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Abstract. Ultraviolet (UV) radiation is closely related to health; however, limited measurements have hindered
further investigation of its health effects in China. Machine learning algorithms have been widely used to predict
environmental factors with high accuracy, but a limited number of studies have implemented it for UV radiation.
The main aim of this study is to develop a UV radiation prediction model using the random forest approach and
predict the UV radiation with a daily and 10 km resolution in mainland China from 2005 to 2020. The model
was developed with multiple predictors, such as UV radiation data from satellites as independent variables and
ground UV radiation measurements from monitoring stations as the dependent variable. Missing satellite-based
UV radiation data were obtained using the 3 d moving average method. The model performance was evaluated
using multiple cross-validation (CV) methods. The overall R2 and root mean square error between measured
and predicted UV radiation from model development and model 10-fold CV were 0.97 and 15.64 Wm−2 and
0.83 and 37.44 Wm−2 at the daily level, respectively. The model that incorporated erythemal daily dose (EDD)
retrieved from the Ozone Monitoring Instrument (OMI) had a higher prediction accuracy than that without it.
Based on predictions of UV radiation at the daily level, 10 km spatial resolution, and nearly 100 % spatiotempo-
ral coverage, we found that UV radiation increased by 4.20 %, PM2.5 levels decreased by 48.51 %, and O3 levels
increased by 22.70 % from 2013–2020, suggesting a potential correlation among these environmental factors.
The uneven spatial distribution of UV radiation was associated with factors such as latitude, elevation, meteoro-
logical factors, and season. The eastern areas of China pose a higher risk due to both high population density and
high UV radiation intensity. Using a machine learning algorithm, this study generated a gridded UV radiation
dataset with extensive spatiotemporal coverage, which can be utilized for future health-related research. This
dataset is freely available at https://doi.org/10.5281/zenodo.10884591 (Jiang et al., 2024).
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1 Introduction

Ultraviolet (UV) radiation is a crucial environmental factor
closely associated with human health (Brenner and Hearing,
2008; Narayanan et al., 2010). Previous studies have con-
firmed the hazardous effects of UV radiation on skin cancer
(Griffin et al., 2023; Vienneau et al., 2017), but inconsistent
results have been reported regarding the direction of UV ra-
diation’s impact on eye diseases (Lagreze et al., 2017; Tian
et al., 2018; Wolffsohn et al., 2022) and whether moderate
UV radiation is beneficial to health (Boscoe and Schymura,
2006; VoPham et al., 2017; Swaminathan et al., 2019). Fur-
ther studies are required to ascertain the effects of UV radi-
ation on human health; however, the lack of highly accurate
exposure data of UV radiation hinders such health-related in-
vestigations.

Exposure assessment methods used in previous health
studies on UV radiation mainly include the following: first,
the UV index, a frequently used proxy for UV radiation in
epidemiological studies (Thayer, 2014; Marson et al., 2021;
Walls et al., 2013). It predicts UV radiation levels on a scale
from 1 to 11+. Although the UV index is easy to inter-
pret, converting continuous measurements of UV radiation
to the UV index results in the loss of numerical information.
The second method is satellite remote sensing data, often
used to estimate UV radiation exposure. For example, ery-
themal UV irradiance from the Total Ozone Mapping Spec-
trometer (TOMS), despite being one of the initial instru-
ments for evaluating the UV radiation backscattered by the
Earth’s atmospheric layers, exhibits a lower spatial resolution
of 50km×50km and has limited accuracy (Boscoe and Schy-
mura, 2006; Mohr et al., 2008; Lin et al., 2012; Zhou et al.,
2019). Erythemal daily dose (EDD) retrieved from the Ozone
Monitoring Instrument (OMI) can be utilized to evaluate the
UV radiation exposure level with a higher spatiotemporal
resolution and was employed in the United States to repre-
sent ground UV radiation levels and identify hotspots for skin
cancer (Zhou et al., 2019; Deng et al., 2021). However, miss-
ing values of the OMI EDD data were non-random. Since
2008 in particular, the field of view of the instrument has
been partially obstructed by the peeling of the spacecraft’s
protective film, leading to data loss in the center-right sec-
tion of each observational swath. This has greatly increased
the missing rate of OMI EDD data, posing a challenge to the
accuracy of exposure assessments in epidemiological studies
(McPeters et al., 2015). The third method is personal dosime-
ters, often worn to measure individual exposure (Stump et al.,
2023; Grandahl et al., 2018). Although the data quality from
this method is high, the costs are substantial, making it diffi-
cult to apply in large-population studies. Therefore, UV radi-
ation data of higher accuracy and spatiotemporal resolution
are required to support further exposure assessments.

