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Abstract. Calving front positions of marine-terminating glaciers are an essential parameter for understanding
dynamic glacier changes and constraining ice modelling. In particular, for the Antarctic Peninsula, where the
current ice mass loss is driven by dynamic glacier changes, accurate and comprehensive data products are of ma-
jor importance. Current calving front data products are limited in coverage and temporal resolution because they
rely on manual delineation, which is time-consuming and unfeasible for the increasing amount of satellite data.
To simplify the mapping of calving fronts, we apply a deep-learning-based processing system designed to auto-
matically delineate glacier fronts from multi-spectral Landsat imagery. The U-Net-based framework was initially
trained on 869 Greenland glacier front positions. For this study, we extended the training data by 252 front posi-
tions of the Antarctic Peninsula. The data product presented here includes 4817 calving front locations of 42 key
outlet glaciers from 2013 to 2023 and achieves a sub-seasonal temporal resolution. The mean difference between
automated and manual extraction is estimated at 59.3±5.9 m. This dataset will help to better understand marine-
terminating glacier dynamics on an intra-annual scale, study ice–ocean interactions in more detail and constrain
glacier models. The data are publicly available at PANGAEA at https://doi.org/10.1594/PANGAEA.963725
(Loebel et al., 2024a).

1 Introduction

From 1992 to 2020, the Antarctic Ice Sheet lost 2671±530 Gt
of its ice, raising the global sea level by 7.4 ± 1.5 mm (Oto-
saka et al., 2023). Mass loss is dominated by ice-dynamic
processes, where a decrease in ice shelf thickness and ex-
tent reduces buttressing and thereby accelerates the ice flow
discharge of grounded ice across the grounding line (Slater
et al., 2020). At the Antarctic Peninsula (AP) in particular,
increasing ice loss has been linked to ice shelf disintegration
(Rott et al., 1996; Rignot et al., 2004; Rack and Rott, 2004;
Cook and Vaughan, 2010). Thereby, atmospheric and oceanic

influences cause ice shelf thinning and pre-condition collapse
(Pritchard et al., 2012; Adusumilli et al., 2018). Although
collapsing ice shelves do not directly contribute to sea level
rise, they play an important role in stabilizing their tributary
glaciers (Dupont and Alley, 2005). Once this support is lost,
the dynamics of the tributary glaciers and their ice discharge
increase, contributing directly to sea level rise (Rignot et al.,
2004; Seehaus et al., 2018). This mechanism has been ob-
served in a number of cases, most notably after the collapse
of the Prince Gustav Ice Shelf (Glasser et al., 2011) and the
Larsen-A and Larsen-B ice shelves (Hulbe et al., 2008; Rott
et al., 2011, 2018). Beyond that, even marine-terminating
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glaciers that were not directly affected by ice shelf collapse,
most of them flowing westward from the AP plateau, are
experiencing changing dynamics as a result of a warming
climate (Cook et al., 2016; Hogg et al., 2017; Wallis et al.,
2023a; Davison et al., 2024). The negative ice mass change
rates of the entire AP, −13 ± 5 Gtyr−1 between 1992 and
2020 and −21 ± 12 Gtyr−1 between 2017 and 2020, repre-
sent 14 % (between 1992 and 2020) and 18 % (between 2017
and 2020) of the mass loss rate of the Antarctic Ice Sheet
(Otosaka et al., 2023). Monitoring of AP marine-terminating
glaciers and ice shelves is of paramount importance for up-
to-date diagnosis and reliable prediction of future changes.

