Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4655-2024
https://doi.org/10.5194/essd-16-4655-2024
Data description paper
 | 
16 Oct 2024
Data description paper |  | 16 Oct 2024

A 10 km daily-level ultraviolet-radiation-predicting dataset based on machine learning models in China from 2005 to 2020

Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, and Xia Meng

Related authors

Spatiotemporal continuous estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022,https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Measurement report: Saccharide composition in atmospheric fine particulate matter during spring at the remote sites of southwest China and estimates of source contributions
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021,https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates?
Jinhui Gao, Ying Li, Bin Zhu, Bo Hu, Lili Wang, and Fangwen Bao
Atmos. Chem. Phys., 20, 10831–10844, https://doi.org/10.5194/acp-20-10831-2020,https://doi.org/10.5194/acp-20-10831-2020, 2020
Short summary
Atmospheric reactivity and oxidation capacity during summer at a suburban site between Beijing and Tianjin
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020,https://doi.org/10.5194/acp-20-8181-2020, 2020
Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical processes
Dandan Zhao, Guangjing Liu, Jinyuan Xin, Jiannong Quan, Yuesi Wang, Xin Wang, Lindong Dai, Wenkang Gao, Guiqian Tang, Bo Hu, Yongxiang Ma, Xiaoyan Wu, Lili Wang, Zirui Liu, and Fangkun Wu
Atmos. Chem. Phys., 20, 4575–4592, https://doi.org/10.5194/acp-20-4575-2020,https://doi.org/10.5194/acp-20-4575-2020, 2020
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
Multiyear high-temporal-resolution measurements of submicron aerosols at 13 French urban sites: data processing and chemical composition
Hasna Chebaicheb, Joel F. de Brito, Tanguy Amodeo, Florian Couvidat, Jean-Eudes Petit, Emmanuel Tison, Gregory Abbou, Alexia Baudic, Mélodie Chatain, Benjamin Chazeau, Nicolas Marchand, Raphaële Falhun, Florie Francony, Cyril Ratier, Didier Grenier, Romain Vidaud, Shouwen Zhang, Gregory Gille, Laurent Meunier, Caroline Marchand, Véronique Riffault, and Olivier Favez
Earth Syst. Sci. Data, 16, 5089–5109, https://doi.org/10.5194/essd-16-5089-2024,https://doi.org/10.5194/essd-16-5089-2024, 2024
Short summary
Large synthesis of in situ field measurements of the size distribution of mineral dust aerosols across their life cycles
Paola Formenti and Claudia Di Biagio
Earth Syst. Sci. Data, 16, 4995–5007, https://doi.org/10.5194/essd-16-4995-2024,https://doi.org/10.5194/essd-16-4995-2024, 2024
Short summary
GHOST: a globally harmonised dataset of surface atmospheric composition measurements
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024,https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary
Changes in air pollutant emissions in China during two clean-air action periods derived from the newly developed Inversed Emission Inventory for Chinese Air Quality (CAQIEI)
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024,https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Version 1 NOAA-20/OMPS Nadir Mapper total column SO2 product: continuation of NASA long-term global data record
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024,https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary

Cited articles

Ameer, S., Shah, M. A., Khan, A., Song, H., Maple, C., Islam, S. U., and Asghar, M. N.: Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in Smart Cities, IEEE Access, 7, 128325–128338, https://doi.org/10.1109/access.2019.2925082, 2019. 
Araki, S., Shima, M., and Yamamoto, K.: Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan, Sci. Total Environ., 634, 1269–1277, https://doi.org/10.1016/j.scitotenv.2018.03.324, 2018. 
Bamrah, S. K., Saiharshith, K., and Gayathri, K.: Application of random forests for air quality estimation in india by adopting terrain features, 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 28–29 September 2020, 1–6, https://doi.org/10.1109/ICCCSP49186.2020.9315252, 2020. 
Bi, J., Wildani, A., Chang, H. H., and Liu, Y.: Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale, Environ. Sci. Technol., 54, 2152–2162, https://doi.org/10.1021/acs.est.9b06046, 2020. 
Blumthaler, M., Ambach, W., and Ellinger, R.: Increase in solar UV radiation with altitude, J. Photoch. Photobio. B, 39, 130–134, https://doi.org/10.1016/s1011-1344(96)00018-8, 1997. 
Download
Short summary
Limited ultraviolet (UV) measurements hindered further investigation of its health effects. This study used a machine learning algorithm to predict UV radiation with a daily and 10 km resolution of high accuracy in mainland China in 2005–2020. Then, uneven spatial distribution and population exposure risks as well as increased temporal trend of UV radiation were found in China. The long-term and high-quality UV dataset could further facilitate health-related research in the future.
Altmetrics
Final-revised paper
Preprint