The enrichment of data resources and improvements in
computing power have led to the development of machine
learning algorithms. Machine learning algorithms can inte-

grate data from multiple sources to predict environmental
factors with high quality (Chen et al., 2021; Zhu et al., 2022;
Liu et al., 2022). However, empirical or statistical models
are generally used for UV radiation prediction (González-
Rodríguez et al., 2022; VoPham et al., 2016; Pei and He,
2019; Liu et al., 2017). In recent years, some pioneering stud-
ies have employed machine learning algorithms to predict
UV radiation in China (Wu et al., 2022; Qin et al., 2020).
The spatiotemporal resolution of the predictions of one study
was relatively low (0.50°× 0.625°) (Qin et al., 2020), while
the other produced UV radiation predictions with a signifi-
cant amount of missing data of one predictor (aerosol optical
depth from satellite), which may lead to seasonal bias in the
UV radiation assessment (Wu et al., 2022). In addition, these
studies did not include direct measurements of UV radiation
from satellites, such as the OMI EDD, which has been proven
to be an effective predictor of UV radiation evaluation (Zhou
et al., 2019; Deng et al., 2021). Satellite-based measurements
can be used as one of the “real” measurements of UV radi-
ation, which can help constrain the overfitting of the model
in spatiotemporal extrapolation. Overall, further studies are
required to add more evidence to the model development of
UV radiation using advanced algorithms and comprehensive
predictors.

Therefore, this study aimed to develop a random forest
model, one of the machine learning algorithms, to predict
UV radiation in mainland China at the daily level and a
spatial resolution of 10 km in 2005–2020. Multiple predic-
tors, including satellite-based UV radiation, UV radiation
simulations, and parameters from reanalysis meteorological
datasets were included in the model development. The miss-
ing satellite-based UV radiation data fields were filled to im-
prove the spatial coverage of the final UV radiation predic-
tions. Finally, based on predictions with relatively high spa-
tiotemporal resolution and a long time period, temporal and
spatial trends as well as hotspots of UV radiation were iden-
tified in mainland China.

2 Data and methods

2.1 Data

2.1.1 Ground UV radiation measurements

The Chinese Ecosystem Research Network (CERN) has been
observing UV radiation since 2004 (Liu et al., 2017). The
monitoring data are available online at http://www.cern.ac.
cn/ (last access: 10 February 2023). Hourly monitoring data
on UV radiation from 40 ground-based stations between
2005 and 2015 and 36 ground-based stations between 2016
and 2020 were collected from CERN (Fig. 1). These sta-
tions cover eight ecological land-cover types across China:
urban, agricultural, grassland, forest, lakes, bays, wetlands,
and deserts. Daily UV radiation values were calculated by
adding the 24 h UV radiation values per day. Days with con-
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tinuous 2 h missing or unavailable UV radiation values were
excluded.

2.1.2 Predictors directly related to UV radiation

In this study, level-2 OMI EDD (v.003) data, which have
a temporal resolution of the daily level and a spatial reso-
lution of 0.25°× 0.25°, were utilized as the main predictor
of UV radiation (Zhou et al., 2019). The OMI EDD rep-
resents the overall amount of UV radiation that can cause
sunburns during the day. The other predictor was the down-
ward UV radiation at the surface from the fifth-generation
European Center for Medium-Range Weather Forecasts Re-
analysis at single levels (ERA5 UV), with an hourly tem-
poral resolution and a spatial resolution of 0.25°× 0.25°
(https://cds.climate.copernicus.eu/, last access: 11 Septem-
ber 2023). Daily ERA5 UV data were obtained by adding
data over 24 h for each day. OMI EDD and ERA5 UV data
with a spatial resolution of 0.25°×0.25° were interpolated to
10 km grid cells using the inverse distance weighting (IDW)
method.

2.1.3 Meteorological parameters

Meteorological parameters that may affect UV radiation
were extracted from multiple ERA5 products (https://
cds.climate.copernicus.eu/) according to previous studies
(Dieste-Velasco et al., 2023; Hu et al., 2010). The total cloud
cover, total column water vapor, and forecast albedo were
extracted from a single-level ERA5 product with an hourly
temporal resolution and a spatial resolution of 0.25°×0.25°,
and the relative humidity was extracted from the pressure-
level ERA5 product at 1000 hPa with an hourly temporal res-
olution and a spatial resolution of 0.25°× 0.25°. The total
precipitation and temperature at 2 m were extracted from the
ERA5-Land product with an hourly temporal resolution and
a spatial resolution of 0.1°× 0.1°. Regarding temporal res-
olution, hourly data were converted to daily mean data by
averaging the 24 h data for each day. Concerning spatial res-
olution, the IDW method was used to interpolate the meteo-
rological parameters to 10 km grid cells.