One particularly important parameter of each glacier is
the calving front position and its temporal variation. Firstly,
calving front locations are the basis for mapping glacier area
change. In this way, Cook et al. (2014) showed that the ma-
jority of the AP glaciers have decreased in area since the
1940s, with temporal trends indicating uniform retreat since
the 1970s. Most significant area losses occurred in the north-
eastern AP and are associated with ice shelf collapse. Area
loss on the western coast shows a north–south gradient and
has been linked to warming ocean water (Cook et al., 2016).
Secondly, calving front locations are essential for studying
and understanding ice–ocean interaction and the underlying
processes. In this way, they help to understand the response
of the AP to a warming climate. This applies to local stud-
ies of individual glaciers or glacier systems (Scambos et al.,
2011; Seehaus et al., 2015, 2016) but also to regional stud-
ies (Friedl et al., 2018; Wallis et al., 2023a; Ochwat et al.,
2024; Surawy-Stepney et al., 2024). Thirdly, calving front
locations play an important role in constraining ice-dynamic
models to improve simulations of future mass loss and sea
level contributions (Alley et al., 2005; Barrand et al., 2013;
Cornford et al., 2015). According to Pattyn and Morlighem
(2020), calving is one of the key physical processes, where
the lack of knowledge reduces the ability to accurately pre-
dict mass changes in the Antarctic Ice Sheet and define po-
tential tipping points. Modelling studies for Jakobshavn Is-
bræ in Greenland identified calving as the dominant control
on calving front migration, accounting for 90 % of the accel-
eration (Bondizo et al., 2017). Similar conclusions were also
drawn by Vieli and Nick (2011), who emphasized the need
for a robust representation of calving in ice sheet models.

Accurate glacier calving front data with both high tempo-
ral resolution and high spatial coverage are therefore criti-
cal. At present, however, these data products are not widely
available for the AP. This is due to limitations of the manual
and therefore time-consuming process of delineating these
frontal positions from the increasing amount of satellite im-
agery available.

Table 1 gives an overview of the publicly available outlet
glacier calving front datasets for the AP. The Antarctic Digi-
tal Database (ADD) (Cook et al., 2021b) and Global Land Ice
Measurements from Space (GLIMS) (GLIMS Consortium,
2005; Raup et al., 2007) products have circum-Antarctic cov-

erage but very limited temporal resolution. The calving front
data of Seehaus et al. (2015), Seehaus et al. (2016), Wallis
et al. (2023b) and Surawy-Stepney (2024) are by-products of
glaciological studies. Calving fronts reported by Gourmelon
et al. (2022) are part of a benchmark dataset developed to
evaluate automated extraction from synthetic aperture radar
(SAR) imagery. For the vast majority of the approximately
800 marine-terminating glaciers at the AP (Cook et al., 2014;
Huber et al., 2017), current data products do not exploit the
potential of available satellite observations. The availability
of glacier calving front positions at the AP is limited, empha-
sizing the need for additional and more comprehensive data
products. To generate these data products efficiently, we need
to use automatic annotation methods.

In recent years, deep learning has emerged as the tool
of choice to accomplish this task (Mohajerani et al., 2019;
Baumhoer et al., 2019; Zhang et al., 2021; Heidler et al.,
2021; Marochov et al., 2021; Periyasamy et al., 2022; Davari
et al., 2022b, a; Heidler et al., 2022; Herrmann et al.,
2023). This has already been demonstrated by Baumhoer
et al. (2023), who applied neural networks to SAR imagery
to generate a high-temporal-resolution dataset of Antarctic
Ice Shelf frontal positions. In the AP, the IceLines dataset
(Baumhoer et al., 2023) solely encompasses the Larsen Ice
Shelf and excludes the outlet glaciers. Similar methods have
been used to generate calving front data products for outlet
glaciers in Greenland (Cheng et al., 2021; Zhang et al., 2023;
Loebel et al., 2024d) and Svalbard (Li et al., 2024).

With this contribution, we provide a dense calving front
data product for 42 key glaciers of the AP. We achieve this by
applying a processing system initially developed for Green-
land and incorporating new reference data. The locations of
these glaciers are shown in Fig. 1. The period covered ranges
from 2013 to 2023. The glaciers were chosen based on four
criteria. We process all glaciers which (1) are part of the AP
Ice Sheet, (2) are marine-terminating, (3) are listed in the Sci-
entific Committee on Antarctic Research (SCAR) Composite
Gazetteer of Antarctica (Cervellati et al., 2000) and (4) have a
minimum calving front length of 5 km. The first three criteria
define the scope of this dataset. Our product does not include
glaciers on surrounding islands or ice shelve tributaries and
the fourth criterion is related to processing limitations.

