging spectrometer under challenging, real in-flight conditions. This allowed to characterize surface materials and thermophysical properties on the Moon, identify various cloud phases and gases in Earth's atmosphere, and thoroughly validate the performance of the instrument.
Arno Keppens, Daan Hubert, José Granville, Oindrila Nath, Jean-Christopher Lambert, Catherine Wespes, Pierre-François Coheur, Cathy Clerbaux, Anne Boynard, Richard Siddans, Barry Latter, Brian Kerridge, Serena Di Pede, Pepijn Veefkind, Juan Cuesta, Gaelle Dufour, Klaus-Peter Heue, Melanie Coldewey-Egbers, Diego Loyola, Andrea Orfanoz-Cheuquelaf, Swathi Maratt Satheesan, Kai-Uwe Eichmann, Alexei Rozanov, Viktoria F. Sofieva, Jerald R. Ziemke, Antje Inness, Roeland Van Malderen, and Lars Hoffmann
Atmos. Meas. Tech., 18, 6893–6916, https://doi.org/10.5194/amt-18-6893-2025, https://doi.org/10.5194/amt-18-6893-2025, 2025
Short summary
Short summary
The first Tropospheric Ozone Assessment Report (TOAR) encountered discrepancies between several satellite sensors’ estimates of the distribution and change of ozone in the free troposphere. Therefore, contributing to the second TOAR, we harmonise as much as possible the observational perspective of sixteen tropospheric ozone products from satellites. This only partially accounts for the observed discrepancies, with a reduction of 10–40 % of the inter-product dispersion upon harmonisation.
Vinícius Ludwig-Barbosa, Johannes Kristoffer Nielsen, Kent Bækgaard Lauritsen, Brian Kerridge, Richard Siddans, and Tim Trent
EGUsphere, https://doi.org/10.5194/egusphere-2025-5578, https://doi.org/10.5194/egusphere-2025-5578, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Water vapour data from microwave, infrared (RAL IMS), and radio occultation (GRAS-RO) instruments onboard Metop-A are compared during 9.5 years under a set of cloud scenarios, land and water coverage, and time of day, while accounting for differences in resolutions. RAL IMS is wetter and GRAS-RO is drier than ERA-Interim analysis and GRUAN (references) in the lower troposphere. Mid-troposphere statistics are similar, suggesting a potential synergy could be exploited in climate data records.
Pierre Gramme, Cedric Busschots, Emmanuel Dekemper, Didier Pieroux, Noel Baker, Stefano Casadio, Anna Maria Iannarelli, Nicola Ferrante, Annalisa Di Bernardino, Paolo Pettinari, Elisa Castelli, Luca Di Liberto, and Francesco Cairo
Atmos. Meas. Tech., 18, 6021–6037, https://doi.org/10.5194/amt-18-6021-2025, https://doi.org/10.5194/amt-18-6021-2025, 2025
Short summary
Short summary
We present a new remote sensing instrument using hyperspectral imaging to observe the variability in space and time of the nitrogen dioxide concentration. We also show the results of its validation campaign in a challenging urban setting in Rome, showing very good agreement with two reference instruments. Having an imaging instrument rather than the currently state-of-the-art unidirectional spectrometers brings promising capability in the context of satellite product validation.
Melanie Coldewey-Egbers, Diego G. Loyola R., Barry Latter, Richard Siddans, Brian Kerridge, Daan Hubert, Michel van Roozendael, and Michael Eisinger
Atmos. Meas. Tech., 18, 5485–5505, https://doi.org/10.5194/amt-18-5485-2025, https://doi.org/10.5194/amt-18-5485-2025, 2025
Short summary
Short summary
The Global Ozone Monitoring Experiment (GOME)-type Ozone Profile Essential Climate Variable (GOP-ECV) data record provides monthly mean ozone profiles with global coverage from 1995 to 2021 at a spatial resolution of 5° × 5°. Measurements from five nadir-viewing satellite sensors are first harmonized and then merged into a coherent record. The long-term stability of the data record is further improved through scaling the profiles using the GOME-type Total Ozone Essential Climate Variable (GTO-ECV) data record as a reference.
Nils Madenach, Florian Tornow, Howard Barker, Rene Preusker, and Jürgen Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-1439, https://doi.org/10.5194/egusphere-2025-1439, 2025
Short summary
Short summary
In this study clouds fields with different macro- and microphysical properties are generated and used to simulate the top of atmosphere short wave radiances and fluxes. The fluxes are compared to two radiance-to-irradiance conversion approaches. Especially for viewing angles in the backscattering direction the approach that is aware of the cloud microphysics results in better flux estimates.
Hannes Konrad, Rémy Roca, Anja Niedorf, Stephan Finkensieper, Marc Schröder, Sophie Cloché, Giulia Panegrossi, Paolo Sanò, Christopher Kidd, Rômulo Augusto Jucá Oliveira, Karsten Fennig, Thomas Sikorski, Madeleine Lemoine, and Rainer Hollmann
Earth Syst. Sci. Data, 17, 4097–4124, https://doi.org/10.5194/essd-17-4097-2025, https://doi.org/10.5194/essd-17-4097-2025, 2025
Short summary
Short summary
GIRAFE v1 is a global satellite-based precipitation dataset covering 2002 to 2022. It combines high-accuracy microwave and high-resolution infrared observations for retrieving daily precipitation, a respective sampling uncertainty for a more robust analysis, and monthly means. It is intended and suitable for climate monitoring and research and allows studies on water management, agriculture, and disaster risk reduction. A continuous extension from 2023 onwards will be implemented in 2025.
Martina Taddia, Federico Fabiano, Stefano Della Fera, Elisa Castelli, and Bianca Maria Dinelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3750, https://doi.org/10.5194/egusphere-2025-3750, 2025
Short summary
Short summary
The time relationship between the energy emitted by the Earth system across the thermal infrared spectral region (also known as Outgoing Longwave Radiation (OLR)) and El-Niño Southern Oscillation (ENSO), shows important contribution from stratospheric temperature and ozone changes. The peak of the radiative response is wavenumber-dependent, this makes this analysis particularly suitable for climate models evaluations.
