Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1685-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1685-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hyperspectral library of submerged aquatic vegetation and benthic substrates in the Baltic Sea
Ele Vahtmäe
CORRESPONDING AUTHOR
Estonian Marine Institute, University of Tartu, Mäealuse 14, Tallinn, 12618, Estonia
Laura Argus
Estonian Marine Institute, University of Tartu, Mäealuse 14, Tallinn, 12618, Estonia
Kaire Toming
Estonian Marine Institute, University of Tartu, Mäealuse 14, Tallinn, 12618, Estonia
Martin Ligi
Estonian Marine Institute, University of Tartu, Mäealuse 14, Tallinn, 12618, Estonia
Tiit Kutser
Estonian Marine Institute, University of Tartu, Mäealuse 14, Tallinn, 12618, Estonia
Related authors
No articles found.
Sijia Li, Shiqi Xu, Kaishan Song, Tiit Kutser, Zhidan Wen, Ge Liu, Yingxin Shang, Lili Lyu, Hui Tao, Xiang Wang, Lele Zhang, and Fangfang Chen
Hydrol. Earth Syst. Sci., 27, 3581–3599, https://doi.org/10.5194/hess-27-3581-2023, https://doi.org/10.5194/hess-27-3581-2023, 2023
Short summary
Short summary
1. Blue/red and green/red Rrs(λ) are sensitive to lake TSI. 2. Machine learning algorithms reveal optimum performance of TSI retrieval. 3. An accurate TSI model was achieved by MSI imagery data and XGBoost. 4. Trophic status in five limnetic regions was qualified. 5. The 10m TSI products were first produced in 555 typical lakes in China.
Related subject area
Domain: ESSD – Ocean | Subject: Biological oceanography
A 45-year hydrological and planktonic time series in the South Bight of the North Sea
Bivalve monitoring over French coasts: multi-decadal records of carbon and nitrogen elemental and isotopic ratios as ecological indicators of global change
A comprehensive global mapping of offshore lighting
A compilation of surface inherent optical properties and phytoplankton pigment concentrations from the Atlantic Meridional Transect
A hyperspectral and multi-angular synthetic dataset for algorithm development in waters of varying trophic levels and optical complexity
Global biogeography of N2-fixing microbes: nifH amplicon database and analytics workflow
Quantitative imaging datasets of micro to mesoplankton communities and surface microplastic across the Pacific Ocean from the Tara Pacific Expedition
Microbial plankton occurrence database in the North American Arctic region: synthesis of recent diversity of potentially toxic and/or harmful algae
AIGD-PFT: the first AI-driven global daily gap-free 4 km phytoplankton functional type data product from 1998 to 2023
Early-life dispersal traits of coastal fishes: an extensive database combining observations and growth models
An update of data compilation on the biological response to ocean acidification and overview of the OA-ICC data portal
First release of the Pelagic Size Structure database: global datasets of marine size spectra obtained from plankton imaging devices
Fish functional groups of the North Atlantic and Arctic Oceans
Metazoan zooplankton in the Bay of Biscay: a 16-year record of individual sizes and abundances obtained using the ZooScan and ZooCAM imaging systems
PANABIO: a point-referenced PAN-Arctic data collection of benthic BIOtas
Observed global ocean phytoplankton phenology indices
The Western Channel Observatory: a century of physical, chemical and biological data compiled from pelagic and benthic habitats in the western English Channel
A global daily gap-filled chlorophyll-a dataset in open oceans during 2001–2021 from multisource information using convolutional neural networks
A new global oceanic multi-model net primary productivity data product
MAREL Carnot data and metadata from the Coriolis data center
Bio-optical properties of the cyanobacterium Nodularia spumigena
An atlas of seabed biodiversity for Aotearoa New Zealand
A synthetic optical database generated by radiative transfer simulations in support of studies in ocean optics and optical remote sensing of the global ocean
The Coastal Surveillance Through Observation of Ocean Color (COASTℓOOC) dataset
HIPPO environmental monitoring: impact of phytoplankton dynamics on water column chemistry and the sclerochronology of the king scallop (Pecten maximus) as a biogenic archive for past primary production reconstructions
AlgaeTraits: a trait database for (European) seaweeds
How to learn more about hydrological conditions and phytoplankton dynamics and diversity in the eastern English Channel and the Southern Bight of the North Sea: the Suivi Régional des Nutriments data set (1992–2021)