2 Methods

The processing is based on the method previously described
by Loebel et al. (2024d). Originally developed for marine-
terminating outlet glaciers in Greenland, the method is built
with a high degree of automatization. The main modification
applied to the framework is the extension of the reference
dataset to incorporate glaciers in the AP. Figure 2 gives a
comprehensive overview of the processing system. The steps
involved are described below, followed by an accuracy as-
sessment of the results.
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Table 1. Overview of publicly available glacier calving front datasets for the AP Ice Sheet. The number of fronts mapped by Cook et al.
(2021a) is not documented. It is specified that more than 2000 aerial photographs and over 100 satellite images were used to compile the
dataset. The datasets listed are those that include AP outlet glacier calving fronts. Data products focusing on ice shelves (e.g. Greene et al.,
2022; Baumhoer et al., 2023; Andreasen et al., 2023) are not listed here.

Dataset Annotation Sensor type Glaciers Mapped fronts Time span

ADD (Cook et al., 2021a) Manual Optical 244 1843–2008
GLIMS (GLIMS Consortium, 2005) Manual Optical > 300 > 900 Since 1986
Seehaus et al. (2015) Manual SAR 1 147 1992–2014
Seehaus et al. (2016) Manual SAR 1 133 1993–2014
CryoPortal (ENVEO) Manual SAR and optical 16 124 2013–2017
Gourmelon et al. (2022) Manual SAR 5 457 1996–2020
Wallis et al. (2023b) Manual SAR 8 3430 2015–2021
Surawy-Stepney (2024) Manual SAR and optical 9 245 2002–2023
This study (Loebel et al., 2024a) Automatic Optical 42 4817 2013–2023

Figure 1. Overview map of the Antarctic Peninsula and the 42 glaciers included in the presented data product. All the glaciers lie within
drainage basins 25 and 26 mapped by Zwally et al. (2012).
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Figure 2. The workflow of the applied processing system divided into the various processing blocks.

2.1 Calving front delineation using deep learning

Our processing is based on multi-spectral Landsat-8 and
Landsat-9 Level-1 data. During pre-processing, nine avail-
able satellite bands, ranging from visible and infrared
(VNIR) over short-wave infrared (SWIR) to thermal infrared
(TIR), are cropped into 512 px × 512 px tiles with a unified
ground sampling distance of 30 m centred at the correspond-
ing calving front. With a width of about 15.3 km, these input
tiles cover the calving fronts for most Greenland and AP out-
let glaciers. To counteract image overexposure, we apply a
cumulative count cut image enhancement, clipping the data
between the 0.1st and 98th percentiles. Furthermore, all the
bands are normalized between 0 and 1 by an 8-bit quanti-
zation. The ground truth reference was inferred by manual
delineation for both training and testing our artificial neural
network (ANN). To train the model, we apply 869 Green-
land calving front positions and 252 calving fronts from 12
AP glaciers. Due to the similar morphologies of Greenland
and AP outlet glaciers, these 869 Greenland calving front po-
sitions represent an ideal basis for a well-generalized ANN
model. The 12 additional AP glaciers are Jorum, Punchbowl,
Prospect, Hektoria–Green–Evans, Drygalski, Birley, Crane,
Widdowson, Drummond, Fleming, Sjogren and Boydell. Ex-
panding the training dataset is beneficial for accounting for
the partly different glacier morphologies, such as the pres-
ence of free-floating glacier tongues. To avoid model over-
fitting, we make sure that the training data cover different
calving and ice melange conditions as well as varying illu-
mination and cloud conditions.