Robert James Duncan Spurr, Matt Christi, Nickolay Anatoly Krotkov, Won-Ei Choi, Simon Carn, Can Li, Natalya Kramarova, David Haffner, Eun-Su Yang, Nick Gorkavyi, Alexander Vasilkov, Krzysztof Wargan, Omar Torres, Diego Loyola, Serena Di Pede, Joris Pepijn Veefkind, and Pawan Kumar Bhartia
EGUsphere, https://doi.org/10.5194/egusphere-2025-2938, https://doi.org/10.5194/egusphere-2025-2938, 2025
Short summary
Short summary
An eruption of the submarine Hunga volcano injected a massive plume of water vapor, sulfur dioxide and aerosols into the Southern tropical stratosphere. The high-altitude Hunga aerosol plume showed up as strongly enhanced solar backscattered ultraviolet (BUV) radiation compromising satellite BUV ozone retrievals. In this paper, we have developed a new technique to retrieve the aerosol amount and height, based on satellite solar BUV radiances from the TROPOMI and OMPS nadir profiler instruments.
Carlo Arosio, Viktoria Sofieva, Andrea Orfanoz-Cheuquelaf, Alexei Rozanov, Klaus-Peter Heue, Diego Loyola, Edward Malina, Ryan M. Stauffer, David Tarasick, Roeland Van Malderen, Jerry R. Ziemke, and Mark Weber
Atmos. Meas. Tech., 18, 3247–3265, https://doi.org/10.5194/amt-18-3247-2025, https://doi.org/10.5194/amt-18-3247-2025, 2025
Short summary
Short summary
Tropospheric ozone affects air quality and climate, being a pollutant and a greenhouse gas. We analyze satellite data of tropospheric ozone columns obtained by combining two types of observations: one providing stratospheric and the other total ozone. We compare common climatological features and study the influence of the tropopause (troposphere to stratosphere boundary) on the results. We also examine trends over the last 20 years and compare satellite data with ozonesondes to identify drifts.
África Barreto, Francisco Quirós, Omaira E. García, Jorge Pereda-de-Pablo, Daniel González-Fernández, Andrés Bedoya-Velásquez, Michael Sicard, Carmen Córdoba-Jabonero, Marco Iarlori, Vincenzo Rizi, Nickolay Krotkov, Simon Carn, Reijo Roininen, Antonio J. Molina-Arias, A. Fernando Almansa, Óscar Álvarez-Losada, Carla Aramo, Juan José Bustos, Romain Ceolato, Adolfo Comerón, Alicia Felpeto, Rosa D. García, Pablo González-Sicilia, Yenny González, Pascal Hedelt, Miguel Hernández, María-Ángeles López-Cayuela, Diego Loyola, Stavros Meletlidis, Constantino Muñoz-Porcar, Ermanno Pietropaolo, Ramón Ramos, Alejandro Rodríguez-Gómez, Roberto Román, Pedro M. Romero-Campos, Martin Stuefer, Carlos Toledano, and Elsworth Welton
EGUsphere, https://doi.org/10.5194/egusphere-2025-3164, https://doi.org/10.5194/egusphere-2025-3164, 2025
Short summary
Short summary
This manuscript describes the instrumental coverage deployed during the Tajogaite eruption (19 September–25 December 2021) by the Instituto Geográfico Nacional (IGN), the Spanish State Meteorological Agency (AEMET), and other Spanish members of ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) to monitor its atmospheric impact. Two complementary methods provide consistent plume height data for future operational surveillance.
Christopher Johannes Diekmann, Matthias Schneider, Peter Knippertz, Tim Trent, Hartmut Boesch, Amelie Ninja Roehling, John Worden, Benjamin Ertl, Farahnaz Khosrawi, and Frank Hase
Atmos. Chem. Phys., 25, 5409–5431, https://doi.org/10.5194/acp-25-5409-2025, https://doi.org/10.5194/acp-25-5409-2025, 2025
Short summary
Short summary
The West African Monsoon is the main source of rainfall over West Africa, and understanding the development of the monsoon remains challenging due to complex interactions of atmospheric processes. We make use of new satellite datasets of isotopes in tropospheric water vapour to characterize processes controlling the monsoon convection. We find that comparing different water vapour isotopes reveals effects of rain–vapour interactions and air mass transport.
Pascal Hedelt, Jens Reichardt, Felix Lauermann, Benjamin Weiß, Nicolas Theys, Alberto Redondas, Africa Barreto, Omaira Garcia, and Diego Loyola
Atmos. Chem. Phys., 25, 1253–1272, https://doi.org/10.5194/acp-25-1253-2025, https://doi.org/10.5194/acp-25-1253-2025, 2025
Short summary
Short summary
The 2021 volcanic eruption of Tajogaite on La Palma is investigated using ground-based and satellite measurements. In addition, the atmospheric transport of the volcanic cloud towards Europe is studied in detail. The amount of SO2 released during the eruption and the height of the volcanic plume are in excellent agreement among the different measurements. Furthermore, volcanic aerosol microphysical properties could be retrieved using a new retrieval approach based on lidar measurements.
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Víctor Molina García, Diego Loyola, Hanlim Lee, and Jhoon Kim
Atmos. Meas. Tech., 17, 6163–6191, https://doi.org/10.5194/amt-17-6163-2024, https://doi.org/10.5194/amt-17-6163-2024, 2024
Short summary
Short summary
In this study, we developed an advanced retrieval algorithm for tropospheric NO2 columns from geostationary satellite spectrometers and applied it to GEMS measurements. The DLR GEMS NO2 retrieval algorithm follows the heritage from previous and existing algorithms, but improved approaches are applied to reflect the specific features of geostationary satellites. The DLR GEMS NO2 retrievals demonstrate a good capability for monitoring diurnal variability with a high spatial resolution.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
Atmos. Meas. Tech., 16, 3437–3457, https://doi.org/10.5194/amt-16-3437-2023, https://doi.org/10.5194/amt-16-3437-2023, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) aboard the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for prelaunch algorithm verification.
Lena Katharina Jänicke, Rene Preusker, Marco Celesti, Marin Tudoroiu, Jürgen Fischer, Dirk Schüttemeyer, and Matthias Drusch
Atmos. Meas. Tech., 16, 3101–3121, https://doi.org/10.5194/amt-16-3101-2023, https://doi.org/10.5194/amt-16-3101-2023, 2023
Short summary
Short summary
To compare two top-of-atmosphere radiances measured by instruments with different spectral characteristics, a transfer function has been developed. It is applied to a tandem data set of Sentinel-3A and B, for which OLCI-B mimicked the ESA’s eighth Earth Explorer FLEX. We found that OLCI-A measured radiances about 2 % brighter than OLCI-FLEX. Only at larger wavelengths were OLCI-A measurements about 5 % darker. The method is thus successful, being sensitive to calibration and processing issues.