Deepwater red shrimp fishery in the eastern–central Mediterranean Sea: AIS-observed monthly fishing effort and frequency over 4 years
Global dataset on seagrass meadow structure, biomass and production
The Green Edge cruise: investigating the marginal ice zone processes during late spring and early summer to understand the fate of the Arctic phytoplankton bloom
A global marine particle size distribution dataset obtained with the Underwater Vision Profiler 5
The COSMUS expedition: seafloor images and acoustic bathymetric data from the PS124 expedition to the southern Weddell Sea, Antarctica
David Devreker, Guillaume Wacquet, and Alain Lefebvre
Earth Syst. Sci. Data, 17, 1173–1189, https://doi.org/10.5194/essd-17-1173-2025, https://doi.org/10.5194/essd-17-1173-2025, 2025
Short summary
Short summary
This article presents a 45-year data series (1978–2023) acquired in the South Bight of the North Sea. It provides an overview of the main statistical characteristics of time series (hydrological parameters and plankton species), including long-term trends and shift analysis. The aim of this paper is to make this valuable dataset available to help decipher the local and global influences of anthropogenic activities in a world increasingly affected by climate change.
Camilla Liénart, Alan Fournioux, Andrius Garbaras, Hugues Blanchet, Nicolas Briant, Stanislas F. Dubois, Aline Gangnery, Anne Grouhel Pellouin, Pauline Le Monier, Arnaud Lheureux, Xavier de Montaudouin, and Nicolas Savoye
Earth Syst. Sci. Data, 17, 799–815, https://doi.org/10.5194/essd-17-799-2025, https://doi.org/10.5194/essd-17-799-2025, 2025
Short summary
Short summary
Bivalves such as mussels and oysters reflect the quality of the environment by filtering ambient water. We measured carbon and nitrogen chemical composition in bivalve tissues from 33 sites along French coastlines sampled since the 1980s. Thanks to such time series, this dataset allows us to track how marine species record changing climate, physical–chemical environment, and organic matter cycles and provide precious information on the coastal ecosystem response to global change.
Christopher D. Elvidge, Tilottama Ghosh, Namrata Chatterjee, Mikhail Zhizhin, Paul C. Sutton, and Morgan Bazilian
Earth Syst. Sci. Data, 17, 579–594, https://doi.org/10.5194/essd-17-579-2025, https://doi.org/10.5194/essd-17-579-2025, 2025
Short summary
Short summary
We present the first comprehensive map of offshore lighting derived from low-light imaging satellite data. The empty sea provides a dark and uniform canvas upon which light detections can be aggregated for extended periods to reveal human lighting structures. The form of the structures only becomes apparent when data from 1 or more years are accumulated. Identifiable structures include fishing grounds, platforms, gas flares, anchorages, and transportation routes.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025, https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
Jaime Pitarch and Vittorio Ernesto Brando
Earth Syst. Sci. Data, 17, 435–460, https://doi.org/10.5194/essd-17-435-2025, https://doi.org/10.5194/essd-17-435-2025, 2025
Short summary
Short summary
This research presents a comprehensive synthetic dataset of bio-optical properties and radiometric quantities in the optical domain, resolved for all sun-view angular combinations, from ultraviolet to visible light, that provide aid in the development of satellite algorithms, including directional problems. The dataset will significantly enhance research on light behavior in water and support future hyperspectral missions. It has been made publicly available on Zenodo.
Michael Morando, Jonathan D. Magasin, Shunyan Cheung, Matthew M. Mills, Jonathan P. Zehr, and Kendra A. Turk-Kubo
Earth Syst. Sci. Data, 17, 393–422, https://doi.org/10.5194/essd-17-393-2025, https://doi.org/10.5194/essd-17-393-2025, 2025
Short summary
Short summary
Nitrogen is crucial in ocean food webs, but only some microbes can fix N2 gas into a bioavailable form. Most are known only by their nifH gene sequence. We created a software workflow for nifH data and ran it on 944 ocean samples, producing a database (DB) that captures the global diversity of N2-fixing marine microbes and the environmental factors that influence them. The workflow and DB can standardize analyses of past and future nifH datasets to enable insights into marine communities.