The applied ANN performs a land cover classification
where an ocean class is semantically segmented from a
glacier or land class. In particular, we use a modified U-Net
(Ronneberger et al., 2015) with two additional contracting
and expanding blocks. This modification results in a larger
receptive field, which is helpful for calving front extraction
(Heidler et al., 2021); 20 % of the input data are used for
internal model validation and model selection. The training

data are augmented eight times by rotation and mirroring.
For model training, we used the Adam optimization algo-
rithm (Kingma and Ba, 2014) on a binary cross-entropy loss
function for 200 epochs and randomized batches of size 8.
The model output is a floating point probability mask. Each
image pixel is assigned a probability between 0 (water) and 1
(glacier and land). Since the terminus length of the Hektoria–
Green–Evans glacier system exceeds the fixed window size,
we infer five separate but partially overlapping predictions
here. We then merge these five predictions by averaging the
values where they overlap. During post-processing the pre-
diction is vectorized using the Geospatial Data Abstraction
Library (GDAL/OGR contributors, 2020) with a threshold of
0.5. The threshold of 0.5 is the boundary between the pre-
dicted water and glacier or land classes, i.e. the predicted
coastline. The glacier front is then extracted by intersecting
the predicted vectorized coastline with a static mask which
is manually generated for each glacier. Masked predictions
therefore only contain the calving front. This is important
not only for producing a consistent data product but also for
performing a correct accuracy assessment, as the land–ocean
boundary is almost static, making it easier for the ANN to
delineate.

For further analysis, the calving front location shape files
are processed using the rectilinear box method (Moon and
Joughin, 2008). We use this method not only to generate the
time series of terminus area change but also to remove failed
calving front extractions and separate outliers. In particular,
calving fronts which do not split their corresponding glaciers
box are discarded as failed extractions. In addition, we sepa-
rate all entries that have an area difference of more than 20 %
of the corresponding box width from the previous and fol-
lowing entries. Separated entries are checked manually and
either (1) reinserted into the dataset if they were separated
due to a true area change (e.g. due to calving of a large ice-
berg) or (2) discarded if the area change was due to a mis-
classification by the ANN.
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For the generation of our data product, we downloaded
4991 Landsat-8 and Landsat-9 Level-1 scenes, all available
data for the 42 glaciers until May 2023. These are then pre-
processed into 30453 stacked (nine bands, 512 px × 512 px)
raster subsets. Since consecutive Level-1 Landsat scenes of
the same path overlap, we select a maximum of one entry per
day by minimizing no-data pixels. The resulting 23 230 raster
subsets are processed by the ANN. More than half of the ex-
tractions fail, mostly due to cloud cover, leaving 8688 calving
fronts. After outlier separation and checking, our final data
product contains 4817 calving front positions. The success
rate, which we define here as the ratio of raster subsets going
into ANN processing to final quality controlled data prod-
uct entries, is 21 %. All the data product entries provided are
full calving front extractions covering the entire calving front
trajectory.

2.2 Accuracy assessment

The main accuracy assessment is done by comparing ANN-
delineated calving front predictions to manual delineation
for independent test imagery. The results of this compari-
son will validate our processing system and provide valuable
metrics for comparing this method to existing studies. As an
additional metric, we introduce the inter-model distance. Al-
though the inter-model distance has limited reliability, it has
the advantage that it can be determined for each ANN pre-
diction without the need for manual delineation.

2.2.1 Comparison to manual delineation

The accuracy of the data product is estimated by comparing
automated calving front extractions to manual delineations.
Loebel et al. (2024d) already evaluated the processing system
for accuracy and generalizability, with a particular empha-
sis on Greenland glaciers. Since we use additional training
data for this analysis, we also apply a manually delineated
test dataset, specifically for the AP. This test dataset contains
60 calving front locations over 20 glaciers. It includes eight
glaciers which are not part of the training dataset. These eight
test glaciers ensure the spatial transferability of our method.
While the training data contain calving fronts from 2013 to
2021, the test dataset contains calving fronts for the separate
period from 2022 to 2023. As ANN training is not determin-
istic, we train five separate models for our assessment. Our
main error metric is the distance between the predicted de-
lineation and the manual delineation. For this, we implement
two different distance estimates. Firstly, we use an average
minimum distance error, which we calculate by averaging
the minimum distance every 30 m along the predicted front
trajectory. This estimate is comparable to the ones used by
Cheng et al. (2021), Loebel et al. (2022), Baumhoer et al.
(2023) and Zhang et al. (2023). Secondly, we report the
Hausdorff distance (Huttenlocher et al., 1993), which only
considers the largest distance of all minimum distances along

the two trajectories. The Hausdorff distance is therefore very
sensitive to discrepancies, even along small sections of the
glacier front between the ANN and the manually derived
calving front.