2.1.4 Other predictor variables

Other predictor variables that were incorporated included el-
evation, solar zenith angle (SZA), ground ozone (O3) con-
centration, and aerosol optical depth (AOD), which can affect
UV radiation levels according to previous studies (Santos et
al., 2011; Habte et al., 2019). Elevation data were derived
from the Advanced Spaceborne Thermal Emission and Ra-
diometer (ASTER) Global Digital Elevation Map (GDEM)
with a spatial resolution of 30 m (https://asterweb.jpl.nasa.
gov/GDEM.asp, last access: 12 June 2023). The SZA data
were obtained from Aqua (MYD06_L2) with a daily tempo-
ral resolution and a spatial resolution of 5 km (https://search.

earthdata.nasa.gov, last access: 1 September 2023). The O3
data were maximum daily 8 h average (MDA8) O3 concen-
trations predicted based on a random forest model at the daily
level and a spatial resolution of 1km× 1km in China (Meng
et al., 2022). This study used gridded O3 data instead of O3
monitoring data from station sites, primarily due to consid-
erations of data coverage in both temporal and spatial di-
mensions. Regarding the temporal coverage, the air quality
monitoring network in China had not been established until
2013, which could not fully cover the study period of 2005–
2020 in this study. For the spatial coverage, the density of air
quality monitoring stations is relatively low, with the major-
ity of them located in urban areas and eastern China, which
could not capture the spatial variability within the city and
reflect the O3 pollution level in rural areas and western re-
gions (Geyh et al., 2000). On the other hand, the gridded O3
predictions used in this study are available from 2005–2020,
have full spatial coverage in mainland China, and achieve rel-
atively high accuracy compared with ground measurements
with cross-validation (CV) R2 and root mean square error of
0.80 and 20.93 µgm−3, respectively (Meng et al., 2022). This
study also included AOD data from the Multi-Angle Imple-
mentation of Atmospheric Correction (MAIAC AOD) algo-
rithm based on the Moderate Resolution Imaging Spectro-
radiometer (MODIS), with a daily temporal resolution and
a spatial resolution of 1 km (Shi et al., 2023a; Meng et al.,
2021). The MAIAC AOD values for cloud contamination or
land covered by snow were cleaned based on quality assur-
ance (QA) flags. Elevation and SZA were spatially joined
and averaged into 10 km grid cells. O3 and MAIAC AOD
were obtained by matching 1 km grid cells with 10 km grid
cells and then calculating the mean value of the data within
the 10 km grid cells.

2.1.5 Air pollution data

For comparing the long-term trends of UV radiation and air
pollution, fine particulate matter (PM2.5) and O3 data were
included. PM2.5 data were predicted using a random for-
est model at the daily level and with a spatial resolution of
1km×1km in China (Meng et al., 2021; Shi et al., 2023a, b).
The source and spatiotemporal resolution of the O3 data were
the same as those in Sect. 2.1.4.

2.2 Methods

2.2.1 Model development

In recent years, machine learning algorithms have been
widely used to predict environmental factors because of their
flexibility and excellent data processing capabilities (Corrêa,
2023; Wu et al., 2022). This study utilized a random forest,
one of the machine learning algorithms, to develop a model
for predicting UV radiation in China from 2005–2020. The
dependent variable was the daily ground-measured UV radi-
ation, while the independent variables included OMI EDD;
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Figure 1. Spatial distributions of CERN stations monitoring UV radiation in China in 2005–2020.

ERA5 UV; elevation; SZA; O3; MAIAC AOD; and meteo-
rological parameters such as total cloud cover, relative hu-
midity, total column water vapor, forecast albedo, total pre-
cipitation, and temperature at 2 m. Random forest improves
the overall prediction performance by building multiple de-
cision trees and combining their results (Breiman, 2001). It
uses bootstrap sampling, which draws different subsamples
from the original dataset with replacements as training data
for each decision tree. During the training process, each de-
cision tree makes predictions for the input data, and the final
result of the random forest is obtained by averaging the pre-
dictions from all trees. Model development was implemented
using the Rborist package in R version 3.6.3.

OMI EDD is a measurement of UV radiation from a satel-
lite but has non-random missing values due to cloud cover
and a technological issue of OMI since 2008, with an av-
eraged missing rate of 23.04 % (3.03 %–35.29 %) during all
the years over the study period (Table A2). We employed
the 3 d moving average method to fill in the OMI EDD val-
ues on grid days with missing data by calculating the mean
of the OMI EDD values from the 2 preceding days if they
were available for those grid cells. In the case of grid cells
with missing data on consecutive days (more than 1 d), the
missing OMI EDD data were not filled in this study. With
this method, the missing rate of OMI EDD significantly de-
creased from 23.04 % to 0.62 % on average in 2005–2020
(Table A2). To assess the accuracy of the 3 d moving aver-
age method for filling the gap of OMI EDD data, 10-fold CV
was employed. In each iteration, 10 % of the original OMI
EDD data in the dataset were randomly dropped, and the 3 d

moving average method was applied to fill the missing val-
ues. This process was repeated 10 times, and the gap-filled
OMI EDD values were compared to the corresponding orig-
inal OMI EDD values. The results of the 10-fold CV are pre-
sented in Table A2 in the Appendix, with R2 ranging from
0.85 to 0.90 in 2005–2020, indicating a relatively high accu-
racy of the gap-filling method.

