Articles | Volume 16, issue 9
https://doi.org/10.5194/essd-16-4077-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4077-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glaciological and meteorological monitoring at Long Term Ecological Research (LTER) sites Mullwitzkees and Venedigerkees, Austria, 2006–2022
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Alaska Climate Research Center, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775, USA
Bernd Seiser
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Martin Stocker-Waldhuber
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Anna Baldo
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Marcela Violeta Lauria
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Andrea Fischer
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Related authors
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025, https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near-total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060, https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Short summary
Atmospheric patterns influence the air temperature in Greenland. We investigate two warming periods, from 1922–1932 and 1993–2007, both showing similar temperature increases. Using a neural network-based clustering method, we defined predominant atmospheric patterns for further analysis. Our findings reveal that while the connection between these patterns and local air temperature remains stable, the distribution of patterns changes between the warming periods and the full period (1900–2015).
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Lea Hartl, Federico Covi, Martin Stocker-Waldhuber, Anna Baldo, Davide Fugazza, Biagio Di Mauro, and Kathrin Naegeli
The Cryosphere, 19, 3329–3353, https://doi.org/10.5194/tc-19-3329-2025, https://doi.org/10.5194/tc-19-3329-2025, 2025
Short summary
Short summary
Glacier albedo determines how much solar radiation is absorbed by the glacier surface and is a key driver of glacier melt. Alpine glaciers are losing their snow and firn cover, and the underlying darker ice is becoming exposed. This means that more solar radiation is absorbed by the ice, which leads to increased melt. To quantify these processes, we explore data from a high-elevation, on-ice weather station that measures albedo and combine this information with satellite imagery.
David Wachs, Azzurra Spagnesi, Pascal Bohleber, Andrea Fischer, Martin Stocker-Waldhuber, Alexander Junkermann, Carl Kindermann, Linus Langenbacher, Niclas Mandaric, Joshua Marks, Florian Meienburg, Theo Jenk, Markus Oberthaler, and Werner Aeschbach
EGUsphere, https://doi.org/10.5194/egusphere-2025-3681, https://doi.org/10.5194/egusphere-2025-3681, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study presents an age profile of the summit glacier of Weißseespitze in the Austrian Alps. The ages were obtained by combining 14C dating with the novel atom trap trace analysis for 39Ar. The data was used to constrain glacier age models. The results show that the surface ice is ~400 a old due to recent ice loss. The remaining ice continuously covers ages up to 6000 a. This work underscores the utility of 39Ar dating in glaciology, enabling precise reconstruction of age-depth relationships.
Lea Hartl, Patrick Schmitt, Lilian Schuster, Kay Helfricht, Jakob Abermann, and Fabien Maussion
The Cryosphere, 19, 1431–1452, https://doi.org/10.5194/tc-19-1431-2025, https://doi.org/10.5194/tc-19-1431-2025, 2025
Short summary
Short summary
We use regional observations of glacier area and volume change to inform glacier evolution modeling in the Ötztal and Stubai range (Austrian Alps) until 2100 in different climate scenarios. Glaciers in the region lost 23 % of their volume between 2006 and 2017. Under current warming trajectories, glacier loss in the region is expected to be near-total by 2075. We show that integrating regional calibration and validation data in glacier models is important to improve confidence in projections.
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060, https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Short summary
Atmospheric patterns influence the air temperature in Greenland. We investigate two warming periods, from 1922–1932 and 1993–2007, both showing similar temperature increases. Using a neural network-based clustering method, we defined predominant atmospheric patterns for further analysis. Our findings reveal that while the connection between these patterns and local air temperature remains stable, the distribution of patterns changes between the warming periods and the full period (1900–2015).