Figure 3 shows six test images for a diverse range of chal-
lenging conditions concerning ice melange, cloud cover, ice-
berg presence, low illumination and satellite scene borders.
In addition, the minimum distance along the predicted tra-
jectory (from A to B) is shown for each image. Our pro-
cessing system reliably delineates calving fronts from a wide
range of image conditions. These include a wide range of
ocean, ice melange and illumination conditions as well as
light cloud cover and images with calving fronts near the
edge of a satellite scene. This is due to the large training
dataset, which covers a wide variety of satellite images under
these conditions. In addition, the integration of multi-spectral
input data leads to more accurate predictions under these dif-
ficult conditions than using only single-band inputs (Loebel
et al., 2022). Looking at the distance error along the predicted
fronts, it is clear that the difference between manual delin-
eation and ANNs is not uniform. This is also reflected in the
Hausdorff and average minimum distance errors, which can
vary greatly. Large minimum distance errors mostly occur
due to inaccurate ANN predictions in difficult-to-delineate
parts of the glacier front (e.g. at ∼ 11 km in Fig. 3f or at
∼ 15 km in Fig. 3c). However, it is important to note that, al-
though we treat it as such here, our manual delineation is not
a traditional ground truth, as it is also uncertain depending on
the author and the satellite image. For difficult-to-delineate
scenes (e.g. Prospect Glacier in Fig. 3d), it is not possible to
attribute the error, as both the manual and ANN predictions
are uncertain.

Table 2 gives an overview of the accuracy assessment over
the entire test dataset. In addition to the average minimum
distance and the Hausdorff distance estimates, we specify
the binary classification metrics accuracy, precision, recall
and F1 score. Whilst a high binary classification performance
does not necessarily translate into an accurate prediction of
the calving front trajectory, we report these values to facil-
itate the comparability of our results with other studies and
datasets. Although completely different test datasets are in-
volved, the 59.3 ± 5.9 m mean average minimum distance
calculated here aligns very well with the 61.2 ± 7.5 m re-
ported by Loebel et al. (2024d). When applied to the ESA-
CCI (ENVEO, 2017) and CALFIN (Cheng et al., 2021) test
datasets (as processed in Loebel et al., 2024d), which contain
a further 100 and 110 additional test images from Greenland
glaciers, we calculate mean average minimum distances of
79.1±5.3 and 78.7±3.8 m (see the extended accuracy assess-
ment table in the Supplement). Furthermore, these results are
in the broad range of other ANN-based calving front extrac-
tion methods using optical imagery, like Cheng et al. (2021)
with 86.7 ± 1.4 m and Zhang et al. (2023) with 79 m. The
Hausdorff distance is commonly not reported in other au-
tomated glacier front delineation studies. However, Goliber
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Figure 3. Accuracy assessment results of six sample scenes from the test dataset. The dashed black lines show manually delineated calving
fronts. The graphs at the bottom of each image show the minimum distance along the predicted trajectory (from A to B). The red lines show
the five ANN predictions from five models. Overlap of the lines is indicated by the higher colour intensity. The average minimum distance
and Hausdorff distances are given for each test image. Note that the endpoints B of the different models do not coincide due to the different
lengths of the predicted fronts. For the locations of specific glaciers, see Fig. 1. Landsat imagery courtesy of the U.S. Geological Survey.

Table 2. Results of the accuracy assessment presented as mean values with the corresponding standard deviations calculated over the five
trained models. The average minimum distance and the Hausdorff distance estimates are provided as mean and median values over the test
dataset. Also shown are the accuracy, precision, recall and F1 score. The binary classification metrics relate to the land or glacier class.

