Articles | Volume 10, issue 2
Earth Syst. Sci. Data, 10, 1093–1117, 2018
https://doi.org/10.5194/essd-10-1093-2018
Earth Syst. Sci. Data, 10, 1093–1117, 2018
https://doi.org/10.5194/essd-10-1093-2018
Review article
15 Jun 2018
Review article | 15 Jun 2018

The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses

Marc Schröder et al.

Related authors

Evaluation of tropospheric water vapour and temperature profiles retrieved from Metop-A by the Infrared and Microwave Sounding scheme
Tim Trent, Richard Siddens, Brian Kerridge, Marc Schroeder, Noëlle A. Scott, and John Remedios
EGUsphere, https://doi.org/10.5194/egusphere-2022-757,https://doi.org/10.5194/egusphere-2022-757, 2022
Short summary
A systematic assessment of water vapor products in the Arctic: from instantaneous measurements to monthly means
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021,https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021,https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
A Fundamental Climate Data Record of SMMR, SSM/I, and SSMIS brightness temperatures
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020,https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Common metrics of calibration for continuous Gaussian data and exceedance probabilities
Rita Glowienka-Hense, Andreas Hense, Thomas Spangehl, and Marc Schröder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-141,https://doi.org/10.5194/gmd-2018-141, 2018
Revised manuscript not accepted
Short summary

Related subject area

Meteorology
The AntAWS dataset: a compilation of Antarctic automatic weather station observations
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023,https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
HiTIC-Monthly: a monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023,https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
A long-term 1 km monthly near-surface air temperature dataset over the Tibetan glaciers by fusion of station and satellite observations
Jun Qin, Weihao Pan, Min He, Ning Lu, Ling Yao, Hou Jiang, and Chenghu Zhou
Earth Syst. Sci. Data, 15, 331–344, https://doi.org/10.5194/essd-15-331-2023,https://doi.org/10.5194/essd-15-331-2023, 2023
Short summary
A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022,https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
GSDM-WBT: global station-based daily maximum wet-bulb temperature data for 1981–2020
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022,https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary

Cited articles

Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010. 
Bauer, P., Lopez, P., Benedetti, A., Salmond, D., and Moreau, E.: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var, Q. J. Roy. Meteor. Soc., 132, 2277–2306, 2006a. 
Bauer, P., Lopez, P., Salmond, D., Benedetti, A., Saarinen, S., and Moreau, E.: Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. II: 4D-Var, Q. J. Roy. Meteor. Soc., 132, 2307–2332, 2006b. 
Bennartz, R., Höschen, H., Picard, B., Schröder, M., Stengel, M., Sus, O., Bojkov, B., Casadio, S., Diedrich, H., Eliasson, S., Fell, F., Fischer, J., Hollmann, R., Preusker, R., and Willén, U.: An intercalibrated dataset of total column water vapour and wet tropospheric correction based on MWR on board ERS-1, ERS-2, and Envisat, Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017, 2017. 
Borbas, E., Seemann, S. W., Huang, H.-L., Li, J., and Menzel, W. P.: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity, Proc. of the Int. ATOVS Study Conference-XIV, Beijing, China, 25–31 May 2005, 763–770 pp., available at: https://cimss.ssec.wisc.edu/itwg/itsc/itsc14/proceedings/B32_Borbas.pdf, 2005. 
Download
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.