Paul Töchterle, Anna Baldo, Julian B. Murton, Frederik Schenk, R. Lawrence Edwards, Gabriella Koltai, and Gina E. Moseley
Clim. Past, 20, 1521–1535, https://doi.org/10.5194/cp-20-1521-2024, https://doi.org/10.5194/cp-20-1521-2024, 2024
Short summary
Short summary
We present a reconstruction of permafrost and snow cover on the British Isles for the Younger Dryas period, a time of extremely cold winters that happened approximately 12 000 years ago. Our results indicate that seasonal sea ice in the North Atlantic was most likely a crucial factor to explain the observed climate shifts during this time.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Andrea Fischer, Gabriele Schwaizer, Bernd Seiser, Kay Helfricht, and Martin Stocker-Waldhuber
The Cryosphere, 15, 4637–4654, https://doi.org/10.5194/tc-15-4637-2021, https://doi.org/10.5194/tc-15-4637-2021, 2021
Short summary
Short summary
Eastern Alpine glaciers have been receding since the Little Ice Age maximum, but until now the majority of glacier margins could be delineated unambiguously. Today the outlines of totally debris-covered glacier ice are fuzzy and raise the discussion if these features are still glaciers. We investigated the fate of glacier remnants with high-resolution elevation models, analyzing also thickness changes in buried ice. In the past 13 years, the 46 glaciers of Silvretta lost one-third of their area.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Cited articles
Buckel, J. and Otto, J.-C.: The Austrian Glacier Inventory GI 4 (2015) in ArcGis (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.887415, 2018. a, b, c, d
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, https://doi.org/10.5167/uzh-53475, 2011. a, b, c, d, e, f, g
Collins, S. L., Carpenter, S. R., Swinton, S. M., Orenstein, D. E., Childers, D. L., Gragson, T. L., Grimm, N. B., Grove, J. M., Harlan, S. L., Kaye, J. P., Knapp, A. K., Kofinas, G. P., Magnuson, J. J., McDowell, W. H., Melack, J. M., Ogden, L. A., Robertson, G. P., Smith, M. D., and Whitmer, A. C.: An integrated conceptual framework for long-term social–ecological research, Front. Ecol. Environ., 9, 351–357, https://doi.org/10.1890/100068, 2011. a
Costa, L., Hildén, M., Kropp, J., Böttcher, K., Fronzek, S., Swart, R., Otto, J., McCormick, N., Radojevic, M., Lückenkötter, J., Keup-Thiel, E., Luojus, K., Singh, T., Pöyry, J., Sanchez, E., and Juckes, M.: Reports of the Finnish Environment Institute, ISBN 78-952-11-4650-3, https://helda.helsinki.fi/items/d6271d30-1fff-4849-aab7-86cfa7744cfe (last access: 3 September 2024), 41, 2016. a
Cremona, A., Huss, M., Landmann, J. M., Borner, J., and Farinotti, D.: European heat waves 2022: contribution to extreme glacier melt in Switzerland inferred from automated ablation readings, The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, 2023. a
European Commission and Directorate-General for Environment and Sundseth, K.: The Habitats Directive – Celebrating 20 years of protecting biodiversity in Europe, Publications Office, https://doi.org/10.2779/15019, 2012. a
European Commission and Directorate-General for Environment and Sundseth, K.: The EU birds and habitats directives – For nature and people in Europe, Publications Office, https://doi.org/10.2779/49288, 2015. a
Fischer, A. and Kuhn, M.: Ground-penetrating radar measurements of 64 Austrian glaciers between 1995 and 2010, Ann. Glaciol., 54, 179–188, 2013. a
Fischer, A., Stocker-Waldhuber, M., Seiser, B., Hynek, B., and Slupetzky, H.: Glaciological monitoring in Hohe Tauern National Park, eco.mont, 6, 49–56, 2014. a
Fischer, A., Seiser, B., Stocker Waldhuber, M., Mitterer, C., and Abermann, J.: Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria, The Cryosphere, 9, 753–766, https://doi.org/10.5194/tc-9-753-2015, 2015b. a, b, c
Fischer, A., Span, N., Kuhn, M., Helfricht, K., Stocker-Waldhuber, M., Seiser, B., Massimo, M., and Butschek, M.: Ground-penetrating radar (GPR) point measurements of ice thickness in Austria, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.849497, 2015c. a