Zoé Mériguet, Guillaume Bourdin, Nathaniel Kristan, Laetitia Jalabert, Olivier Bun, Marc Picheral, Louis Caray–Counil, Juliette Maury, Maria-Luiza Pedrotti, Amanda Elineau, David Arturo Paz-Garcia, Lee Karp-Boss, Gabriel Gorsky, Fabien Lombard, and the Tara Pacific Consortium Coordinators team
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-507, https://doi.org/10.5194/essd-2024-507, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents imaging datasets from the Tara Pacific Expedition, covering multiple plankton sizes and a wide sampling area in Pacific waters. By sampling both open ocean and island areas, these data can show how plankton size, diversity and abundance change with different environments. We also highlight the usefulness of high-speed plankton sampling when it is not possible to slow the boat during sailing, and its value in extending sampling coverage and frequency.
Nicolas Schiffrine, Fatma Dhifallah, Kaven Dionne, Michel Poulin, Sylvie Lessard, André Rochon, and Michel Gosselin
Earth Syst. Sci. Data, 16, 5681–5701, https://doi.org/10.5194/essd-16-5681-2024, https://doi.org/10.5194/essd-16-5681-2024, 2024
Short summary
Short summary
Growing concern arises in the Arctic Ocean as toxic and harmful phytoplankton emerge due to climate change. The potential surge in these occurrences threatens both human health and the Arctic ecosystem. Our ongoing research yields insights into spatial patterns and biodiversity, challenging the belief that the Arctic is unsuitable for toxic and harmful algal events. This work underscores the need to comprehend and address the ecological impact of these emerging species in the Arctic environment.
Yuan Zhang, Fang Shen, Renhu Li, Mengyu Li, Zhaoxin Li, Songyu Chen, and Xuerong Sun
Earth Syst. Sci. Data, 16, 4793–4816, https://doi.org/10.5194/essd-16-4793-2024, https://doi.org/10.5194/essd-16-4793-2024, 2024
Short summary
Short summary
This work describes AIGD-PFT, the first AI-driven global daily gap-free 4 km phytoplankton functional type (PFT) product from 1998 to 2023. AIGD-PFT enhances the accuracy and spatiotemporal coverage quantification of eight major PFTs (i.e. diatoms, dinoflagellates, haptophytes, pelagophytes, cryptophytes, green algae, prokaryotes, and Prochlorococcus).
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Yan Yang, Patrick Brockmann, Carolina Galdino, Uwe Schindler, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 3771–3780, https://doi.org/10.5194/essd-16-3771-2024, https://doi.org/10.5194/essd-16-3771-2024, 2024
Short summary
Short summary
Studies investigating the effects of ocean acidification on marine organisms and communities have been steadily increasing. To facilitate data comparison, a data compilation hosted by the PANGAEA Data Publisher was initiated in 2008 and is updated on a regular basis. By November 2023, a total of 1501 datasets (~25 million data points) from 1554 papers have been archived. To filter and access relevant biological response data from this compilation, a user-friendly portal was launched in 2018.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Murray S. A. Thompson, Izaskun Preciado, Federico Maioli, Valerio Bartolino, Andrea Belgrano, Michele Casini, Pierre Cresson, Elena Eriksen, Gema Hernandez-Milian, Ingibjörg G. Jónsdóttir, Stefan Neuenfeldt, John F. Pinnegar, Stefán Ragnarsson, Sabine Schueckel, Ulrike Schueckel, Brian E. Smith, María Á. Torres, Thomas J. Webb, and Christopher P. Lynam
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-102, https://doi.org/10.5194/essd-2024-102, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We collated data from multiple fish stomach content databases to improve understanding of marine food web interactions for the North Atlantic and Arctic Oceans. These data were used to categorise fish into feeding guilds and applied to understand change in fish populations observed in scientific trawl surveys. This revealed spatially extensive temporal change in marine ecosystem structure and functioning. Our study provides evidence supporting a candidate food web indicator for the OSPAR Area.
