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Abstract. A hyperspectral reflectance database was acquired for Baltic Sea submerged aquatic vegetation
(SAV) and bare substrates by using Ramses (TriOS GmbH, Germany) radiometers capturing spectral data within
the visible (VIS) and near-infrared (NIR) spectral ranges. The target samples included the most dominant and
characteristic SAV species in the Baltic Sea, as well as several bare substrate types and beach cast communities.
Target samples were measured within the 350–900 nm wavelength range under sunlight conditions without the
water column influence. That is, samples were taken out of the water. Such a library is expected to provide insight
into the spectral properties of various SAV species and substrates occurring in the coastal waters of the temper-
ate geographic regions, facilitating the development of algorithms for differentiating and mapping various SAV
communities. Additionally, measured reflectance spectra can be used as spectral end-members in physical mod-
els and classification algorithms for coastal vegetation mapping and quantification. The data are openly available
in the PANGAEA online repository at https://doi.org/10.1594/PANGAEA.971518 (Vahtmäe et al., 2024).

1 Introduction

Vegetated coastal ecosystems provide valuable ecosystem
services – they constitute feeding, spawning, and sheltering
grounds for a wide variety of species, they act as soft sed-
iment stabilizers, they protect coastlines, and they remove
nutrients and contaminants from the water column (Cotas
et al., 2023; Macreadie et al., 2017). They also play an im-
portant role in climate change mitigation by sequestering and
storing carbon from the atmosphere (Duarte et al., 2005;
McLeod et al., 2011). Information on such highly valued
ecosystems is important from both scientific and manage-
ment perspectives. Optical remote sensing can provide infor-
mation on large temporal and spatial scales, which has led to
increased use of such technology in coastal studies (Kutser
et al., 2020). To better implement these technologies, there
is a need for improved knowledge of spectral properties of
vegetation species and benthic substrates inhabiting coastal
areas.

The Baltic Sea is located in the temperate geographic re-
gion. It is a semi-enclosed non-tidal water body that lacks an
intertidal zone and where benthic vegetation species mostly

grow submerged. Submerged aquatic vegetation (SAV) in the
Baltic Sea includes several taxonomic groups of macroal-
gae as well as higher plants, e.g. vascular plants. Macroal-
gae are classified according to their pigmentation into three
major groups: brown algae (Phaeophyceae), green algae
(Chlorophyta), and red algae (Rhodophyta) (Vimala and
Poonghuzhali, 2013). Consequently, there exists a need
to generate a substantiated dataset representing reflectance
spectra of SAV species from different taxonomic groups.
Such a dataset can be used to give insights into the spec-
tral properties of SAV species and substrates characteristic
of the Baltic Sea but also the broader temperate geographic
region. As such, the current database contributes to the global
dataset of SAV reflectance spectra, allowing further analysis
of whether the spectral resolutions of current and future re-
mote sensing instruments can discriminate between broader
SAV classes and/or species based on their spectral signatures.

SAV distribution maps are mostly created by using dif-
ferent image-based classification approaches, such as unsu-
pervised and supervised classification (Bouvet et al., 2003;
Fornes et al., 2006; Phinn et al., 2012; Roelfsema et al., 2013;

Published by Copernicus Publications.

https://doi.org/10.1594/PANGAEA.971518


1686 E. Vahtmäe et al.: Hyperspectral library of submerged aquatic vegetation and benthic substrates

Figure 1. Photographs of selected target samples of each of the six groups: (a) red macroalgae (Ceramium tenuicorne), (b) green macroalgae
(Chara spp.), (c) brown macroalgae (Fucus vesiculosus), (d) higher plants (Myriophyllum spicatum), (e) bare substrates, and (f) beach casts.

Traganos and Reinartz, 2018). Such image-based methods
require a high amount of ground truth data or detailed ex-
pert knowledge of the area to train classification algorithms
(Campbell et al., 2023). An alternative here is to use signal-
based classification approaches where measured and/or mod-
elled spectral libraries are used to interpret imagery (Kutser
et al., 2006; Lesser and Mobley, 2007; Vahtmäe and Kutser,
2013). The signal-based classification does not require si-
multaneous and continuous field surveys. Instead, a given
method requires the availability of an end-member spectral
library. The data we propose in the current work are designed
to be this kind of library for SAV classification applications.

Benthic reflectance spectra are also required parameters
in physics-based forward models, e.g. the HydroLight model
for natural waters, where they can be used together with in-
herent water optical properties in numerical simulations if
measured data are not sufficiently represented or are lack-
ing. Additionally, physics-based bio-optical inversion mod-
els (e.g. WASI-2D, BOMBER, IDA, or HOPE) require ben-
thic end-members as input parameters in order to model ben-
thic signatures through the water column. Then, modelled
spectra are compared with measured spectra from remote
sensing images, and optimization algorithms can retrieve
SAV distribution and abundance assessments from this com-
parison (Dekker et al., 2011; Fritz et al., 2019; Gege, 2014;
Giardino et al., 2012; Hedley et al., 2009, 2018). The col-
lected spectra can serve as end-members in such bio-optical
forward and inversion models. Spectral signatures of benthic
end-members can also be used to assess the quality of water
column corrections in satellite or airborne images, as benthic
spectra without the water column influence should resemble
the spectra in our spectral library.