Fischer, A., Patzelt, G., Achrainer, M., Groß, G., Lieb, G., Kellerer-Pirklbauer, A., and Bendler, G.: Gletscher im Wandel: 125 Jahre Gletschermessdienst des Alpenvereins, Springer Spektrum, https://doi.org/10.1007/978-3-662-55540-8, 2018. a
Gaiser, E. E., Bell, D. M., Castorani, M. C. N., Childers, D. L., Groffman, P. M., Jackson, C. R., Kominoski, J. S., Peters, D. P. C., Pickett, S. T. A., Ripplinger, J., and Zinnert, J. C.: Long-term ecological research and evolving frameworks of disturbance ecology, BioScience, 70, 141–156, https://doi.org/10.1093/biosci/biz162, 2020. a
Groß, G. and Patzelt, G.: The Austrian Glacier Inventory for the Little Ice Age Maximum (GI LIA) in ArcGIS (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.844987, 2015. a, b
Hansche, I., Fischer, A., Greilinger, M., Hartl, L., Hartmeyer, I., Helfricht, K., Hynek, B., Jank, N., Kainz, M., Kaufmann, V., Kellerer-Pirklbauer, A., Lieb, G., Mayer, C., Neureiter, A., Prinz, R., Reingruber, K., Reisenhofer, S., Riedl, C., Seiser, B., Stocker-Waldhuber, M., Strudl, M., Zagel, B., Zechmeister, T., and Schöner, W.: KryoMon. AT – Kryosphären Monitoring Österreich: 2021/22 Kryosphärenbericht Nr. 1, https://doi.org/10.25364/402.2023.1, 2023. a, b, c
Hartl, L.: LeaHartl/MWKVK_processing: MWK and VK processing V0.1 (v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.13633766, 2024. a
Hock, R. and Huss, M.: Glaciers and climate change, in: Climate Change, edited by: Letche, T. M., Elsevier, 157–176, https://doi.org/10.1016/B978-0-12-821575-3.00009-8, 2021. a
Huemer, P.: Pseudo-endemism and cryptic diversity in Lepidoptera–case studies from the Alps and the Abruzzi, Journal on Protected Mountain Areas Research and Management, 3, 11–18, 2011. a
Hugonnet, R., McNabb, R. E., Menounos, B., Nuth, C., Girod, L.,Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.: Accelerated global glacier mass loss in the early twenty-first century, Nature, 592, 726–731, 2021. a
Huss, M. and Hock, R.: Global-scale hydrological response to future glacier mass loss, Nat. Clim. Change, 8, 135–140, 2018. a
Huss, M., Bauder, A., and Funk, M.: Homogenization of long-term mass-balance time series, Ann. Glaciol., 50, 198–206, 2009. a
Kaser, G., Fountain, A., Jansson, P., Heucke, E., and Knaus, M.: A manual for monitoring the mass balance of mountain glaciers, vol. 137, Unesco Paris, SC.2003/WS/4, https://unesdoc.unesco.org/ark:/48223/pf0000129593 (last access: 3 September 2024), 2003. a
Körner, C., Tappeiner, U., Newesely, C., Wittmann, H., Eberl, T., Kaiser, R., Meyer, E., Grube, M., Fernández Mendoza, F., Füreder, L., Niedrist, G. H., Daim, A., Lieb, G., Kellerer-Pirklbauer, A., Wickham, S., Petermann, J., and Berninger, U.-G.: Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern, Synthese der Startphase 2016–2018, Verlag der Österreichischen Akademie der Wissenschaften, https://doi.org/10.1553/GCP_LZM_NPHT_Synthese, 2020. a
Kuhn, M., Lambrecht, A., and Abermann, J.: Austrian glacier inventory 1998 (GI II), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.809196, 2013. a, b
Lambrecht, A. and Kuhn, M.: Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory, Ann. Glaciol., 46, 177–184, https://doi.org/10.3189/172756407782871341, 2007. a, b
Patzelt, G.: Austrian glacier inventory 1969 (GI I), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.807098, 2013. a, b
Schaefli, B. and Huss, M.: Integrating point glacier mass balance observations into hydrologic model identification, Hydrol. Earth Syst. Sci., 15, 1227–1241, https://doi.org/10.5194/hess-15-1227-2011, 2011. a
Schütz, S. A. and Füreder, L.: Unexpected patterns of chironomid larval size in an extreme environment: a highly glaciated, alpine stream, Hydrobiologia, 820, 49–63, 2018. a
Seiser, B. and Fischer, A.: Glacier mass balances and elevation zones of Venedigerkees, Hohe Tauern, Austria, 2011/2012 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.833232, 2016. a, b, c, d
Seiser, B., Stocker-Waldhuber, M., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Glacier mass balance of Venedigerkees, 2011/12 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965648, 2024a. a