2.2.2 Model validation

CV is commonly utilized to assess model performance with
regard to overfitting and predicting accuracy, especially in
studies of model development for UV radiation (Wu et al.,
2022), particulate matter (Chen et al., 2018; Park et al., 2022;
Wongnakae et al., 2023), O3 (Hsu et al., 2019; Wu et al.,
2021), and nitrogen dioxide (T. Lu et al., 2021). In this study,
model performance was tested through overall 10-fold CV,
temporal 10-fold CV, spatial 10-fold CV, and by-year tem-
poral CV, which is a stricter temporal CV. Overall 10-fold
CV is the most commonly used form of CV, offering a de-
pendable evaluation of overall model performance and as-
sessing model overfitting (Wu et al., 2022; Wongnakae et al.,
2023; Hsu et al., 2019). Temporal 10-fold CV can evaluate
the models’ capacity for temporal extrapolation for predict-
ing UV radiation levels on days without measurements (He et
al., 2023a; Y. Lu et al., 2021; Bi et al., 2020; Zhu et al., 2022).
Spatial 10-fold CV is able to evaluate the models’ capacity
for spatial extrapolation in locations without monitoring sta-
tions (Wang et al., 2018; Zhu et al., 2022; Bi et al., 2020).
By-year temporal CV can be used to evaluate the predict-
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ing accuracy of our models in years out of the study period
of model development (Meng et al., 2021; He et al., 2023b,
2021).

The overall 10-fold CV was conducted by randomly divid-
ing the dataset into 10 parts, with nine parts used as a train-
ing dataset to train a random forest model and one part used
as a test dataset for predictions. This process was repeated
10 times and all measurements were compared with the cor-
responding predictions. Temporal 10-fold CV was done by
randomly dividing the dataset into 10 parts based on days, in
which data on 90 % of the days were used to develop a train-
ing model to predict UV radiation on the remaining 10 %
of days each time, and this process was repeated 10 times.
Similarly, spatial 10-fold CV involved randomly dividing the
dataset into 10 parts based on the locations of monitoring
stations, with data from 90 % of the sites used to develop a
training model to predict the UV radiation for the remaining
10 % of the sites each time, and this process was repeated
10 times. In order to further validate the predicting accuracy
of our models beyond 2005–2020, this study performed an-
other stricter temporal CV, by-year temporal CV, which left
an entire year of data as the testing dataset each time, while
data from the remaining years are used as the training dataset.
The regression, R2, and root mean square error (RMSE; the
square root of the average of the squared differences between
the predictions and measurements) between the UV radiation
measurements and predictions from model development and
CVs were calculated to indicate the model performance.

2.2.3 Impacts of predictors on UV predictions

Two methods were applied to evaluate the impacts of all pre-
dictors on UV radiation levels. First, the random forest model
itself could produce importance rankings of all predictors to
evaluate the contribution of each predictor to UV radiation
predictions, and this is also one of the advantages of the ran-
dom forest model. The importance of a predictor was mea-
sured by randomly permuting its values and comparing the
decrease in predicting accuracy between the predictions be-
fore and after the permutation. Second, the SHapley Addi-
tive exPlanations (SHAP) method can be used to evaluate
impacts of both contributions and directions of predictors
on final predictions (Lundberg and Lee, 2017). The SHAP
method employs the classic game theory concept of Shapley
values to compute the feature importance for a specific ma-
chine learning model (Strumbelj and Kononenko, 2010). Ag-
gregating the SHAP values across multiple data points pro-
vides a global explanation of the model. In this study, we
utilized the SHAP library in Python to interpret impacts of
predictors on UV radiation predictions based on a random
forest model (Lundberg et al., 2020).

3 Results

3.1 Description of UV radiation measurements

Table A1 summarizes the statistical descriptions of the aver-
age daily mean for UV radiation measurements from CERN
from 2005 to 2020. The mean annual value of UV radiation
at the monitoring stations was 168.40 Wm−2, with a stan-
dard deviation of 91.39 Wm−2. During the 16-year period,
the minimum level of 155.46 Wm−2 was recorded in 2010,
while the maximum UV radiation level of 190.10 Wm−2 was
recorded in 2020, which is an increase of 22.28 % compared
with 2010. UV radiation levels fluctuated between 2005 and
2012; however, the overall trend was relatively stable. From
2013 to 2020, there was a clear increasing trend in UV radi-
ation, which increased by 18.66 % during this period.

3.2 Model performance

This study compared the levels of UV radiation indicators
and measurements of UV radiation. The results indicated an
R2 of 0.65 between the ERA5 UV and UV radiation mea-
surements and an R2 of 0.55 between the OMI EDD and UV
radiation measurements in 2005–2020, indicating that both
simulated and satellite remotely sensed UV radiation data
could moderately represent ground UV radiation levels.