Nina Grandremy, Paul Bourriau, Edwin Daché, Marie-Madeleine Danielou, Mathieu Doray, Christine Dupuy, Bertrand Forest, Laetitia Jalabert, Martin Huret, Sophie Le Mestre, Antoine Nowaczyk, Pierre Petitgas, Philippe Pineau, Justin Rouxel, Morgan Tardivel, and Jean-Baptiste Romagnan
Earth Syst. Sci. Data, 16, 1265–1282, https://doi.org/10.5194/essd-16-1265-2024, https://doi.org/10.5194/essd-16-1265-2024, 2024
Short summary
Short summary
We present two space- and time-resolved zooplankton datasets originating from samples collected in the Bay of Biscay in spring over the 2004–2019 period and imaged with the interoperable imaging systems ZooScan and ZooCAM. These datasets are suited for long-term size-based or combined size- and taxonomy-based ecological studies of zooplankton. The set of sorted images are provided along with a set of morphological descriptors that are useful when machine learning is applied to plankton studies.
Dieter Piepenburg, Thomas Brey, Katharina Teschke, Jennifer Dannheim, Paul Kloss, Marianne Rehage, Miriam L. S. Hansen, and Casper Kraan
Earth Syst. Sci. Data, 16, 1177–1184, https://doi.org/10.5194/essd-16-1177-2024, https://doi.org/10.5194/essd-16-1177-2024, 2024
Short summary
Short summary
Research on ecological footprints of climate change and human impacts in Arctic seas is still hampered by problems in accessing sound data, which is unevenly distributed among regions and faunal groups. To address this issue, we present the PAN-Arctic data collection of benthic BIOtas (PANABIO). It provides open access to valuable biodiversity information by integrating data from various sources and of various formats and offers versatile exploration tools for data filtering and mapping.
Sarah-Anne Nicholson, Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Marié E. Smith
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-21, https://doi.org/10.5194/essd-2024-21, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The annual greening of the global ocean by the widespread growth of phytoplankton blooms, visible from space, has global-scale impacts on food security, ecosystem health, and climate. Using satellite observations this study generates long-term and sustained phytoplankton phenology (timing and magnitude of blooms) indices for the global ocean towards the effective monitoring and management of marine resources and the assessment of climate change impacts on ocean ecosystems
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Zhongkun Hong, Di Long, Xingdong Li, Yiming Wang, Jianmin Zhang, Mohamed A. Hamouda, and Mohamed M. Mohamed
Earth Syst. Sci. Data, 15, 5281–5300, https://doi.org/10.5194/essd-15-5281-2023, https://doi.org/10.5194/essd-15-5281-2023, 2023
Short summary
Short summary
Changes in ocean chlorophyll-a (Chl-a) concentration are related to ecosystem balance. Here, we present high-quality gap-filled Chl-a data in open oceans, reflecting the distribution and changes in global Chl-a concentration. Our findings highlight the efficacy of reconstructing missing satellite observations using convolutional neural networks. This dataset and model are valuable for research in ocean color remote sensing, offering data support and methodological references for related studies.
Thomas J. Ryan-Keogh, Sandy J. Thomalla, Nicolette Chang, and Tumelo Moalusi
Earth Syst. Sci. Data, 15, 4829–4848, https://doi.org/10.5194/essd-15-4829-2023, https://doi.org/10.5194/essd-15-4829-2023, 2023
Short summary
Short summary
Oceanic productivity has been highlighted as an important environmental indicator of climate change in comparison to other existing metrics. However, the availability of these data to assess trends and trajectories is plagued with issues, such as application to only a single satellite reducing the time period for assessment. We have applied multiple algorithms to the longest ocean colour record to provide a record for assessing climate-change-driven trends.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Shungudzemwoyo P. Garaba, Michelle Albinus, Guido Bonthond, Sabine Flöder, Mario L. M. Miranda, Sven Rohde, Joanne Y. L. Yong, and Jochen Wollschläger
Earth Syst. Sci. Data, 15, 4163–4179, https://doi.org/10.5194/essd-15-4163-2023, https://doi.org/10.5194/essd-15-4163-2023, 2023
Short summary
Short summary
These high-quality data document a harmful algal bloom dominated by Nodularia spumigena, a cyanobacterium that has been recurring in waters around the world, using advanced water observation technologies. We also showcase the benefits of experiments of opportunity and the issues with obtaining synoptic spatio-temporal data for monitoring water quality. The dataset can be leveraged to gain more knowledge on related blooms, develop detection algorithms and optimize future monitoring efforts.