Ka Lok Chan, Pieter Valks, Klaus-Peter Heue, Ronny Lutz, Pascal Hedelt, Diego Loyola, Gaia Pinardi, Michel Van Roozendael, François Hendrick, Thomas Wagner, Vinod Kumar, Alkis Bais, Ankie Piters, Hitoshi Irie, Hisahiro Takashima, Yugo Kanaya, Yongjoo Choi, Kihong Park, Jihyo Chong, Alexander Cede, Udo Frieß, Andreas Richter, Jianzhong Ma, Nuria Benavent, Robert Holla, Oleg Postylyakov, Claudia Rivera Cárdenas, and Mark Wenig
Earth Syst. Sci. Data, 15, 1831–1870, https://doi.org/10.5194/essd-15-1831-2023, https://doi.org/10.5194/essd-15-1831-2023, 2023
Short summary
Short summary
This paper presents the theoretical basis as well as verification and validation of the Global Ozone Monitoring Experiment-2 (GOME-2) daily and monthly level-3 products.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Katerina Garane, Ka Lok Chan, Maria-Elissavet Koukouli, Diego Loyola, and Dimitris Balis
Atmos. Meas. Tech., 16, 57–74, https://doi.org/10.5194/amt-16-57-2023, https://doi.org/10.5194/amt-16-57-2023, 2023
Short summary
Short summary
In this work, 2.5 years of TROPOMI/S5P Total Column Water Vapor (TCWV) observations retrieved from the blue wavelength band are validated against co-located precipitable water measurements from NASA AERONET, which uses Cimel Sun photometers globally. Overall, the TCWV product agrees well on a global scale with the ground-based dataset (Pearson correl. coefficient 0.909) and has a mean relative bias of −2.7 ± 4.9 % with respect to the AERONET observations for moderate albedo and cloudiness.
Shun Ohishi, Takemasa Miyoshi, and Misako Kachi
Geosci. Model Dev., 15, 9057–9073, https://doi.org/10.5194/gmd-15-9057-2022, https://doi.org/10.5194/gmd-15-9057-2022, 2022
Short summary
Short summary
An adaptive observation error inflation (AOEI) method was proposed for atmospheric data assimilation to mitigate erroneous analysis updates caused by large observation-minus-forecast differences for satellite brightness temperature around clear- and cloudy-sky boundaries. This study implemented the AOEI with an ocean data assimilation system, leading to an improvement of analysis accuracy and dynamical balance around the frontal regions with large meridional temperature differences.
Shun Ohishi, Tsutomu Hihara, Hidenori Aiki, Joji Ishizaka, Yasumasa Miyazawa, Misako Kachi, and Takemasa Miyoshi
Geosci. Model Dev., 15, 8395–8410, https://doi.org/10.5194/gmd-15-8395-2022, https://doi.org/10.5194/gmd-15-8395-2022, 2022
Short summary
Short summary
We develop an ensemble-Kalman-filter-based regional ocean data assimilation system in which satellite and in situ observations are assimilated at a daily frequency. We find the best setting for dynamical balance and accuracy based on sensitivity experiments focused on how to inflate the ensemble spread and how to apply the analysis update to the model evolution. This study has a broader impact on more general data assimilation systems in which the initial shocks are a significant issue.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022, https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
Short summary
Integrated water vapour measurements are often compared for the calibration and validation of instruments or techniques. Measurements made at different altitudes must be corrected to account for the vertical variation of water vapour. This paper shows that the widely used empirical correction model has severe limitations that are overcome using the proposed model. The method is applied to the inter-comparison of GPS and satellite microwave radiometer data in a tropical mountainous area.
Klaus-Peter Heue, Diego Loyola, Fabian Romahn, Walter Zimmer, Simon Chabrillat, Quentin Errera, Jerry Ziemke, and Natalya Kramarova
Atmos. Meas. Tech., 15, 5563–5579, https://doi.org/10.5194/amt-15-5563-2022, https://doi.org/10.5194/amt-15-5563-2022, 2022
Short summary
Short summary
To retrieve tropospheric ozone column information, we subtract stratospheric column data of BASCOE from TROPOMI/S5P total ozone columns.
The new S5P-BASCOE data agree well with existing tropospheric data like OMPS-MERRA-2. The data are also compared to ozone soundings.
The tropospheric ozone columns show the expected temporal and spatial patterns. We will also apply the algorithm to future UV nadir missions like Sentinel 4 or 5 or to recent and ongoing missions like GOME_2 or OMI.
Pieternel F. Levelt, Deborah C. Stein Zweers, Ilse Aben, Maite Bauwens, Tobias Borsdorff, Isabelle De Smedt, Henk J. Eskes, Christophe Lerot, Diego G. Loyola, Fabian Romahn, Trissevgeni Stavrakou, Nicolas Theys, Michel Van Roozendael, J. Pepijn Veefkind, and Tijl Verhoelst
Atmos. Chem. Phys., 22, 10319–10351, https://doi.org/10.5194/acp-22-10319-2022, https://doi.org/10.5194/acp-22-10319-2022, 2022
Short summary
Short summary
Using the COVID-19 lockdown periods as an example, we show how Sentinel-5P/TROPOMI trace gas data (NO2, SO2, CO, HCHO and CHOCHO) can be used to understand impacts on air quality for regions and cities around the globe. We also provide information for both experienced and inexperienced users about how we created the data using state-of-the-art algorithms, where to get the data, methods taking meteorological and seasonal variability into consideration, and insights for future studies.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Melanie Coldewey-Egbers, Diego G. Loyola, Christophe Lerot, and Michel Van Roozendael
Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, https://doi.org/10.5194/acp-22-6861-2022, 2022
Short summary
Short summary
Monitoring the long-term evolution of ozone and the evaluation of trends is essential to assess the efficacy of the Montreal Protocol and its amendments. The first signs of recovery as a consequence of decreasing amounts of ozone-depleting substances have been reported, but the impact needs to be investigated in more detail. In the Southern Hemisphere significant positive trends were found, but in the Northern Hemisphere the expected increase is still not yet visible.
Mark Weber, Carlo Arosio, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, Kleareti Tourpali, John P. Burrows, and Diego Loyola
Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, https://doi.org/10.5194/acp-22-6843-2022, 2022
Short summary
Short summary
Long-term trends in column ozone have been determined from five merged total ozone datasets spanning the period 1978–2020. We show that ozone recovery due to the decline in stratospheric halogens after the 1990s (as regulated by the Montreal Protocol) is evident outside the tropical region and amounts to half a percent per decade. The ozone recovery in the Northern Hemisphere is however compensated for by the negative long-term trend contribution from atmospheric dynamics since the year 2000.