The overall R2 and RMSE of model development be-
tween measured and predicted UV radiation were 0.97 and
15.64 Wm−2 at the daily level, respectively. Figure 2 shows
the scatter density plots between the measurements and CV
predictions of UV radiation at the daily level, including the
overall CV (a), spatial CV (b), temporal CV (c), and by-
year temporal CV (d). From the density scatter plots, it
can be seen that most of the measured–predicted pairs from
CV fell on the 1 : 1 line, indicating relatively high consis-
tency between the measurements and CV predictions. The
CV R2 (RMSE) values between measured and predicted
UV radiation were 0.83 (37.44 Wm−2) for overall CV, 0.75
(45.56 Wm−2) for spatial CV, 0.83 (37.48 Wm−2) for tem-
poral CV, and 0.82 (38.86 Wm−2) for by-year CV at the
daily level and 0.91 (21.01 Wm−2), 0.81 (31.14 Wm−2),
0.91 (21.05 Wm−2), and 0.89 (22.90 Wm−2) at the monthly
level for overall, spatial, temporal, and by-year temporal CV,
respectively. Figure 3 shows the temporal trend of monthly
average values for predicted and measured UV radiation at
monitoring stations from 2005 to 2020, which also indicates
high consistency, although the predictions tended to overes-
timate UV radiation when it was low and underestimate UV
radiation when it was high.

Figure A1 illustrates that, with other predictors held con-
stant, the inclusion of OMI EDD as a predictor in the model
yielded an overall CV R2 (RMSE) of 0.83 (37.44 Wm−2)
compared to 0.81 (39.18 Wm−2) when OMI EDD was not
included.
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Figure 2. Density scatter plots and linear regressions between measurements and predictions of UV radiation at the daily level based on a
random forest model during 2005–2020: overall CV (a), spatial CV (b), temporal CV (c), and by-year temporal CV (d).

3.3 Impacts of predictors on UV radiation predictions

Figure A2 shows the importance ranking of all predictors
produced by the random forest model itself, which shows that
ERA5 UV, OMI EDD, and MAIAC AOD were the most im-
portant predictors of UV radiation. Figure 4 shows the SHAP
summary plot and feature importance, which were the same
as that of the random forest method. The SHAP method also
provided the evaluation of the impact directions of predictors
on UV radiation predictions. In Fig. 4a, each point represents
a sample from the dataset. The color of each point indicates
the magnitude of the predictor, with redder values indicating
higher values and bluer indicating lower values. For exam-
ple, ERA5 UV and OMI EDD exerted the most substantial
impact and similar impact directions on UV radiation pre-
dictions. High values of ERA5 UV and OMI EDD increased
the predicted UV radiation predictions, whereas low values
decreased UV radiation predictions. Ambient aerosols (MA-

IAC AOD) and O3 levels showed opposite effects on UV ra-
diation predictions based on the SHAP method. Higher MA-
IAC AOD values displayed higher negative SHAP values,
meaning that higher MAIAC AOD values tended to asso-
ciate with decreased UV radiation levels. Conversely, high
O3 levels corresponded to positive SHAP values, indicating
that high O3 levels were associated with high UV radiation
predictions.

3.4 Spatiotemporal distributions of UV radiation based
on predictions

The spatial distribution of annual average UV radiation based
on predictions from 2005 to 2020 is shown in Fig. A3 for
each year and in Fig. 5 for the average values from 2005 to
2020, indicating an uneven spatial distribution of UV radi-
ation in China associated with factors such as latitude and
elevation (Fig. A4) and meteorological factors. On the one
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Figure 3. Time series plot of monthly mean UV radiation for measurements (green line) and predictions (purple dashes) at monitoring
stations during 2005–2020.

Figure 4. Impacts of predictors on UV radiation predictions based on the SHAP method (a); importance ranking of predictors for predicting
UV radiation levels, calculated by taking the average of the absolute SHAP values (b).

hand, UV radiation was stronger in the southern region at
lower latitudes than in the northern region at higher latitudes.
For example, in subregion G in Fig. 5, located at the south-
ernmost latitude in mainland China (∼ 18° N), the UV radi-
ation value was 205.86 Wm−2, 1.46 times that in subregion
A, situated at the northernmost latitude in China (∼ 50° N).
On the other hand, UV radiation was higher in western re-
gions with higher elevation than in regions with lower eleva-
tion; for example, subregion C, with an average elevation of
4730 m, had the highest UV radiation level of 228.36 Wm−2;
1.50 times that of subregion E, with an average elevation of
5 m. However, because of the influence of climatic factors,
the relationship between UV radiation and latitude as well
as elevation may vary in some regions. For example, subre-

gions D and F have similar elevations and latitudes, but UV
radiation at subregion F was 152.14 Wm−2, 14.29 % higher
than that at D. Figure A5 shows the population density, indi-
cating that although subregion C had the highest UV radia-
tion in China, its population is sparse, while the southeastern
coastal areas of China, with dense populations, had relatively
strong UV radiation and thus a relatively higher population
exposure risk.