Fabrice Stephenson, Tom Brough, Drew Lohrer, Daniel Leduc, Shane Geange, Owen Anderson, David Bowden, Malcolm R. Clark, Niki Davey, Enrique Pardo, Dennis P. Gordon, Brittany Finucci, Michelle Kelly, Diana Macpherson, Lisa McCartain, Sadie Mills, Kate Neill, Wendy Nelson, Rachael Peart, Matthew H. Pinkerton, Geoffrey B. Read, Jodie Robertson, Ashley Rowden, Kareen Schnabel, Andrew Stewart, Carl Struthers, Leigh Tait, Di Tracey, Shaun Weston, and Carolyn Lundquist
Earth Syst. Sci. Data, 15, 3931–3939, https://doi.org/10.5194/essd-15-3931-2023, https://doi.org/10.5194/essd-15-3931-2023, 2023
Short summary
Short summary
Understanding the distribution of species that live at the seafloor is critical to the management of the marine environment but is lacking in many areas. Here, we showcase an atlas of seafloor biodiversity that describes the distribution of approximately 600 organisms throughout New Zealand’s vast marine realm. Each layer in the open-access atlas has been evaluated by leading experts and provides a key resource for the sustainable use of New Zealand's marine environment.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Philippe Massicotte, Marcel Babin, Frank Fell, Vincent Fournier-Sicre, and David Doxaran
Earth Syst. Sci. Data, 15, 3529–3545, https://doi.org/10.5194/essd-15-3529-2023, https://doi.org/10.5194/essd-15-3529-2023, 2023
Short summary
Short summary
The COASTlOOC oceanographic expeditions in 1997 and 1998 studied the relationship between seawater properties and biology and chemistry across the European coasts. The team collected data from 379 stations using ships and helicopters to support the development of ocean color remote-sensing algorithms. This unique and consistent dataset is still used today by researchers.
Valentin Siebert, Brivaëla Moriceau, Lukas Fröhlich, Bernd R. Schöne, Erwan Amice, Beatriz Beker, Kevin Bihannic, Isabelle Bihannic, Gaspard Delebecq, Jérémy Devesa, Morgane Gallinari, Yoan Germain, Émilie Grossteffan, Klaus Peter Jochum, Thierry Le Bec, Manon Le Goff, Céline Liorzou, Aude Leynaert, Claudie Marec, Marc Picheral, Peggy Rimmelin-Maury, Marie-Laure Rouget, Matthieu Waeles, and Julien Thébault
Earth Syst. Sci. Data, 15, 3263–3281, https://doi.org/10.5194/essd-15-3263-2023, https://doi.org/10.5194/essd-15-3263-2023, 2023
Short summary
Short summary
This article presents an overview of the results of biological, chemical and physical parameters measured at high temporal resolution (sampling once and twice per week) during environmental monitoring that took place in 2021 in the Bay of Brest. We strongly believe that this dataset could be very useful for other scientists performing sclerochronological investigations, studying biogeochemical cycles or conducting various ecological research projects.