Maria-Elissavet Koukouli, Konstantinos Michailidis, Pascal Hedelt, Isabelle A. Taylor, Antje Inness, Lieven Clarisse, Dimitris Balis, Dmitry Efremenko, Diego Loyola, Roy G. Grainger, and Christian Retscher
Atmos. Chem. Phys., 22, 5665–5683, https://doi.org/10.5194/acp-22-5665-2022, https://doi.org/10.5194/acp-22-5665-2022, 2022
Short summary
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Antje Inness, Melanie Ades, Dimitris Balis, Dmitry Efremenko, Johannes Flemming, Pascal Hedelt, Maria-Elissavet Koukouli, Diego Loyola, and Roberto Ribas
Geosci. Model Dev., 15, 971–994, https://doi.org/10.5194/gmd-15-971-2022, https://doi.org/10.5194/gmd-15-971-2022, 2022
Short summary
Short summary
This paper describes the way that the Copernicus Atmosphere Monitoring Service (CAMS) produces forecasts of volcanic SO2. These forecasts are provided routinely every day. They are created by blending SO2 data from satellite instruments (TROPOMI and GOME-2) with the CAMS model. We show that the quality of the CAMS SO2 forecasts can be improved if additional information about the height of volcanic plumes is provided in the satellite data.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Christophe Lerot, François Hendrick, Michel Van Roozendael, Leonardo M. A. Alvarado, Andreas Richter, Isabelle De Smedt, Nicolas Theys, Jonas Vlietinck, Huan Yu, Jeroen Van Gent, Trissevgeni Stavrakou, Jean-François Müller, Pieter Valks, Diego Loyola, Hitoshi Irie, Vinod Kumar, Thomas Wagner, Stefan F. Schreier, Vinayak Sinha, Ting Wang, Pucai Wang, and Christian Retscher
Atmos. Meas. Tech., 14, 7775–7807, https://doi.org/10.5194/amt-14-7775-2021, https://doi.org/10.5194/amt-14-7775-2021, 2021
Short summary
Short summary
Global measurements of glyoxal tropospheric columns from the satellite instrument TROPOMI are presented. Such measurements can contribute to the estimation of atmospheric emissions of volatile organic compounds. This new glyoxal product has been fully characterized with a comprehensive error budget, with comparison with other satellite data sets as well as with validation based on independent ground-based remote sensing glyoxal observations.
Daan Hubert, Klaus-Peter Heue, Jean-Christopher Lambert, Tijl Verhoelst, Marc Allaart, Steven Compernolle, Patrick D. Cullis, Angelika Dehn, Christian Félix, Bryan J. Johnson, Arno Keppens, Debra E. Kollonige, Christophe Lerot, Diego Loyola, Matakite Maata, Sukarni Mitro, Maznorizan Mohamad, Ankie Piters, Fabian Romahn, Henry B. Selkirk, Francisco R. da Silva, Ryan M. Stauffer, Anne M. Thompson, J. Pepijn Veefkind, Holger Vömel, Jacquelyn C. Witte, and Claus Zehner
Atmos. Meas. Tech., 14, 7405–7433, https://doi.org/10.5194/amt-14-7405-2021, https://doi.org/10.5194/amt-14-7405-2021, 2021
Short summary
Short summary
We assess the first 2 years of TROPOMI tropical tropospheric ozone column data. Comparisons to reference measurements by ozonesonde and satellite sensors show that TROPOMI bias (−0.1 to +2.3 DU) and precision (1.5 to 2.5 DU) meet mission requirements. Potential causes of bias and its spatio-temporal structure are discussed, as well as ways to identify sampling errors. Our analysis of known geophysical patterns demonstrates the improved performance of TROPOMI with respect to its predecessors.
Song Liu, Pieter Valks, Gaia Pinardi, Jian Xu, Ka Lok Chan, Athina Argyrouli, Ronny Lutz, Steffen Beirle, Ehsan Khorsandi, Frank Baier, Vincent Huijnen, Alkiviadis Bais, Sebastian Donner, Steffen Dörner, Myrto Gratsea, François Hendrick, Dimitris Karagkiozidis, Kezia Lange, Ankie J. M. Piters, Julia Remmers, Andreas Richter, Michel Van Roozendael, Thomas Wagner, Mark Wenig, and Diego G. Loyola
Atmos. Meas. Tech., 14, 7297–7327, https://doi.org/10.5194/amt-14-7297-2021, https://doi.org/10.5194/amt-14-7297-2021, 2021
Short summary
Short summary
In this work, an improved tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented with correction for the dependency of the stratospheric NO2 on the viewing geometry. The AMF calculation is implemented using improved surface albedo, a priori NO2 profiles, and cloud correction. The improved tropospheric NO2 data show good correlations with ground-based MAX-DOAS measurements.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Isabelle De Smedt, Gaia Pinardi, Corinne Vigouroux, Steven Compernolle, Alkis Bais, Nuria Benavent, Folkert Boersma, Ka-Lok Chan, Sebastian Donner, Kai-Uwe Eichmann, Pascal Hedelt, François Hendrick, Hitoshi Irie, Vinod Kumar, Jean-Christopher Lambert, Bavo Langerock, Christophe Lerot, Cheng Liu, Diego Loyola, Ankie Piters, Andreas Richter, Claudia Rivera Cárdenas, Fabian Romahn, Robert George Ryan, Vinayak Sinha, Nicolas Theys, Jonas Vlietinck, Thomas Wagner, Ting Wang, Huan Yu, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-12561-2021, https://doi.org/10.5194/acp-21-12561-2021, 2021
Short summary
Short summary
This paper assess the performances of the TROPOMI formaldehyde observations compared to its predecessor OMI at different spatial and temporal scales. We also use a global network of MAX-DOAS instruments to validate both satellite datasets for a large range of HCHO columns. The precision obtained with daily TROPOMI observations is comparable to monthly OMI observations. We present clear detection of weak HCHO column enhancements related to shipping emissions in the Indian Ocean.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Nikita M. Fedkin, Can Li, Nickolay A. Krotkov, Pascal Hedelt, Diego G. Loyola, Russell R. Dickerson, and Robert Spurr
Atmos. Meas. Tech., 14, 3673–3691, https://doi.org/10.5194/amt-14-3673-2021, https://doi.org/10.5194/amt-14-3673-2021, 2021
Short summary
Short summary
This study presents a new volcanic sulfur dioxide (SO2) layer height retrieval algorithm for the Ozone Monitoring Instrument (OMI). We generated a large spectral dataset with a radiative transfer model and used it to train neural networks to predict SO2 height from OMI radiance data. The algorithm is fast and takes less than 10 min for a single orbit. Retrievals were tested on four eruption cases, and results had reasonable agreement (within 2 km) with other retrievals and previous studies.