The inter-annual and intra-annual trends in UV radiation
are shown in Fig. 6. For long-term temporal trends, UV ra-
diation experienced slight fluctuations from 2005 to 2014
but remained relatively stable and then increased from 2015.
Figure 6a depicts the trends in the changes in UV radia-
tion, O3, and PM2.5 across mainland China from 2013 to
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Figure 5. Spatial distribution of averaged annual-mean UV radiation during 2005–2020. Heilongjiang province (A), North China Plain (B),
Tibet Autonomous Region (C), Chongqing (D), Shanghai (E), Zhejiang province (F), and Hainan province (G).

2020, showing that PM2.5 demonstrated a prominent down-
ward trend, whereas both UV radiation and O3 exhibited
noticeable upward trends during this period. In comparison
to 2013, UV radiation increased by 4.20 % nationwide in
2020, rising from 176.68 to 184.10 Wm−2, O3 increased by
22.70 %, while PM2.5 decreased by 48.51 %. Additionally,
Fig. A3 shows that the North China Plain (subregion B in
Fig. 5) increased the most significantly, with UV radiation in-
creasing by 7.13 % from 2013 to 2020, which was 1.70 times
the national growth rate. Regarding intra-annual variation,
UV radiation exhibited a clear seasonal trend, with signifi-
cantly higher levels during summer than during winter. It was
highest in July, with an average value of 253.02 Wm−2 in
2005–2020, and then gradually decreased, reaching its low-
est value in December, with an average of 89.81 Wm−2. Ad-
ditionally, Fig. 6c–f illustrate the varying spatial trends of
UV radiation across different seasons. In spring, the inten-
sity of UV radiation in the northern regions surpassed that in
most of the southern areas. During summer, the UV radiation
across mainland China consistently exceeds 162 Wm−2. The
spatial distribution of the UV radiation intensity was primar-
ily affected by elevation and latitude in autumn. In winter,
except for in some areas in western China, the UV radiation
levels remained below 140 Wm−2.

4 Discussion

This study developed a random forest model using a variety
of predictors to predict daily UV radiation in mainland China
with relatively high accuracy, resolution, and spatiotemporal
coverage. Temporal and spatial characteristics were identi-
fied based on the predictions generated from the model. A
gradual increase in UV radiation in recent years was ob-
served, with an uneven spatial distribution.

This study predicted UV radiation based on a machine
learning algorithm at the daily level and with a 10 km spa-
tial resolution with nearly full coverage in China using mul-
tiple predictors, including satellite and simulated UV radia-
tion data. The R2 (RMSE) between measured and predicted
UV radiation was 0.97 (15.64 Wm−2) for model develop-
ment and 0.83 (37.44 Wm−2) for overall 10-fold CV at the
daily level. Compared to other environmental factors affect-
ing population health, such as air pollution, few studies have
developed models for UV radiation, and most have been
conducted in the United States and Europe using statistical
models such as regression analysis and area-to-point resid-
ual kriging (Feister et al., 2008; Junk et al., 2007; Pei and
He, 2019; VoPham et al., 2016). In recent years, several stud-
ies have employed machine learning algorithms such as deep
neural networks, support vector machine, and tree methods to
predict UV radiation (Wu et al., 2022; Zhao and He, 2022).
In previous studies, R2 between measured and predicted UV
radiation for model development ranged from 0.92 to 0.98
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Figure 6. Inter-annual and intra-annual variation in UV radiation based on predictions in mainland China. Annual change rates of UV
radiation, O3, and PM2.5 in mainland China from 2013 to 2020 (a); averaged monthly mean UV radiation in mainland China in 2005–
2020 (b); and average seasonal mean UV radiation in mainland China in 2005–2020 in spring (c), summer (d), autumn (e), and winter (f).

(Liu et al., 2017; Zhao and He, 2022; Qin et al., 2020), which
was comparable with our results. In this study, we employed
the random forest method to develop the models as it is a
widely used machine learning algorithm with several advan-
tages for predicting multiple environmental factors (Araki et
al., 2018; Guo et al., 2021; Huang et al., 2018; Liu et al.,
2020). First, random forest exhibits high flexibility in pro-
cessing various types of data and strong tolerance to mul-
ticollinearity among predictors (Breiman, 2001; Fox et al.,
2017; Strobl et al., 2008; Bamrah et al., 2020). Second, com-
paring to some other black-box machine learning models, the