Average minimum distance Hausdorff distance Binary classification metrics

Mean (m) Median (m) Mean (m) Median (m) Accuracy Precision Recall F1 score

59.3 ± 5.9 33.9 ± 1.5 405.1 ± 20.7 257.0 ± 14.7 0.984 ± 0.001 0.978 ± 0.002 0.995 ± 0.001 0.986 ± 0.001
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Figure 4. Histogram of the average minimum distance between
manual delineation and ANN prediction. The number of total test
scenes corresponds to the test dataset multiplied by the five trained
ANN models. The overall median is shown as a dotted line and the
overall mean as a dashed line. The grey levels indicate whether the
test scene is from a glacier that is part of the training dataset or not.

et al. (2022) estimated the error in manual delineation by
applying the median Hausdorff distance to duplicate delin-
eations from different authors. Depending on the pairs of au-
thors, the median errors range from 58.6 m to 7350 m with an
overall median error of 107 m. This suggests that our method,
which has a median Hausdorff error of 257±14.7 m, is in the
range of possible manual delineation errors but has not yet
reached human performance.

When assessing the accuracy only for the 23 test scenes
of glaciers outside the training dataset, we calculate a mean
delineation error of 51.9 ± 6.7 m (median 37.3 ± 5.3 m). In-
terestingly, the mean is lower and the median is higher than
for an assessment over the 37 scenes from glaciers within the
training dataset, where the mean (and median) delineation
error is 65.3±7.7 m (median 33.8±1.5 m). This is likely be-
cause of training glaciers that have challenging-to-delineate
calving conditions (like Prospect Glacier; see Fig. 3d). Fig-
ure 4 shows the distribution of the average minimum distance
error accumulated over all the test scenes for the five trained
models.

Based on these numbers, we confirm the high degree of
ANN model generalization and hence the spatial transferabil-
ity of our method.

2.2.2 Inter-model distance

As a secondary estimate of accuracy, we introduce the inter-
model distance. We define the inter-model distance as the av-
erage minimum distance between two predicted calving front
trajectories from two different ANN models that have the
same architecture and use the same set of hyperparameters.

Specifically for our case, we calculate a mean inter-model
distance between the ANN model we use to generate our
data product (randomly selected) and the four other trained
models. The concept behind this metric is that the variabil-
ity of different models predicting the same calving front is
highly correlated with the accuracy of those predictions. The
main motivation for introducing the mean inter-model dis-
tance is that it can be calculated for each calving front pre-
diction without the need for manual delineation. Hence, the
mean inter-model distance can be reported for each entry
in our data product. However, limitations need to be con-
sidered when evaluating this metric. Although a low inter-
model distance confirms that the ANN is confident in its pre-
diction, this does not necessarily translate into an accurate
calving front. Systematically incorrect predictions from all
five ANN models (e.g. due to an iceberg being misclassi-
fied as a glacier) result in a low mean inter-model distance,
when in fact the predicted front would be of low quality with
a large distance to the manual delineation. That said, as in-
correct predictions are mostly eliminated during quality con-
trol of the data product (see Sect. 2), the opposite is more
likely to happen. Here, a high mean inter-model distance is
calculated, although the predicted front is of good quality.
This happens most often in satellite scenes with difficult im-
age conditions where the ANN predictions have low confi-
dence, causing some models to delineate the front correctly.
An accurately delineated calving front prediction can there-
fore yield a high mean inter-model distance when at least one
of the predictions of the other four models is of low quality.
Overall, we believe that this mean inter-model distance is a
useful estimate of accuracy, although it will likely overesti-
mate the delineation error for some calving front predictions.

Figure 5 shows the distribution of the mean inter-model
distance over all the calving front entries in our data prod-
uct. Again, we distinguish whether the entry is from a glacier
that is part of the training dataset or not, further validating
the spatial transferability. Across our entire data product, we
calculate a mean of 107.9 m and a median of 33.2 m. While
the mean value is significantly higher than the mean average
minimum distance of our test dataset, the median values are
almost the same. It should also be noted that the mean inter-
model distance varies considerably from glacier to glacier.
Separate histograms for each of the 42 glaciers are included
in the Supplement.