To meet all of the above-mentioned needs, the current
work aimed to compile a dataset of hyperspectral reflectance
measurements from SAV species and substrate types that oc-
cur naturally in the coastal waters of the Baltic Sea. This
spectral dataset was collected by the research team of the
Estonian Marine Institute at the University of Tartu. Vari-
ous coastal areas of the Baltic Sea were visited in Estonia
and Sweden to collect reflectance spectra of the most char-
acteristic and dominant SAV species and substrate types. A
subset of this database has already been used for example by
Kotta et al. (2014), where statistical differences between re-
flectance spectra of SAV species were quantified and spectral
regions, contributing the most to the statistical differences,
defined.

Although we aimed to capture reflectance spectra of the
most dominant and characteristic SAV species and substrate
types present in the coastal waters of the Baltic Sea, the
dataset presented here is not complete. More importantly,
spectral properties of SAV species may vary depending on
seasonality and environmental conditions, e.g. a decrease in
the chlorophyll concentration during senescence or stress. As
a result, there exists considerable variation in pigment com-
position and quantity among broad taxonomic groups and
even within species (Kotta et al., 2014). In the future, we plan
to complement the collected dataset with additional species
and/or substrate types using a similar approach to that pre-
sented here. Moreover, we aim to collect reflectance spectra
of various SAV species all throughout the vegetation period
to capture seasonal changes in their reflectance spectra. Still,
we believe that, in the present form, the dataset may lead to
several implications for current and future satellite missions.

Measured reflectance spectra of various SAV species are
displayed in a number of publications (Chao Rodríguez et al.,
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Table 1. Measured SAV species and substrate types.

Species/types Number of specimens

Green macroalgae (Chlorophyta) Cladophora glomerata 4
Chara spp. 6
Monostroma balticum 1
Ulva intestinalis 2

Red macroalgae (Rhodophyta) Furcellaria lumbricalis 1
Ceramium tenuicorne 4
Polysiphonia fucoides 1

Brown macroalgae (Phaeophyceae) Pilayella littoralis 3
Fucus vesiculosus 5
Dictyosiphon foeniculaceus 1
Chorda filum 1

Higher plants Zannihellia palustris 1
Stuckenia pectinate 3
Myriophyllum spicatum 3

Bare substrates Sand 4
Pebble 1
Gravel 1
Limestone plate 1

Beach casts Fresh beach casts 1
Dry beach casts 2

2017; Davies et al., 2023; Dekker et al., 2005; Fyfe, 2003;
Kutser et al., 2006, 2020; Olmedo-Masat et al., 2020). How-
ever, such information is often lacking in the data format,
which would allow us to re-use the measured data. By mak-
ing the current dataset available to other researchers, we hope
to encourage them to do similar work and propose new algo-
rithms for SAV detection and classification.

2 Materials and methods

2.1 Samples

This dataset was compiled over a period of 2 years (2011–
2012) during field campaigns in Baltic Sea coastal waters in
Estonia and Sweden. The set of target samples presented in
this database was divided into six groups: red macroalgae,
green macroalgae, brown macroalgae, higher plants, bare
substrates, and beach casts (Fig. 1).

Green macroalgae, red macroalgae, and brown macroal-
gae are three major taxonomic groups of macroalgae in the
Baltic Sea according to their pigmentation, each of which
exhibits its own characteristic spectral features (groups 1–3,
Table 1). In addition to macroalgae, the Baltic Sea also hosts
higher plants or vascular plants (group 4, Table 1). Besides
the vegetated habitats, the benthic environment of the Baltic
Sea includes unvegetated bare substrates (group 5, Table 1).
Finally, the last group is beach casts, which consist of decay-
ing vegetation material (group 6, Table 1). Several benthic

vegetation species and substrate types were measured in each
of the six given groups.

Recorded red macroalgae species included Furcellaria
lumbricalis, Ceramium tenuicorne, and Polysiphonia fu-
coides. Green macroalgae species included Cladophora
glomerata, Chara spp., Monostroma balticum, and Ulva in-
testinalis. Brown macroalgae species included Pilayella lit-
toralis, Fucus vesiculosus, Dictyosiphon foeniculaceus, and
Chorda filum. Higher plant species included Zannihellia
palustris, Stuckenia pectinate, and Myriophyllum spicatum
(Table 1). Bare substrate reflectance spectra are measured for
sand, pebble, gravel, and limestone plate. Beach cast commu-
nities included SAV communities that were either recently
washed out of the sea or already dried in the Sun. Most of
the SAV species and substrates are measured more than once
(up to six different specimens) in different locations and/or
during different field campaigns.