random forest method is able to provide feature importance
rankings and facilitate a deeper understanding of the contri-
bution of all predictors in predictions, which makes the mod-
els easier to understand and explain (Hu et al., 2017; Wei
et al., 2019). Third, the predicting errors in random forest
models are generally lower due to the reduction in variance
achieved by aggregating multiple trees (Ameer et al., 2019;
Ding and Qie, 2022). Fourth, random forest is user-friendly,
with a relatively small number of parameter settings and a
relatively fast processing speed (Ameer et al., 2019; Hu et al.,
2017). Due to the above advantages, many previous studies
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found that the random forest method could achieve higher or
at least comparable predicting accuracy over other machine
learning models in predicting environmental factors (Liang
et al., 2020; Ochando et al., 2015; Contreras and Ferri, 2016;
Ameer et al., 2019). In this study, we also compared results
from the random forest model and eXtreme Gradient Boost-
ing (XGBoost) model, which is another machine learning
model based on decision trees with relatively high predict-
ing accuracy (Zamani Joharestani et al., 2019; Nasabpour
Molaei et al., 2023; Dai et al., 2023; Wu et al., 2022). The
results indicated that the predicting accuracy from XGBoost
method was comparable but slightly lower than those of the
random forest method with lower R2 (0.81 for XGBoost vs.
0.83 for random forest) and higher RMSE (39.25 Wm−2 for
XGBoost vs. 37.44 Wm−2 for random forest). Several stud-
ies have developed models to predict UV radiation in China;
however, the role of satellite UV radiation measurements in
model performance has not been investigated. UV radiation
data from satellites have proven to be an effective variable for
evaluating exposure levels and identifying hotspots of skin
cancer risk in other countries (Zhou et al., 2019; Kennedy et
al., 2021). Satellite-sourced UV radiation data, such as OMI
EDD, offer a form of direct measurements of UV radiation
from satellites, providing “real values” to constrain UV ra-
diation predictions during spatial extrapolation (Gholamnia
et al., 2021). Including the OMI EDD in the UV radiation
model improved the prediction accuracy by approximately
2 % compared to the model without it in this study. Addi-
tionally, this study filled in the missing values of OMI EDD
data to make the spatiotemporal coverage of UV radiation
predictions close to 100 %, which was higher than previous
studies that predicted UV radiation at 724 conventional me-
teorological stations in China or those that did not address
the missing values in UV radiation predictions caused by in-
complete predictor variables, such as AOD data from remote
sensing (Wu et al., 2022; Liu et al., 2017). Gridded UV radia-
tion predictions with nearly full spatiotemporal coverage can
provide more comprehensive and flexible support for expo-
sure assessment in health studies on exposure windows and
geographic locations.

The results indicated that UV radiation is unevenly dis-
tributed throughout China, with high-exposure areas primar-
ily located in the southwest and health-risk hotspots pri-
marily located in the eastern region. The spatial distribu-
tion of UV radiation is closely correlated with elevation, lati-
tude, and climatic factors. Higher elevations result in stronger
UV radiation, primarily because of the thinner atmosphere,
meaning that less UV radiation is absorbed or scattered by
the atmosphere (Blumthaler et al., 1997). The UV radiation
intensity also increases with decreasing latitude, primarily
because regions at low latitudes have a smaller SZA (Hol-
zle and Honigsmann, 2005). The spatial distribution of UV
radiation in autumn effectively reflects its correlation with
elevation and latitude. Meteorological factors affect UV ra-
diation intensity. For example, cloud cover can absorb and

scatter UV radiation (Dieste-Velasco et al., 2023). The higher
cloud cover and humidity in subregion D resulted in higher
UV radiation in F than in D despite their similar elevations
and latitudes (Fig. 5). In spring, due to factors such as air
currents, the southern regions are subjected to increased pre-
cipitation, which results in elevated cloud cover and humid-
ity (Yao et al., 2017). Consequently, this phenomenon may
have resulted in lower UV radiation intensity in the south-
ern regions than in the relatively arid northern regions. In
addition to natural factors, population distribution should be
considered when identifying health-risk hotspots. Although
UV radiation levels were medium–high in the southeastern
coastal regions, the population health effects due to UV ra-
diation should not be ignored because of the high population
density there. The threshold for the health effects of UV radi-
ation on the population is still unclear, and there are no atmo-
spheric UV radiation standards so far, which requires support
from further epidemiological studies. The UV radiation pre-
dictions in this study covered the entire geographical area of
mainland China, providing exposure data to support health
studies in different regions and further identify the health-
risk hotspots of UV radiation exposure in China.

The UV radiation levels exhibited both seasonal and
long-term temporal trends. The seasonal pattern showed the
strongest UV radiation in summer and the lowest in winter.
This observed pattern may be linked to variations in daylight
hours and alterations in the SZA throughout the year (Liu
et al., 2017). Specifically, our findings demonstrated an in-
creasing trend in UV radiation since 2015 accompanied by
a decrease in PM2.5 and increase in O3, suggesting a poten-
tial correlation between UV radiation levels and air pollu-
tion. The decrease in PM2.5 may contribute to the increase in
UV radiation as PM2.5 can absorb and reflect UV radiation
(Madronich et al., 2023; Gao et al., 2013). UV radiation plays
a crucial role in the production of surface O3 because ground-
level O3 primarily originates from photochemical reactions
(Guicherit and Roemer, 2000). Additionally, the results of
the SHAP analysis were consistent with the long-term trend
analysis, which indicated that ambient aerosols levels were
negatively associated with UV radiation predictions, while
O3 concentrations positively related to UV radiation levels.
The Chinese government launched and implemented a se-
ries of nationwide policies to decrease air pollution levels,
including the Action Plan of Air Pollution Prevention and
Control in 2013 and Three-Year (2018–2020) Action Plan
for Cleaner Air in 2017. Owing to these policies, the concen-
trations of several air pollutants, especially PM2.5, have de-
creased significantly in China since 2013. Therefore, along
with a decrease in PM2.5, there is a need to enhance public
awareness of UV radiation protection.