3 Data product and usage notes

The data product presented here has been created to provide
glaciologists and glacier modellers with high-quality calving
front positions of the AP Ice Sheet without the need for man-
ual delineation. Figure 1 gives a spatial overview of the 42
processed glaciers. A tabular overview is given in Table 3. In
total, the data record encompasses 4817 calving front posi-
tions over 42 marine-terminating glaciers. Since the data are
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Table 3. Temporal coverage of our ANN-generated time series. The numbers and the colour intensity indicate the number of processed
calving front positions in the respective year.

Figure 5. Histogram of the mean inter-model distance over all calv-
ing front entries in our data product. The overall median is shown as
a dotted line and the overall mean as a dashed line. The grey levels
indicate whether the test scene is from a glacier that is part of the
training dataset or not.

derived from optical imagery, the time series have a 14-week
gap during the polar night from May to mid-August. Out-
side the polar night, the dataset has one entry every 19.5 d
on average. However, the sampling is irregular and primar-
ily dependent on the satellite orbit and cloud cover. The time
frame from 2013 to 2023 covers that of the IceLines dataset
(Baumhoer et al., 2023), facilitating a combined analysis of
circum-Antarctic calving front change.

Figure 6 gives eight example time series of the termi-
nus area change within two regions of the AP. The terminus
area change in glaciers in the Larsen-B embayment (Fig. 6a–
d) is spatially correlated and shows a steady advance from
2013 until the end of 2021. At the beginning of 2022, our
data show a simultaneous retreat of the four glaciers. Sub-
sequently, the glacier tongues of the Hektoria–Green–Evans,
Jorum and Crane glaciers collapsed. This simultaneous re-

treat is attributed to the disintegration of landfast sea ice in-
side the embayment in early 2022 and the resulting loss of
buttressing (Ochwat et al., 2024). The glaciers in Wordie Bay
(Fig. 6e–h) show more varied calving front dynamics. These
range from stable calving front positions (Hariot Glacier and
Carlson Glacier since mid-2020) over steady terminus ad-
vances superimposed by frequent calving events (Fleming
Glacier) to large calving events (Prospect Glacier in 2018).
The dynamic changes in this area are linked to the Wordie
Ice Shelf and its disintegration between the 1960s and the
late 1990s. This has led to increased ice flow and calving of
the four main tributary glaciers, i.e. Hariot, Fleming, Carl-
son and Prospect (Friedl et al., 2018). Therefore, operational
and temporally high-resolution monitoring of these glaciers
is particularly important. An overview of the time series of all
42 glaciers of our data product is given in the Supplement.

To put our data product into context with existing datasets,
we compare the different time series. Figure 7 shows the
time series of glacier advance for three examples. For each
glacier, all available datasets were used (see Table 1). For the
Dinsmoor–Bombardier–Edgeworth glacier system (Fig. 7a),
there is generally very good agreement between the four
datasets. Here, our data product provides a valuable continu-
ation of the time series of Seehaus et al. (2015), which was
delineated as part of a glaciological study (Seehaus et al.,
2015) for this glacier. Similarly, for Keith Glacier (Fig. 7b),
the dataset of Wallis et al. (2023a) has significant overlap
with our time series. Although calving front change during
this period is relatively small, the seasonal and sub-seasonal
variations are captured by both datasets. Importantly, dif-
ferences between these time series are in the range of both
manual and ANN delineation accuracies. The time series of
Drygalski Glacier (Fig. 7c) is representative of the major-
ity of the glaciers in our data product. Here our time series
is the first seasonal record, with the other available datasets
being the GLIMS database (GLIMS Consortium, 2005) and
the ADD (Cook et al., 2021b). These three examples empha-
size that the quality of our automatically delineated calving
fronts is comparable to that of existing manually extracted
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Figure 6. Example time series of terminus area change generated by our processing system for (a–d) four AP glaciers in the Larsen-
B embayment and (e–g) three glaciers at Wordie Bay. Colour-coded calving front locations are depicted on the maps on the left. The
corresponding time series are shown on the right with the entries marked by black dots. The blue dots are additional validation marks that
indicate the frontal positions of the manually delimited reference dataset. Landsat imagery courtesy of the U.S. Geological Survey.

datasets. As a result, our data product is the first to combine
seasonal temporal resolution with a large spatial coverage
across the AP. Nevertheless, the importance of the GLIMS
and ADD products must be emphasized, as these are still
the only repositories that provide complete coverage and, for

the ADD in particular, long-term observations going back to
1843.