Seiser, B., Stocker-Waldhuber, M., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Glacier outlines of Venedigerkees, Austria, 2012 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965619, 2024b. a
Seiser, B., Stocker-Waldhuber, M., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Meteorological monitoring at LTER sites Venedigerkees, 2019 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965647, 2024c. a, b
Seiser, B., Stocker-Waldhuber, M., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Point mass balance of Venedigerkees, Austria, 2011/12 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965729, 2024d. a, b, c
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp, M., and Braun, M. H.: Rapid glacier retreat and downwasting throughout the European Alps in the early 21st century, Nat. Commun., 11, 3209, https://doi.org/10.1038/s41467-020-16818-0, 2020. a
Stocker-Waldhuber, M., Helfricht, K., Hartl, A., and Fischer, A.: Glacier surface mass balance 2006–2014 on Mullwitzkees and Hallstätter gletscher, Zeitschrift für Gletscherkunde und Glazialgeologie, 47, 101–119, 2015. a
Stocker-Waldhuber, M., Fischer, A., and Kuhn, M.: Glacier mass balances and elevation zones of Mullwitzkees, Hohe Tauern, Austria, 2006/2007 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.806662, 2016. a, b, c, d
Stocker-Waldhuber, M., Seiser, B., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Glacier mass balance of Mullwitzkees, 2006/07 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965660, 2024a. a
Stocker-Waldhuber, M., Seiser, B., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Glacier outlines of Mullwitzkees, Austria, 2012 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965626, 2024b. a
Stocker-Waldhuber, M., Seiser, B., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Meteorological monitoring at LTER sites Mullwitzkees, 2020 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965646, 2024c. a, b
Stocker-Waldhuber, M., Seiser, B., Hartl, L., Baldo, A., Lauria, M. V., and Fischer, A.: Point mass balance of Mullwitzkees, Austria, 2006/07 et seq., PANGAEA [data set], https://doi.org/10.1594/PANGAEA.965719, 2024d. a, b
Thibert, E., Blanc, R., Vincent, C., and Eckert, N.: Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps, J. Glaciol., 54, 522–532, 2008. a
Vincent, C., Fischer, A., Mayer, C., Bauder, A., Galos, S. P., Funk, M., Thibert, E., Six, D., Braun, L., and Huss, M.: Common climatic signal from glaciers in the European Alps over the last 50 years, Geophys. Res. Lett., 44, 1376–1383, https://doi.org/10.1002/2016gl072094, 2017. a
WGMS: Fluctuations of Glaciers Database, World Glacier Monitoring Service (WGMS) [data set], https://doi.org/10.5904/wgms-fog-2023-09, 2023. a, b, c
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013. a, b, c, d
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., and Vincent, C.: Historically unprecedented global glacier decline in the early 21st century, J. Glaciol., 61, 745–762, 2015. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386, 2019. a, b
Zemp, M., Eggleston, S., Míguez, B. M., Oakley, T., Rea, A., Robbez, M., and Tassone, C.: The status of the global climate observing system 2021: The GCOS status report, https://doi.org/10.5167/uzh-213734, 2021. a
Zemp, M., Gärtner-Roer, I., Nussbaumer, S. U., Welty, E. Z., Dussaillant, I., and Bannwart, J.: Global Glacier Change Bulletin No. 5 (2020–2021), ISC (WDS) / IUGG (IACS) / UNEP / UNESCO / WMO, World Glacier Monitoring Service, Zurich, Switzerland, https://doi.org/10.5167/uzh-239577, 2023. a
Short summary
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the hydrology and ecosystems of the affected regions, it is important to measure glacier mass balance and ensure that records of field surveys are kept in standardized formats and well-documented. We describe glaciological measurements of ice ablation and snow accumulation gathered at Mullwitzkees and Venedigerkees, two glaciers in the Austrian Alps, since 2007 and 2012, respectively.
Glaciers in the Alps are receding at unprecedented rates. To understand how this affects the...
Altmetrics
Final-revised paper
Preprint