Viktoria F. Sofieva, Hei Shing Lee, Johanna Tamminen, Christophe Lerot, Fabian Romahn, and Diego G. Loyola
Atmos. Meas. Tech., 14, 2993–3002, https://doi.org/10.5194/amt-14-2993-2021, https://doi.org/10.5194/amt-14-2993-2021, 2021
Short summary
Short summary
Our paper discusses the structure function method, which allows validation of random uncertainties in the data and, at the same time, probing of the small-scale natural variability. We applied this method to the clear-sky total ozone measurements by TROPOMI Sentinel-5P satellite instrument and found that the TROPOMI random error estimation is adequate. The discussed method is a powerful tool, which can be used in various applications.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Lewis Grasso, Daniel Bikos, Jorel Torres, John F. Dostalek, Ting-Chi Wu, John Forsythe, Heather Q. Cronk, Curtis J. Seaman, Steven D. Miller, Emily Berndt, Harry G. Weinman, and Kennard B. Kasper
Atmos. Meas. Tech., 14, 1615–1634, https://doi.org/10.5194/amt-14-1615-2021, https://doi.org/10.5194/amt-14-1615-2021, 2021
Short summary
Short summary
This study uses geostationary imagery to detect dust. This research was done to demonstrate the ability of dust detection over ocean surfaces in a dry atmosphere.
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021, https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
Short summary
As the VIIRS satellite sensor has no infrared (IR) H2O absorption bands, we construct the missing bands through the fusion of imager (VIIRS) and sounder (CrIS) data in an attempt to improve derivation of moisture products. This study clearly demonstrates the positive impact by adding fusion IR absorption spectral bands and the potential for continuing the moisture record from MODIS and the previous generations of polar-orbiting satellite sensors.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Cited articles
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.:
The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234,
https://doi.org/10.5194/essd-2-215-2010, 2010.
Bauer, P., Lopez, P., Benedetti, A., Salmond, D., and Moreau, E.:
Implementation of 1D+4D-Var assimilation of precipitation-affected
microwave radiances at ECMWF. I: 1D-Var, Q. J. Roy. Meteor. Soc., 132, 2277–2306, 2006a.
Bauer, P., Lopez, P., Salmond, D., Benedetti, A., Saarinen, S., and Moreau, E.:
Implementation of 1D+4D-Var assimilation of precipitation-affected
microwave radiances at ECMWF. II: 4D-Var, Q. J. Roy. Meteor. Soc., 132, 2307–2332, 2006b.
Bennartz, R., Höschen, H., Picard, B., Schröder, M., Stengel, M., Sus, O.,
Bojkov, B., Casadio, S., Diedrich, H., Eliasson, S., Fell, F., Fischer, J.,
Hollmann, R., Preusker, R., and Willén, U.: An intercalibrated dataset of
total column water vapour and wet tropospheric correction based on MWR on
board ERS-1, ERS-2, and Envisat, Atmos. Meas. Tech., 10, 1387–1402,
https://doi.org/10.5194/amt-10-1387-2017, 2017.
Borbas, E., Seemann, S. W., Huang, H.-L., Li, J., and Menzel, W. P.: Global
profile training database for satellite regression retrievals with estimates
of skin temperature and emissivity, Proc. of the Int. ATOVS Study
Conference-XIV, Beijing, China, 25–31 May 2005, 763–770 pp., available at:
https://cimss.ssec.wisc.edu/itwg/itsc/itsc14/proceedings/B32_Borbas.pdf, 2005.
Bosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., and Mocko, D.:
Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis, J. Climate, 30, 1177–1196, https://doi.org/10.1175/JCLI-D-16-0338.1, 2017.
Bouffies, S., Breon, F. M., Tanre, D., and Dubuisson, P.: Atmospheric water
vapor estimate by a differential absorption technique with the polarization
and directionality of the Earth reflectances (POLDER) instrument, Geophys. Res. Let., 102, 3831–3841, 1997.
Boukabara, S. A., Garrett, K., Chen, W. C., Iturbide-Sanchez, F., Grassotti,
C., Kongoli, C., Chen, R. Y., Liu, Q. H., Yan, B. H., Weng, F. Z., Ferraro,
R., Kleespies, T. J., and Meng, H.: MiRS: An All-Weather 1DVAR Satellite Data
Assimilation and Retrieval System, IEEE T. Geosci. Remote, 49, 3249–3272,
https://doi.org/10.1109/TGRS.2011.2158438, 2011.
Casadio, S., Castelli, E., Papandrea, E., Dinelli, B. M., Pisacane, G.,
Burini, A., and Bojkov, B. R.: Total column water vapour from along track
scanning radiometer series using thermal infrared dual view ocean cloud free
measurements: The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE)
algorithm, Remote Sens. Environ., 172, 1–14, https://doi.org/10.1016/j.rse.2015.10.037, 2016.
Castelli, E., Casadio, S., Papandrea, E., Dinelli, B. M., Burini, A., and
Bojkov, B.: Total Column Water Vapour from Along Track Scanning Radiometer
Series: Advanced Infra-Red Water Vapour Estimator (AIRWAVE) algorithm
description and applications, S3forScience2015, 2–5 June 2015, Venice,
Italy, available at: http://seom.esa.int/S3forScience2015/page_session14.php, 2015.
Chung, E.-S., Soden, B. J., and John, V. O.: Intercalibrating Microwave
Satellite Observations for Monitoring Long-Term Variations in Upper- and
Midtropospheric Water Vapor, J. Atmos. Ocean. Tech., 30, 2303–2319, https://doi.org/10.1175/JTECH-D-13-00001.1, 2013.
Clayson, C. A., Roberts, J. B., and Bogdanoff, A. S.: The SeaFlux Turbulent
Flux dataset version 1.0 documentation, SeaFlux Project, 5 pp., available at:
http://seaflux.org/seaflux_data/DOCUMENTATION/SeaFluxDocumentationV12.pdf, 2012.
Courcoux, N. and Schröder, M.: The CM SAF ATOVS data record: overview of
methodology and evaluation of total column water and profiles of tropospheric
humidity, Earth Syst. Sci. Data, 7, 397–414,
https://doi.org/10.5194/essd-7-397-2015, 2015.
