Articles | Volume 17, issue 1
https://doi.org/10.5194/essd-17-65-2025
https://doi.org/10.5194/essd-17-65-2025
Data description paper
 | 
10 Jan 2025
Data description paper |  | 10 Jan 2025

Calving front positions for 42 key glaciers of the Antarctic Peninsula Ice Sheet: a sub-seasonal record from 2013 to 2023 based on deep-learning application to Landsat multi-spectral imagery

Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath

Related authors

The system of atmosphere, land, ice and ocean in the region near the 79N Glacier in northeast Greenland: synthesis and key findings from the Greenland Ice Sheet–Ocean Interaction (GROCE) experiment
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025,https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024,https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Insights into German polar research during POLARSTUNDE
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023,https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Precursor of disintegration of Greenland's largest floating ice tongue
Angelika Humbert, Veit Helm, Niklas Neckel, Ole Zeising, Martin Rückamp, Shfaqat Abbas Khan, Erik Loebel, Jörg Brauchle, Karsten Stebner, Dietmar Gross, Rabea Sondershaus, and Ralf Müller
The Cryosphere, 17, 2851–2870, https://doi.org/10.5194/tc-17-2851-2023,https://doi.org/10.5194/tc-17-2851-2023, 2023
Short summary

Related subject area

Domain: ESSD – Ice | Subject: Glaciology
Annual mass change of the world's glaciers from 1976 to 2024 by temporal downscaling of satellite data with in situ observations
Inés Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 17, 1977–2006, https://doi.org/10.5194/essd-17-1977-2025,https://doi.org/10.5194/essd-17-1977-2025, 2025
Short summary
Glacier-level and gridded mass change in river sources in the eastern Tibetan Plateau region (ETPR) from the 1970s to 2000
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data, 17, 1851–1871, https://doi.org/10.5194/essd-17-1851-2025,https://doi.org/10.5194/essd-17-1851-2025, 2025
Short summary
glenglat: a database of global englacial temperatures
Mylène Jacquemart, Ethan Welty, Marcus Gastaldello, and Guillem Carcanade
Earth Syst. Sci. Data, 17, 1627–1666, https://doi.org/10.5194/essd-17-1627-2025,https://doi.org/10.5194/essd-17-1627-2025, 2025
Short summary
A revised and expanded deep radiostratigraphy of the Greenland Ice Sheet from airborne radar sounding surveys between 1993–2019
Joseph A. MacGregor, Mark A. Fahnestock, John D. Paden, Jilu Li, Jeremy P. Harbeck, and Andy Aschwanden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-578,https://doi.org/10.5194/essd-2024-578, 2025
Revised manuscript accepted for ESSD
Short summary
Ice thickness and bed topography of Jostedalsbreen ice cap, Norway
Mette K. Gillespie, Liss M. Andreassen, Matthias Huss, Simon de Villiers, Kamilla H. Sjursen, Jostein Aasen, Jostein Bakke, Jan M. Cederstrøm, Hallgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd D. Nerhus, Torgeir O. Røthe, Eivind W. N. Støren, Kåre Øst, and Jacob C. Yde
Earth Syst. Sci. Data, 16, 5799–5825, https://doi.org/10.5194/essd-16-5799-2024,https://doi.org/10.5194/essd-16-5799-2024, 2024
Short summary

Cited articles

Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S., and Ligtenberg, S. R.: Variable basal melt rates of Antarctic Peninsula ice shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095, https://doi.org/10.1002/2017GL076652, 2018. a
Alley, R. B., Clark, P. U., Huybrechts, P., and Joughin, I.: Ice-sheet and sea-level changes, Science, 310, 456–460, https://doi.org/10.1126/science.1114613, 2005. a
Andreasen, J. R., Hogg, A. E., and Selley, H. L.: Change in Antarctic ice shelf area from 2009 to 2019, The Cryosphere, 17, 2059–2072, https://doi.org/10.5194/tc-17-2059-2023, 2023. a
Barrand, N. E., Hindmarsh, R. C., Arthern, R. J., Williams, C. R., Mouginot, J., Scheuchl, B., Rignot, E., Ligtenberg, S. R., Van Den Broeke, M. R., Edwards, T. L., Cook, A. J., and Simonsen, S. B.: Computing the volume response of the Antarctic Peninsula ice sheet to warming scenarios to 2200, J. Glaciol., 59, 397–409, https://doi.org/10.3189/2013JoG12J139, 2013. a
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a
Download
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constraining ice modelling. We apply a deep-learning framework to multi-spectral Landsat imagery to create a calving front record for 42 key outlet glaciers of the Antarctic Peninsula Ice Sheet. The resulting data product includes 4817 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Share
Altmetrics
Final-revised paper
Preprint