The relatively small number of UV radiation monitor-
ing stations employed for model development across the na-
tional landscape may have influenced the extrapolation per-
formance of the model. The UV monitoring stations were
distributed in different geographic locations with multiple
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land-cover types, which helped validate the model perfor-
mance in spatial extrapolation. However, a spatial CV was
conducted, which only slightly decreased compared to the
overall CV, showing a relatively higher accuracy of spatial
extrapolation.

5 Data availability

The UV radiation gridded dataset across mainland
China in 2005–2020 is currently freely available at
https://doi.org/10.5281/zenodo.10884591 (Jiang et al.,
2024).

6 Conclusion

This study established a machine learning model for predict-
ing daily UV radiation levels at a 10km× 10km spatial res-
olution across mainland China for a period of 16 years. The
model with satellite-sourced UV radiation measurements had
a higher prediction accuracy than the one without such a pre-
dictor. Based on high-resolution and coverage predictions,
a gradual increase in UV radiation in recent years and an
uneven spatial distribution were observed. This study pro-
vides a modeling method and exposure data for UV radiation
to support exposure assessment for future epidemiological
studies and the identification of exposure risk and health-risk
hotspots of UV radiation in the Chinese population.

Appendix A: Additional figures and tables

Table A1. Statistical descriptions of UV radiation measurements from ground monitoring stations in CERN in China from 2005 to 2020.

Year Mean Standard deviation P25 Median P75
[Wm−2] [Wm−2] [Wm−2] [Wm−2] [Wm−2]

2005 160.62 81.07 94.35 153.57 160.62
2006 158.34 80.56 94.20 149.90 214.90
2007 159.54 82.99 91.81 150.41 220.21
2008 162.39 83.09 93.49 153.60 223.16
2009 159.64 82.65 91.46 152.20 222.60
2010 155.46 81.73 88.56 144.91 215.80
2011 160.95 84.37 90.11 152.60 223.50
2012 159.65 85.38 88.75 153.60 221.80
2013 160.21 82.87 92.00 149.93 221.50
2014 160.87 82.41 94.06 152.90 221.50
2015 170.96 91.32 96.66 162.70 238.20
2016 175.66 96.84 97.72 162.75 248.00
2017 180.90 109.28 100.90 168.40 254.60
2018 187.00 103.48 102.00 176.30 262.00
2019 189.80 104.63 103.90 178.60 265.70
2020 190.10 105.01 104.10 177.20 266.90

2005–2020 168.40 91.39 94.80 158.10 232.80
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Table A2. Missing rate of erythemal daily dose (EDD) retrieved from the Ozone Monitoring Instrument (OMI) before and after gap-filling
and the results of 10-fold cross-validation of the 3 d moving average method from 2005 to 2020 in China.

Year Missing rate Missing rate R2 of 10-fold
before gap-filling after gap-filling cross-validation

2005 3.03 % 0.00 % 0.90
2006 3.53 % 0.27 % 0.90
2007 3.38 % 0.00 % 0.90
2008 5.69 % 0.57 % 0.89
2009 20.33 % 0.21 % 0.88
2010 30.28 % 0.40 % 0.88
2011 33.59 % 0.53 % 0.88
2012 21.80 % 0.17 % 0.90
2013 24.24 % 0.28 % 0.88
2014 28.20 % 0.37 % 0.90
2015 31.95 % 0.50 % 0.88
2016 35.29 % 4.19 % 0.87
2017 32.78 % 1.52 % 0.86
2018 32.19 % 0.55 % 0.85
2019 32.12 % 0.42 % 0.85
2020 30.34 % 0.00 % 0.86

2005–2020 23.04 % 0.62 % 0.88

Figure A1. Density scatter plots and linear regressions between measurements and predictions of UV radiation at the daily level based on
a random forest model during 2005–2020 with erythemally daily dose retrieved from the Ozone Monitoring Instrument (a) and without
erythemally daily dose retrieved from the Ozone Monitoring Instrument (b).
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Figure A2. Ranking of importance for predictor variables in UV radiation prediction model. Downward UV radiation at the surface from the
fifth-generation European Center for Medium-Range Weather Forecasts Reanalysis (ERA5 UV), aerosol optical depth data from the Multi-
Angle Implementation of Atmospheric Correction (MAIAC AOD), erythemally daily dose retrieved from the Ozone Monitoring Instrument
(OMI EDD), and solar zenith angle (SZA).

Figure A3. Spatial distributions of UV radiation based on predictions at an annual level from 2005 to 2020.
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Figure A4. Spatial distribution of elevation in mainland China.

Figure A5. Spatial distribution of the population in mainland China in 2020.
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