The data product is stored in a georeferenced vector
file format (GeoPackage and ESRI Shapefile), sorted by
glacier and date within a file system structure. All the
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Figure 7. Time series of glacier advance along the central flowline for (a) the Dinsmore–Bombardier–Edgeworth glacier system, (b) Keith
Glacier and (c) Drygalski Glacier. The individual datasets are marked with different colours. Note that the axes have differing scales.

files are georeferenced using the Antarctic Polar Stereo-
graphic Projection (EPSG:3031). This allows for easy han-
dling, e.g. by means of GIS software or geospatial data li-
braries. Calving front traces are stored separately for each
glacier and each date as well as in a consolidated file. In
addition to the full data product, annual entries are pro-
vided for each glacier. The annual entries also contain
the full ANN coastline predictions, which are provided as
both linestrings and polygonal masks. The attribute table of
each file includes the glacier name, calving front date, type
(glacier front or coastline), processing date, processing ver-
sion, corresponding Landsat product identifier, mean inter-
model distance and standard deviation of the inter-model dis-
tance. The file naming convention for each entry is [glacier
name]_[YYYYMMDD]_[type].shp. An example entry would
be prospect_20230408_glacier_front.shp.

4 Code and data availability

The AP calving front location data record
is publicly available from PANGAEA at
https://doi.org/10.1594/PANGAEA.963725 (Loebel et al.,
2024a). The calving front locations can be downloaded
by clicking on the “View Dataset as HTML” button in
the overview. All reference data applied in this study
are publicly available. The Greenland reference data are
available at https://doi.org/10.25532/OPARA-282 (Loebel
et al., 2024e) and the AP reference data are available
at https://doi.org/10.25532/OPARA-581 (Loebel et al.,
2024c). We provide a containerized implementation (plat-
form Docker) of the presented processing system. The
software automatically extracts calving front positions

from Landsat-8 or Landsat-9 Level-1 data archives for
the glaciers used in this study or for user-defined coor-
dinates. This enables analysis of glaciers that are outside
our reference dataset or beyond the temporal frame-
work of our study. The software is available at https:
//github.com/eloebel/glacier-front-extraction (last access:
24 July 2024) and https://doi.org/10.5281/zenodo.7755774
(Loebel, 2023a). Our implementation (software Python 3)
of the rectilinear box method is available at https:
//github.com/eloebel/rectilinear-box-method (last access:
24 July 2024) and https://doi.org/10.5281/zenodo.7738605
(Loebel, 2023b). The processed time series of the terminus
area change, provided in text file format, are available at
https://doi.org/10.25532/OPARA-557 (Loebel et al., 2024b).

5 Conclusions

Accurate and temporally and spatially comprehensive calv-
ing front data are essential for understanding and modelling
glacial evolution. This paper addresses this requirement and
presents a new data record for glaciers at the AP. The data are
generated by applying multi-spectral Landsat-8 and Landsat-
9 imagery to a deep-learning-based processing system. We
validated the processing system for accuracy, robustness and
generalization capabilities using independent test data. The
mean difference between automated and manual extraction
is estimated at 59.3 ± 5.9 m. The resulting data record con-
tains 4817 calving front locations for 42 key outlet glaciers
from 2013 to 2023. It achieves a sub-seasonal temporal res-
olution for all the processed glaciers, making it a valuable
addition to the existing data records.
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More broadly, this contribution shows that well-
generalized ANN processing systems can be applied to
various regions of interest, with only minor additions
to reference data. With thousands of marine-terminating
glaciers worldwide (RGI Consortium, 2017), this is par-
ticularly relevant for extracting calving fronts. In addition
to applications for current satellite missions, there is also
significant potential for improving historical data records
by exploiting the vast amount of satellite imagery collected
over the past decades. We expect that our presented data
record will not only advance glaciological research for the
AP but also contribute to future deep-learning-based calving
front data products and data inter-comparison projects.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-17-65-2025-supplement.
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