2.2 Spectral reflectance measurements

Before conducting measurements, all of the samples were
taken out of the water, and SAV species were identified to the
lowest possible taxonomic level by the biologist. Most of the
samples were identified to the species level, and only charo-
phytes from the green macroalgae group were identified to
their genus level (Chara spp.). All reflectance measurements
were performed outdoors in the field, using solar light as an
illumination source. Samples were measured in the boat or
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Figure 2. Ramses two-sensor measurement set (a), the Lu sensor installed on the measuring frame while conducting measurements (b), and
the Lu sensor held in the hand while conducting measurements (c).

on the beach, against the natural background or against an
artificial black background to minimize the signal from the
adjacent environment. Bare substrate samples (e.g. sand or
gravel on the beach) and beach casts were mostly measured
at their locations on the beach.

Ramses (TriOS GmbH, Germany) portable field radiome-
ters were used to capture the spectral data within the
350–900 nm wavelength range with a spectral resolution of
3.3 nm. It is important to point out that the signal-to-noise
ratio (SNR) for the measurements below 400 nm and above
850 nm is significantly higher than within the rest of the
spectral range. The Ramses measurement set consisted of
two simultaneously operated sensors: irradiance and radi-
ance sensors. The radiance sensor measured the upwelling
spectral radiance Lu (Wm−2 nm−1 sr−1), and the irradiance
sensor measured the downwelling spectral irradiance Ed
(Wm−2 nm−1). Remote sensing reflectance (Rrs; sr−1) was
calculated as the ratio Lu/Ed. As sensors measure at slightly
different wavelengths, before reflectance calculation, signals
from both sensors were interpolated to a fixed wavelength
with a 2 nm step.

While the Ed sensor was always attached to the standard
TriOS measuring frame, the Lu sensor was either attached
to the frame or handheld and pointed down to the sample
during measurements (Fig. 2). The field of view (FOV) of
the Lu sensor is 7°, resulting in an imaged area of around
1.1 cm2 when positioned at a distance of 10 cm. For each
sample, multiple consecutive measurements (5 to 10 individ-
ual measurements) were performed. All consecutively mea-
sured spectra were inspected visually, and outliers were re-
moved. After initial assessment, average spectra of multiple

measurements were calculated for each sample to reduce the
noise.

For the current database, Rrs was obtained for benthic
species and substrates by using radiance and irradiance
sensors. The spectral data can also be measured as re-
flectance (R), which is the ratio of upwelling radiance to
downwelling radiance (Lu/Ld) or upwelling irradiance to
downwelling irradiance (Eu/Ed). Often, R is measured with
only one sensor by using a white Spectralon panel as a refer-
ence (Chao Rodríguez et al., 2017; Davies et al., 2023; Fyfe,
2003; Olmedo-Masat et al., 2020). The relationship between
radiance and irradiance is not so straightforward, but in the
case of Lambertian surfaces the radiance value can be multi-
plied by π to get irradiance. Similarly, the outcome of the at-
mospheric correction, applied to the remote sensing images,
can be either Rrs or R. If the outcome of the atmospheric cor-
rection is irradiance reflectance, our Ramses-measured Rrs
can be multiplied by the Q factor, which converts it into the
irradiance reflectance, making Ramses measurements there-
after comparable to the outcome of the atmospheric correc-
tion. The Q value may range from 0.3 to 6.5 (Gentili and
Morel, 1993), but to simplify it the Q factor can be consid-
ered equal to π .

3 Results

The spectral properties of SAV species are determined by
their tissue morphology, their cellular structure, and the con-
centration and distribution of leaf biochemical components
such as pigments, water, nitrogen, cellulose, and lignin pig-
ment contents, shaping the formation of the spectral signa-
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Figure 3. Remote sensing reflectance (Lu/Ed) of the six target groups: (a) green macroalgae, (b) brown macroalgae, (c) red macroalgae,
(d) higher plants, (e) bare substrates, and (f) beach casts. The mean spectra are represented by the solid lines, and the colour shading indicates
the variability in the standard deviation.

ture of each specimen (Penuelas and Filella, 1998). Pigments
absorb light at certain distinctive wavelengths, affecting the
shapes of the reflectance spectra, while tissular structures
mostly affect the absolute reflectance (Chao Rodríguez et al.,
2017). All SAV groups contain chlorophyll a (Chl a), which
is the predominant green pigment in plants with absorption
maxima in the blue (435 nm) and red (675 nm) parts of the
spectrum (Chao Rodríguez et al., 2017; Haxo and Blinks,
1950). Therefore, all SAV groups in the current database
exhibit characteristic vegetation spectra, e.g. low reflectance
around 400–500 and 650–680 nm and high reflectance in the
near-infrared (NIR) spectral range (Fig. 3a–d).