Cram, T. A., Compo, G. P., Yin, X., Allan, R. J., McColl, C., Vose, R. S.,
Whitaker, J. S., Matsui, N., Ashcroft, L., Auchmann, R., Bessemoulin, P.,
Brandsma, T., Brohan, P., Brunet, M., Comeaux, J., Crouthamel, R., Gleason
Jr., B. E., Groisman, P. Y., Hersbach, H., Jones, P. D., Jónsson, T.,
Jourdain, S., Kelly, G., Knapp, K. R., Kruger, A., Kubota, H., Lentini, G.,
Lorrey, A., Lott, N., Lubker, S. J., Luterbacher, J., Marshall, G. J.,
Maugeri, M., Mock, C. J., Mok, H. Y., Nordli, Ø., Rodwell, M., Ross, T. F.,
Schuster, D., Srnec, L., Valente, M. A., Vizi, Z., Wang, X. L., Westcott, N.,
Woollen, J. S., and Worley, S. J.: The International Surface Pressure
Databank version 2, Geosci. Data J., 2, 31–46, https://doi.org/10.1002/gdj3.25, 2015.
Davis, S. and Rosenlof, K.: NOAA ESRL Stratospheric Water and OzOne
Satellite Homogenized (SWOOSH), Version 2, NOAA National Centers for
Environmental Information (NCEI), https://doi.org/10.7289/V5TD9VBX, 2016.
Dee, D. P., et al.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Retrieval of
daytime total columnar water vapour from MODIS measurements over land
surfaces, Atmos. Meas. Tech., 8, 823–836,
https://doi.org/10.5194/amt-8-823-2015, 2015.
Du, J., Kimball, J. S., and Jones, L. A.: Satellite microwave retrieval of
total precipitable water vapor and surface air temperature over land from
AMSR2, IEEE T. Geosci. Remote, 53, 2520–2531, 2015.
Fennig, K., Schröder, M., and Hollmann, R.: Fundamental Climate Data
Record of Microwave Imager Radiances, edn. 3, Satellite Application
Facility on Climate Monitoring, https://doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V003,
2017.
Forsythe, J. M., Kidder, S. Q., Fuell, K. K., LeRoy, A., Jedlovec, G. J.,
and Jones, A. S.: A multisensor, blended, layered water vapor product for
weather analysis and forecasting, J. Operational Meteor., 3, 41–58, https://doi.org/10.15191/nwajom.2015.0305, 2015.
Gao, B.-C. and Kaufman, Y. J.: Water vapor retrievals using Moderate
Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, J. Geophys. Res.-Atmos., 108, 4389, https://doi.org/10.1117/12.154909, 2003.
Geer, A. J., Bauer, P., and Lopez, P.: Lessons learnt from the operational
1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF, Q. J. Roy. Meteor. Soc., 134, 1513–1525, 2008.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Grossi, M., Valks, P., Loyola, D., Aberle, B., Slijkhuis, S., Wagner, T.,
Beirle, S., and Lang, R.: Total column water vapour measurements from GOME-2
MetOp-A and MetOp-B, Atmos. Meas. Tech., 8, 1111–1133,
https://doi.org/10.5194/amt-8-1111-2015, 2015.
Healy, S. B. and Eyre, J. R.: Retrieving temperature, water vapour and
surface pressure information from refractive-index profiles derived by radio
occultation: A simulation study, Q. J. Roy. Meteor. Soc., 126, 1661–1683.
https://doi.org/10.1002/qj.49712656606, 2010.
Held, I. M. and Soden, B. J.: Water vapour feedback and global warming,
Annu. Rev. Energ. Env., 25, 441–475, 2000.
Hersbach, H. and Dee, D.: ECMWF Newsletter, 147, p. 7, 2016.
Hersbach, H., Peubey, C., Simmons, A., Berrisford, P., Poli, P., and Dee, D.
P.: ERA-20CM: A twentieth century atmospheric model ensemble, Q. J. Roy. Meteor. Soc., 141, 2350–2375, https://doi.org/10.1002/qj.2528, 2015.
Hilburn, K. A. and Wentz, F. J.: Intercalibrated Passive Microwave Rain
Products From the Unified Microwave Ocean Retrieval Algorithm (UMORA), J. Appl. Meteor. Clim., 47, 778–794, https://doi.org/10.1175/2007JAMC1635.1, 2008.
ISCCP H-Version C-ATBD: Climate Algorithm Theoretical Basis Document, NOAA
Climate Data Record Program (CDRP-ATBD-0.872, Rev 0, available at:
https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf, 2017.
John, V. O., Holl, G., Buehler, S. A., Candy, B., Saunders, R. W., and
Parker, D. E.: Understanding intersatellite biases of microwave humidity
sounders using global simultaneous nadir overpasses, J. Geophys. Res., 117,
D02305, https://doi.org/10.1029/2011JD016349, 2012.
Kahn, B. H., Irion, F. W., Dang, V. T., Manning, E. M., Nasiri, S. L., Naud,
C. M., Blaisdell, J. M., Schreier, M. M., Yue, Q., Bowman, K. W., Fetzer, E.
J., Hulley, G. C., Liou, K. N., Lubin, D., Ou, S. C., Susskind, J., Takano,
Y., Tian, B., and Worden, J. R.: The Atmospheric Infrared Sounder version 6
cloud products, Atmos. Chem. Phys., 14, 399–426,
https://doi.org/10.5194/acp-14-399-2014, 2014.
Kämpfer, N. (Ed.): Monitoring Atmospheric Water Vapour: Ground-Based
Remote Sensing and In-situ Methods, series: ISSI Scientific Report, edn. 10, Springer New York, 2012.
Kazumori, M.: Description of GCOM-W1 AMSR2 Integrated Water Vapor and Cloud
Liquid Water Retrieval Algorithm, Chapter 2 of “Descriptions of GCOM-W1
AMSR2 Level 1R and Level 2 Algorithms”, available at: http://suzaku.eorc.jaxa.jp/GCOM_W/data/doc/NDX-120015A.pdf,
2013.
Kazumori, M., Egawa, T., and Yoshimoto, K.: A retrieval algorithm of
atmospheric water vapor and cloud liquid water for AMSR-E, Eur. J. Remote Sens., 45, 63–74. https://doi.org/10.5721/EuJRS20124507, 2012.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001,
2015.
Kursinski, E. R. and Gebhardt, T.: A method to deconvolve errors in GPS
RO-derived water vapor histograms, J. Atmos. Ocean. Tech., 31, 2606–2628,
2014.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's atmosphere with radio occultation measurements
using the Global Positioning System., J. Geophys. Res.-Atmos., 102.D19, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H.-L., and Achtor, T.
H.: Global Soundings of the Atmosphere from ATOVS Measurements: The
Algorithm and Validation, J. Appl. Meteorol., 39, 1248–1268, 2000.
Lindstrot, R., Preusker, R., Diedrich, H., Doppler, L., Bennartz, R., and
Fischer, J.: 1D-Var retrieval of daytime total columnar water vapour from
MERIS measurements, Atmos. Meas. Tech., 5, 631–646,
https://doi.org/10.5194/amt-5-631-2012, 2012.