Sofie Vranken, Marine Robuchon, Stefanie Dekeyzer, Ignacio Bárbara, Inka Bartsch, Aurélie Blanfuné, Charles-François Boudouresque, Wim Decock, Christophe Destombe, Bruno de Reviers, Pilar Díaz-Tapia, Anne Herbst, Romain Julliard, Rolf Karez, Priit Kersen, Stacy A. Krueger-Hadfield, Ralph Kuhlenkamp, Akira F. Peters, Viviana Peña, Cristina Piñeiro-Corbeira, Fabio Rindi, Florence Rousseau, Jan Rueness, Hendrik Schubert, Kjersti Sjøtun, Marta Sansón, Dan Smale, Thierry Thibaut, Myriam Valero, Leen Vandepitte, Bart Vanhoorne, Alba Vergés, Marc Verlaque, Christophe Vieira, Line Le Gall, Frederik Leliaert, and Olivier De Clerck
Earth Syst. Sci. Data, 15, 2711–2754, https://doi.org/10.5194/essd-15-2711-2023, https://doi.org/10.5194/essd-15-2711-2023, 2023
Short summary
Short summary
We present AlgaeTraits, a high-quality seaweed trait database. The data are structured within the framework of WoRMS and are supported by an expert editor community. With 45 175 trait records for 21 prioritised biological and ecological traits, and a taxonomic coverage of 1 745 European species, AlgaeTraits significantly advances previous efforts to provide standardised seaweed trait data. AlgaeTraits will serve as a foundation for future research on diversity and evolution of seaweeds.
Alain Lefebvre and David Devreker
Earth Syst. Sci. Data, 15, 1077–1092, https://doi.org/10.5194/essd-15-1077-2023, https://doi.org/10.5194/essd-15-1077-2023, 2023
Short summary
Short summary
The Suivi Regional des Nutriments (SRN) data set includes long-term time series on marine phytoplankton and physicochemical measures in the eastern English Channel and the Southern Bight of the North Sea. These data sets should be useful for comparing contrasted coastal marine ecosystems to further knowledge about the direct and indirect effects of human pressures and environmental changes on ecosystem structure and function, including eutrophication and harmful algal bloom issues.
Jacopo Pulcinella, Enrico Nicola Armelloni, Carmen Ferrà, Giuseppe Scarcella, and Anna Nora Tassetti
Earth Syst. Sci. Data, 15, 809–820, https://doi.org/10.5194/essd-15-809-2023, https://doi.org/10.5194/essd-15-809-2023, 2023
Short summary
Short summary
Deep-sea fishery in the Mediterranean Sea was historically driven by the commercial profitability of deepwater red shrimps. Understanding spatiotemporal dynamics of fishing is key to comprehensively evaluate the status of these resources and prevent stock collapse. The observed monthly fishing effort and frequency dataset released by the automatic identification system (AIS) may help researchers as well as those involved in fishery management and in the update of existing management plans.
Simone Strydom, Roisin McCallum, Anna Lafratta, Chanelle L. Webster, Caitlyn M. O'Dea, Nicole E. Said, Natasha Dunham, Karina Inostroza, Cristian Salinas, Samuel Billinghurst, Charlie M. Phelps, Connor Campbell, Connor Gorham, Rachele Bernasconi, Anna M. Frouws, Axel Werner, Federico Vitelli, Viena Puigcorbé, Alexandra D'Cruz, Kathryn M. McMahon, Jack Robinson, Megan J. Huggett, Sian McNamara, Glenn A. Hyndes, and Oscar Serrano
Earth Syst. Sci. Data, 15, 511–519, https://doi.org/10.5194/essd-15-511-2023, https://doi.org/10.5194/essd-15-511-2023, 2023
Short summary
Short summary
Seagrasses are important underwater plants that provide valuable ecosystem services to humans, including mitigating climate change. Understanding the natural history of seagrass meadows across different types of environments is crucial to conserving seagrasses in the global ocean. This dataset contains data extracted from peer-reviewed publications and highlights which seagrasses have been studied and in which locations and is useful for pointing out which need further investigation.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Autun Purser, Laura Hehemann, Lilian Boehringer, Ellen Werner, Santiago E. A. Pineda-Metz, Lucie Vignes, Axel Nordhausen, Moritz Holtappels, and Frank Wenzhoefer
Earth Syst. Sci. Data, 14, 3635–3648, https://doi.org/10.5194/essd-14-3635-2022, https://doi.org/10.5194/essd-14-3635-2022, 2022
Short summary
Short summary
Within this paper we present the seafloor images, maps and acoustic camera data collected by a towed underwater research platform deployed in 20 locations across the eastern Weddell Sea, Antarctica, during the PS124 COSMUS expedition with the research icebreaker RV Polarstern in 2021. The 20 deployments highlight the great variability in seafloor structure and faunal communities present. Of key interest was the discovery of the largest fish nesting colony discovered globally to date.