Green macroalgae mostly contain chlorophyll pigments
(Chl a or Chl b) (Chao Rodríguez et al., 2017; Rowan, 1989).
As a result, green macroalgae show absorption minima near
440 and 675 nm, which correspond to the chlorophyll absorp-
tion peaks, and a broad reflectance peak in the green spectral

range centred around 550 nm that gives them their character-
istic green colour (Fig. 3a). Chl a is also present in brown and
red macroalgae, but their green colour is partially masked
out by other accessory pigments. Brown algae predominantly
contain the brown pigment fucoxanthin, which absorbs light
up to 560 nm (Rowan, 1989), shifting the reflectance maxima
away from the green wavelengths further to the yellow spec-
tral range. Typical spectral features of brown macroalgae are
peaks around 600 and 650 nm and a shoulder around 575 nm
(Fig. 3b). The red algae contain large quantities of the red
pigment phycoerythrin, which absorbs light in the middle of
the visible spectrum between 495 and 565 nm, also depress-
ing reflectance in the green part of the spectrum (Haxo and
Blinks, 1950). Red macroalgae show two reflectance peaks in
the red region of the visible spectrum around 600 and 650 nm
(Fig. 3c). Higher plant characteristic pigments are similar to
those of green macroalgae, showing higher reflectivity in the
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green spectral range (Chao Rodríguez et al., 2017; Kutser
et al., 2006, 2020). However, higher plant spectra (Fig. 3d)
show flatter spectral shapes between 550 and 640 nm when
compared to the green macroalgae spectra (Fig. 3a).

In contrast, bare substrates do not show specific red-edge
reflectance or other pigment-induced spectral features at the
visible wavelengths (Fig. 3e). The bare substrate group has
the highest variability in absolute values, as this group in-
cludes substrate types with various brightness levels from
muddy sand to bright limestone plate. The beach cast ma-
terials in Fig. 3f show spectral characteristics different from
both living SAV species and bare substrates. They exhibit a
very low signal in the visible spectral range and increasing
reflectance in the NIR spectral range. Beach cast reflectance
spectra were measured for fresh and dry beach casts. While
the fresh beach casts still had visible Chl-a absorption fea-
tures near 675 nm, the dry beach casts had lost the chloro-
phyll absorption feature.

4 Description of the dataset

This dataset contains the reflectance spectra of each target in
276 spectral bands (between 350 and 900 nm). Pictures of the
targets were included when available. A metadata section is
added to each spectral measurement, containing the follow-
ing information:

– acquisition date;

– country where samples were collected;

– location name;

– latitude of measurement (approximate);

– longitude of measurement (approximate);

– illumination source;

– measurement instrument name;

– measurement unit;

– use of a reference panel and its name;

– sampling environment (boat, beach, or laboratory);

– sampling background (natural or artificial);

– target description (macroalgae, higher plants, or sub-
strates); and

– target species or genus name in Latin.

For every target sample, an average spectrum was calcu-
lated from 5 to 10 reflectance measurements. Averaging mul-
tiple measurements minimizes noise in the data.

5 Data availability

The current dataset is publicly available in the PAN-
GAEA repository at https://doi.org/10.1594/PANGAEA.
971518 (Vahtmäe et al., 2024).

6 Recommendations and conclusions

Remote sensing technology is increasingly being used to de-
tect, map, and monitor benthic ecosystems in shallow coastal
waters. For efficient implementation, the technology requires
information about the spectral properties of benthic habi-
tats. The database presented here aims to add new data on
the spectral properties of the Baltic Sea benthic vegetation
species, enabling us to identify and characterize them and
to evaluate the potential to discriminate between them based
on their spectral signatures. At the same time, it allows us
to facilitate comparative analysis of SAV species from dif-
ferent locations and regions all over the globe in order to
study spectral variations within broader and narrower SAV
groups. Additionally, reflectance spectra of several bare sub-
strate types were recorded to facilitate discrimination be-
tween vegetated and unvegetated areas.

Our hyperspectral reflectance database further improves
scientific knowledge about optical characteristics of SAV
species and substrates. We believe that such information is
essential in remote sensing algorithm development and in
defining requirements for future remote sensing missions
(spectral resolution, band selection, bandwidth, or signal-to-
noise ratio). The presented database can also be used in re-
mote sensing applications, which require spectral informa-
tion, e.g. algorithm development or numerical simulations.
The database can be used in remote sensing image process-
ing, which requires benthic end-members (physics-based ra-
diative transfer modelling) and image classifications where
spectral libraries are used.
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