Articles | Volume 8, issue 1
Earth Syst. Sci. Data, 8, 151–158, 2016
https://doi.org/10.5194/essd-8-151-2016
Earth Syst. Sci. Data, 8, 151–158, 2016
https://doi.org/10.5194/essd-8-151-2016

  06 Apr 2016

06 Apr 2016

Subglacial landforms beneath Rutford Ice Stream, Antarctica: detailed bed topography from ice-penetrating radar

Edward C. King et al.

Related authors

The internal structure of the Brunt Ice Shelf from ice-penetrating radar analysis and implications for ice shelf fracture
Edward C. King, Jan De Rydt, and G. Hilmar Gudmundsson
The Cryosphere, 12, 3361–3372, https://doi.org/10.5194/tc-12-3361-2018,https://doi.org/10.5194/tc-12-3361-2018, 2018
Short summary
How dynamic are ice-stream beds?
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018,https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary
Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica
Jan De Rydt, G. Hilmar Gudmundsson, Thomas Nagler, Jan Wuite, and Edward C. King
The Cryosphere, 12, 505–520, https://doi.org/10.5194/tc-12-505-2018,https://doi.org/10.5194/tc-12-505-2018, 2018
Short summary
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
A. M. Brisbourne, A. M. Smith, E. C. King, K. W. Nicholls, P. R. Holland, and K. Makinson
The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014,https://doi.org/10.5194/tc-8-1-2014, 2014
Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
P. Fretwell, H. D. Pritchard, D. G. Vaughan, J. L. Bamber, N. E. Barrand, R. Bell, C. Bianchi, R. G. Bingham, D. D. Blankenship, G. Casassa, G. Catania, D. Callens, H. Conway, A. J. Cook, H. F. J. Corr, D. Damaske, V. Damm, F. Ferraccioli, R. Forsberg, S. Fujita, Y. Gim, P. Gogineni, J. A. Griggs, R. C. A. Hindmarsh, P. Holmlund, J. W. Holt, R. W. Jacobel, A. Jenkins, W. Jokat, T. Jordan, E. C. King, J. Kohler, W. Krabill, M. Riger-Kusk, K. A. Langley, G. Leitchenkov, C. Leuschen, B. P. Luyendyk, K. Matsuoka, J. Mouginot, F. O. Nitsche, Y. Nogi, O. A. Nost, S. V. Popov, E. Rignot, D. M. Rippin, A. Rivera, J. Roberts, N. Ross, M. J. Siegert, A. M. Smith, D. Steinhage, M. Studinger, B. Sun, B. K. Tinto, B. C. Welch, D. Wilson, D. A. Young, C. Xiangbin, and A. Zirizzotti
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013,https://doi.org/10.5194/tc-7-375-2013, 2013

Related subject area

Cryosphere – Glaciology
More dynamic than expected: an updated survey of surging glaciers in the Pamir
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020,https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Worldwide version-controlled database of glacier thickness observations
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020,https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Greenland liquid water discharge from 1958 through 2019
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020,https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images
Xin Wang, Xiaoyu Guo, Chengde Yang, Qionghuan Liu, Junfeng Wei, Yong Zhang, Shiyin Liu, Yanlin Zhang, Zongli Jiang, and Zhiguang Tang
Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020,https://doi.org/10.5194/essd-12-2169-2020, 2020
Short summary
A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, and Clovis Galiez
Earth Syst. Sci. Data, 12, 1973–1983, https://doi.org/10.5194/essd-12-1973-2020,https://doi.org/10.5194/essd-12-1973-2020, 2020
Short summary

Cited articles

Clark, C. D.: Emergent drumlins and their clones: from till dilatancy to flow instabilities, J. Glaciol., 56, 1011–1025, 2010.
Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Spagnolo, M., and Ng, F. S. L.: Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws, Quaternary Sci. Rev., 28, 677–692, 2009.
Fowler, A. C.: The formation of subglacial streams and mega-scale glacial lineations, P. Roy. Soc. A-Math. Phy., 466, 3181–3201, 2010.
Gades, A. M.: Spatial and temporal variations of basal conditions beneath glaciers and ice sheets inferred from radio echo soundings, PhD University of Washington, 1998.
Download
Short summary
Large, fast-moving glaciers create long, linear mounds of sediments covering large areas. Understanding how these features form has been hampered by a lack of data from the bed of modern-day ice sheets. We give a detailed view of the landscape beneath an Antarctic glacier called Rutford Ice Stream. We towed a radar system back and forth across the glacier to measure the ice thickness every few metres. This is the first place such a highly detailed view of the sub-ice landscape has been created.