Cited articles
Bouvet, G., Ferraris, J., and Andréfouët, S.: Evaluation of large-scale unsupervised classification of New Caledonia reef ecosystems using Landsat 7 ETM+ imagery, Oceanol. Acta, 26, 281–290, https://doi.org/10.1016/S0399-1784(03)00012-4, 2003.
Campbell, J. B., Wynne, R. H., and Thomas, V.: Introduction to remote sensing, Guilford Press, 634 pp., ISBN 9781462549405, 2023.
Chao Rodríguez, Y., Domínguez Gómez, J. A., Sánchez-Carnero, N., and Rodríguez-Pérez, D.: A comparison of spectral macroalgae taxa separability methods using an extensive spectral library, Algal Res., 26, 463–473, https://doi.org/10.1016/J.ALGAL.2017.04.021, 2017.
Cotas, J., Gomes, L., Pacheco, D., and Pereira, L.: Ecosystem Services Provided by Seaweeds, Hydrobiology, 2, 75–96, https://doi.org/10.3390/hydrobiology2010006, 2023.
Davies, B. F. R., Gernez, P., Geraud, A., Oiry, S., Rosa, P., Zoffoli, M. L., and Barillé, L.: Multi- and hyperspectral classification of soft-bottom intertidal vegetation using a spectral library for coastal biodiversity remote sensing, Remote Sens. Environ., 290, 113554, https://doi.org/10.1016/J.RSE.2023.113554, 2023.
Dekker, A. G., Brando, V. E., and Anstee, J. M.: Retrospective seagrass change detection in a shallow coastal tidal Australian lake, Remote Sens. Environ., 97, 415–433, https://doi.org/10.1016/j.rse.2005.02.017, 2005.
Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., Fearns, P., Hedley, J., Klonowski, W., Lee, Z. P., Lynch, M., Lyons, M., Mobley, C., and Roelfsema, C.: Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments, Limnol. Oceanogr.-Meth., 9, 396–425, 2011.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Fornes, A., Basterretxea, G., Orfila, A., Jordi, A., Alvarez, A., and Tintore, J.: Mapping Posidonia oceanica from IKONOS, ISPRS J. Photogramm., 60, 315–322, https://doi.org/10.1016/j.isprsjprs.2006.04.002, 2006.
Fritz, C., Kuhwald, K., Schneider, T., Geist, J., and Oppelt, N.: Sentinel-2 for mapping the spatio-temporal development of submerged aquatic vegetation at Lake Starnberg (Germany), J. Limnol., 78, 71–91, https://doi.org/10.4081/jlimnol.2019.1824, 2019.
Fyfe, S. K.: Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct?, Limnol. Oceanogr., 48, 464–479, 2003.
Gege, P.: WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters, Comput. Geosci., 62, 208–215, https://doi.org/10.1016/J.CAGEO.2013.07.022, 2014.
Gentili, B. and Morel, A.: Diffuse reflectance of oceanic waters. II. Bidirectional aspects, Appl. Optics, 32, 6864–6879, https://doi.org/10.1364/AO.32.006864, 1993.
Giardino, C., Candiani, G., Bresciani, M., Lee, Z., Gagliano, S., and Pepe, M.: BOMBER: A tool for estimating water quality and bottom properties from remote sensing images, Comput. Geosci., 45, 313–318, https://doi.org/10.1016/j.cageo.2011.11.022, 2012.
Haxo, F. T. and Blinks, R. L.: PHOTOSYNTHETIC ACTION SPECTRA OF MARINE ALGAE, J. Gen. Physiol., 33, 389–422, 1950.
Hedley, J., Roelfsema, C., and Phinn, S. R.: Efficient radiative transfer model inversion for remote sensing applications, Remote Sens. Environ., 113, 2527–2532, https://doi.org/10.1016/J.RSE.2009.07.008, 2009.
Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C., Kutser, T., Phinn, S., Mumby, P. J., Barrilero, O., Laporte, J., and Koetz, B.: Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8, Remote Sens. Environ., 216, 598–614, https://doi.org/10.1016/J.RSE.2018.07.014, 2018.