Lindstrot, R., Stengel, M., Schröder, M., Fischer, J., Preusker, R.,
Schneider, N., Steenbergen, T., and Bojkov, B. R.: A global climatology of
total columnar water vapour from SSM/I and MERIS, Earth Syst. Sci. Data, 6,
221–233, https://doi.org/10.5194/essd-6-221-2014, 2014.
Mears, C. A., Wang, J., Smith, D., and Wentz, F. J.: Intercomparison of Total
Precipitable Water Measurements Made by Satellite-Borne Microwave
Radiometers and Ground-Based GPS Instruments, J. Geophys. Res.-Atmos., 120, 2492–2504, https://doi.org/10.1002/2014JD022694, 2015.
Meissner, T. and Wentz, F. J.: The emissivity of the ocean surface between
6–90 GHz over a large range of wind speeds and Earth incidence angles,
IEEE T. Geosci. Remote, 50, 3004–3026, 2012.
Nelson, R. R., Crisp, D., Ott, L. E., and O'Dell, C. W.: High-accuracy
measurements of total column water vapor from the Orbiting Carbon
Observatory-2, Geophys. Res. Lett., 43, 12261–12269, https://doi.org/10.1002/2016GL071200, 2016.
Noël, S., Buchwitz, M., and Burrows, J. P.: First retrieval of global water
vapour column amounts from SCIAMACHY measurements, Atmos. Chem. Phys., 4,
111–125, https://doi.org/10.5194/acp-4-111-2004, 2004.
Papandrea, E., Casadio, S., De Grandis, E., Castelli, E., Dinelli, B. M., and
Bojkov, B.: Validation of the Advanced Infra-Red Water Vapour Estimator
(AIRWAVE) total column water vapour using satellite and radiosonde products,
Ann. Geophys., 61, Fast Track 1–8, https://doi.org/10.4401/ag-7524,
2018.
Platnick, S., Hubanks, P., Meyer, K., and King, M. D.: MODIS Atmosphere L3
Monthly Product (08_L3), NASA MODIS Adaptive Processing System, Goddard
Space Flight Center, https://doi.org/10.5067/MODIS/MOD08_M3.006 (Terra),
https://doi.org/10.5067/MODIS/MYD08_M3.006 (Aqua), 2015.
Poli, P., Hersbach, H., Dee, D., Berrisford, P., Simmons, A., Vitart, F.,
Laloyaux, P., Tan, D., Peubey, C., Thépaut, J.-N., Trémolet, Y.,
Holm, E., Bonavita, M., Isaksen, L., and Fisher, M.: ERA-20C: An Atmospheric
Reanalysis of the Twentieth Century, J. Climate, 29, 4083–4097,
https://doi.org/10.1175/JCLI-D-15-0556.1, 2016.
Reichle, R., Liu, Q., Koster, R., Draper, C., Mahanama, S., and Partyka, G.:
Land Surface Precipitation in MERRA-2, J. Climate, https://doi.org/10.1175/JCLI-D-16-0570.1, 2017.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom,
S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J.,
Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P.,
Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz,
M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R.,
Gayno, G., Wang, J., Hou, Y. T., Chuang, H.Y., Juang, H. M. H., Sela, J.,
Iredell, M., Treadon, R., Kleist, D., Van Delst, P., Keyser, D., Derber, J.,
Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., Van Den Dool, H., Kumar, A.,
Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J. K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C. Z.,
Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., and
Goldberg, M.: The NCEP Climate Forecast System Reanalysis, B. Am. Meteorol.
Soc., 91, 1015–1057, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Sapiano, M. R. P., Berg, W. K., McKague, D. S., and Kummerow, C. D.: Towards
an intercalibrated fundamental climate data record of the SSM/I sensors,
IEEE T. Geosci. Remote, 51, 1492–1503, 2013.
Schlüssel, P. and Emery, W. J.: Atmospheric water vapour over oceans
from SSM/I measurements, Int. J. Remote Sens., 11, 753–766, 1990.
Schröder, M., Jonas, M., Lindau, R., Schulz, J., and Fennig, K.: The CM SAF
SSM/I-based total column water vapour climate data record: methods and
evaluation against re-analyses and satellite, Atmos. Meas. Tech., 6, 765–775,
https://doi.org/10.5194/amt-6-765-2013, 2013.
Schröder, M., Lockhoff, M., Forsythe, J., Cronk, H., Vonder Haar, T. H.,
and Bennartz, R.: The GEWEX water vapor assessment (G-VAP) – results from the
trend and homogeneity analysis, J. Appl. Meteorol. Clim., 55, 1633–1649, https://doi.org/10.1175/JAMC-D-15-0304.1, 2016.
Schröder, M., Lockhoff, M., Shi, L., August, T., Bennartz, R., Borbas,
E., Brogniez, H., Calbet, X., Crewell, S., Eikenberg, S., Fell, F.,
Forsythe, J., Gambacorta, A., Graw, K., Ho, S.-P., Höschen, H., Kinzel,
J., Kursinski, E. R., Reale, A., Roman, J., Scott, N., Steinke, S., Sun, B.,
Trent, T., Walther, A., Willen, U., and Yang, Q.: GEWEX water vapor assessment
(G-VAP), WCRP Report 16/2017, World Climate Research Programme (WCRP):
Geneva, Switzerland, 216 pp., available at: https://www.wcrp-climate.org/resources/wcrp-publications, 2017a.
Schröder, M., Lockhoff, M., Fell, F., Forsythe, J., Trent, T., Bennartz, R.,
Borbas, E., Bosilovich, M. G., Castelli, E., Hersbach, H., Kachi, M., Kobayashi, S., Loyola, D., Mears, C., Preusker, R., Rossow, W. B., and Saha, S.: The
GEWEX Water Vapor Assessment archive of water vapour products from satellite
observations and reanalyses, https://doi.org/10.5676/EUM_SAF_CM/GVAP/V001, 2017b.
Schröder, M., Lockhoff, M., Shi, L., August, T., Bennartz, R., Calbet,
X., Fell, F., Forsythe, J., Gambacorta, A., Ho, S.-P., Kursinski, E. R.,
Reale, A., Trent, T., and Yang, Q.: The GEWEX water vapor assessment of global
water vapour and temperature data records from satellites and reanalyses, BAMS, in prep., 2018.
Scott, N. A., Chedin, A., Armante, R., Francis, J., Stubenrauch, C.,
Chaboureau, J.-P., Chevallier, F., Claud, C., and Cheruy, F.: Characteristics
of the TOVS Pathfinder Path-B dataset, B. Am. Meteorol. Soc., 80, 2679–2701,
https://doi.org/10.1175/1520-0477(1999)080<2679:COTTPP>2.0.CO;2, 1999.