Kotta, J., Remm, K., Vahtmäe, E., Kutser, T., and Orav-Kotta, H.: In-air spectral signatures of the Baltic Sea macrophytes and their statistical separability, J. Appl. Remote Sens., 8, 083634, https://doi.org/10.1117/1.jrs.8.083634, 2014.
Kutser, T., Metsamaa, L., and Vahtmäe, E.: Spectral library of macroalgae and benthic substrates in Estonian coastal waters, Proc. Est. Acad. Sci.-Biol. Ecol., 55, 329, https://doi.org/10.3176/BIOL.ECOL.2006.4.05, 2006.
Kutser, T., Hedley, J., Giardino, C., Roelfsema, C., and Brando, V. E.: Remote sensing of shallow waters – A 50 year retrospective and future directions, Remote Sens. Environ., 240, 111619, https://doi.org/10.1016/J.RSE.2019.111619, 2020.
Lesser, M. P. and Mobley, C. D.: Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery, Coral Reefs, 26, 819–829, https://doi.org/10.1007/s00338-007-0271-5, 2007.
Macreadie, P. I., Jarvis, J., Trevathan-Tackett, S. M., and Bellgrove, A.: Seagrasses and Macroalgae: Importance, Vulnerability and Impacts, in: Climate Change Impacts on Fisheries and Aquaculture, John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119154051.ch22, 729–770, 2017.
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2, Front. Ecol. Environ., 9, 552–560, https://doi.org/10.1890/110004, 2011.
Olmedo-Masat, O. M., Paula Raffo, M., Rodríguez-Pérez, D., Arijón, M., and Sánchez-Carnero, N.: How Far Can We Classify Macroalgae Remotely? An Example Using a New Spectral Library of Species from the South West Atlantic (Argentine Patagonia), Remote Sens.-Basel, 12, 3870, https://doi.org/10.3390/RS12233870, 2020.
Penuelas, J. and Filella, I.: Visible and near-infrared reflectance techniques for diagnosing plant physiological status, Trends Plant Sci., 3, 151–156, 1998.
Phinn, S. R., Roelfsema, C. M., and Mumby, P. J.: Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs, Int. J. Remote Sens., 33, 3768–3797, https://doi.org/10.1080/01431161.2011.633122, 2012.
Roelfsema, C., Phinn, S., Jupiter, S., Comley, J., and Albert, S.: Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis, Int. J. Remote Sens., 34, 6367–6388, https://doi.org/10.1080/01431161.2013.800660, 2013.
Rowan, K. S.: Photosynthetic Pigments of Algae, 1st edition, Cambridge University Press, ISBN 521105943, 1989.
Traganos, D. and Reinartz, P.: Mapping Mediterranean seagrasses with Sentinel-2 imagery, Mar. Pollut. Bull., 134, 197–209, https://doi.org/10.1016/j.marpolbul.2017.06.075, 2018.
Vahtmäe, E. and Kutser, T.: Classifying the baltic sea shallow water habitats using image-based and spectral library methods, Remote Sens.-Basel, 5, 2451–2474, https://doi.org/10.3390/rs5052451, 2013.
Vahtmäe, E., Argus, L., Toming, K., Ligi, M., and Kutser, T.: Reflectance spectra of submerged aquatic vegetation (SAV) species and substrates from the Baltic Sea coastal waters, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.971518, 2024.
Vimala, T. and Poonghuzhali, T. V.: Estimation of Pigments from Seaweeds by Using Acetone and DMSO, Int. J. Sci. Res., 4, 2319–7064, https://doi.org/10.13140/RG.2.2.35655.47524, 2013.
Short summary
We compiled a dataset of reflectance measurements for a variety of benthic macrophyte species and substrate types occurring naturally in the Baltic Sea. This dataset provides insights into the spectral properties of macrophyte species characteristic of the temperate geographic region. Such information is often lacking in the data format, while it is essential for developing remote sensing algorithms, classifying images, and defining requirements for future remote sensing missions.
We compiled a dataset of reflectance measurements for a variety of benthic macrophyte species...
Altmetrics
Final-revised paper
Preprint