Seemann, S. W., Li, J., Menzel, W. P., and Gumley, L. E.: Operational
retrieval of atmospheric temperature, moisture, and ozone from MODIS
infrared radiances, J. Appl. Meteorol., 42, 1072–1091, https://doi.org/10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2, 2003.
Seemann, S. W., Borbas, E. E., Knuteson, R. O., Stephenson, G. R., and
Huang, H.-L.: Development of a global infrared emissivity database for
application to clear-sky sounding retrievals from multi-spectral satellite
radiances measurements, J. Appl. Meteorol. Clim., 47, 108–123, https://doi.org/10.1175/2007JAMC1590.1, 2008.
Shi, L. and Bates, J. J.: Three decades of intersatellite-calibrated
High-Resolution Infrared Radiation Sounder upper tropospheric water vapor,
J. Geophys. Res., 116, D04108, https://doi.org/10.1029/2010JD014847, 2011.
Shi, L., Matthews, J., Ho, S.-P., Yang, Q., and Bates, J.: Algorithm
Development of Temperature and Humidity Profile Retrievals for Long-Term
HIRS Observations, Remote Sens.-Basel, 8, 280, https://doi.org/10.3390/rs8040280, 2016.
Smith, A., Lott, N., and Vose, R.: The Integrated Surface Database: Recent
developments and partnerships, B. Am. Meteorol. Soc., 92, 704–708,
https://doi.org/10.1175/2011BAMS3015.1, 2011.
Sohn, B. J. and Bennartz, R.: Contribution of water vapor to observational
estimates of longwave cloud radiative forcing, J. Geophys. Res., 113,
D20107, https://doi.org/10.1029/2008JD010053, 2008.
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B., Menzel, P., Minnis, P., Pearl, C., Platnick, S., Poulsen, C.,
Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao, G.:
Assessment of global cloud datasets from satellites: Project and Database
initiated by the GEWEX Radiation Panel, B. Am. Meteorol. Soc., 94,
1031–1049, https://doi.org/10.1175/BAMS-D-12-00117.1, 2012.
Susskind, J., Piraino, P., Rokke, L., Iredell, L., and Mehta, A.:
Characteristics of the TOVS Pathfinder Path A dataset, B. Am. Meteorol.
Soc., 78, 1449–1472, 1997.
Takacs, L. L., Suarez, M., and Todling, R.: Maintaining atmospheric mass and
water balance in reanalyses, Q. J. Roy. Meteor. Soc., 142, 1565–1573,
https://doi.org/10.1002/qj.2763, 2016.
Takeuchi, Y.: Algorithm theoretical basis document (ATBD) of the algorithm
to derive total water vapor content from ADEOS-II/AMSR. EORC
Bulletin/Technical Report, Special Issue on AMSR Retrieval Algorithms,
available at: http://sharaku.eorc.jaxa.jp/AMSR/products/pdf/alg_des.pdf,
2002.
Takeuchi, Y., Tauchi, T., Saito, S., Imaoka, K., Kachi, M., and Shibata, A.:
A total column precipitable water algorithm for ADEOS-II/AMSR and
Aqua/AMSR-E, Ital. J. Remote Sens., 30–31, 143–157, 2004.
Taylor, K., Stouffer, R., and Meehl, G.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D.,
Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M.,
Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate
Change, in: Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen,
Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 2007.
Vonder Haar, T. H., Bytheway, J. L., and Forsythe, J. M.: Weather and
climate analyses using improved global water vapor observations, Geophys. Res. Lett., 39, L15802, https://doi.org/10.1029/2012GL052094, 2012.
Wagner, T., Heland, J., Zöger, M., and Platt, U.: A fast H2O total column
density product from GOME – Validation with in-situ aircraft measurements,
Atmos. Chem. Phys., 3, 651–663, https://doi.org/10.5194/acp-3-651-2003, 2003.
Wang, H., Gonzalez Abad, G., Liu, X., and Chance, K.: Validation and update
of OMI Total Column Water Vapor product, Atmos. Chem. Phys., 16, 11379–11393,
https://doi.org/10.5194/acp-16-11379-2016, 2016.
Wee, T.-K. and Kuo, Y.-H.: A perspective on the fundamental quality of GPS
radio occultation data, Atmos. Meas. Tech., 8, 4281–4294,
https://doi.org/10.5194/amt-8-4281-2015, 2015.
Wentz, F. J.: A well-calibrated ocean algorithm for SSM/I, J. Geophys. Res.,
102, 8703–8718, https://doi.org/10.1029/96JC01751, 1997.
Wentz, F. J.: A 17-yr climate record of environmental parameters derived
from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, J. Climate, 28, 6882–6902,
https://doi.org/10.1175/JCLI-D-15-0155.1, 2015.
Wentz, F. J. and Meissner, T.: Atmospheric absorption model for dry air and
water vapor at microwave frequencies below 100 GHz derived from spaceborne
radiometer observations, Radio Sci., 51, 381–391,
https://doi.org/10.1002/2015RS005858, 2017.
Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Freeman, J. E., Berry,
D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., and Wilkinson,
C.: ICOADS release 2.5: Extensions and enhancements to the surface marine
meteorological archive, Int. J. Climatol., 31, 951–967,
https://doi.org/10.1002/joc.2103, 2011.
Worden, J., Bowman, K., Noone, D., Beer, R., Clough, S., Eldering, A.,
Fisher, B., Goldman, A., Gunson, M., Herman, R., Kulawik, S. S., Lampel, M.,
Luo, M., Osterman, G., Rinsland, C., Rodgers, C., Sander, S., Shephard, M.,
and Worden, H.: Tropospheric emission spectrometer observations of the
tropospheric HDO ∕ H2O ratio: Estimation approach and
characterization, J. Geophys. Res., 111, D16309, https://doi.org/10.1029/2005JD006606,
2006.
Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P.,
Di Girolamo, P., Schlüssel, P., Van Baelen, J., and Zus, F.: A review of
the remote sending of lower tropospheric thermodynamic profiles and its
indispensable role for the understanding and the simulation of water and
energy cycles, Rev. Geophys., 53, 819–895, https://doi.org/10.1002/2014RG000476, 2015.
Xie, F., Syndergaard, S., Kursinski, E. R., and Herman, B. M.: An approach
for retrieving marine boundary layer refractivity from GPS occultation data
in the presence of superrefraction, J. Atmos. Ocean. Tech., 23, 1629–1644, 2006.
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An...
Altmetrics
Final-revised paper
Preprint