Articles | Volume 16, issue 8
https://doi.org/10.5194/essd-16-3781-2024
https://doi.org/10.5194/essd-16-3781-2024
Data description paper
 | 
27 Aug 2024
Data description paper |  | 27 Aug 2024

Retrieving ground-level PM2.5 concentrations in China (2013–2021) with a numerical-model-informed testbed to mitigate sample-imbalance-induced biases

Siwei Li, Yu Ding, Jia Xing, and Joshua S. Fu

Related authors

Current and future prediction of inter-provincial transport of ambient PM2.5 in China
Shansi Wang, Siwei Li, Jia Xing, Yu Ding, Senlin Hu, Shuchang Liu, Yu Qin, Zhaoxin Dong, Jiaxin Dong, Ge Song, and Lechao Dong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-368,https://doi.org/10.5194/acp-2022-368, 2022
Preprint withdrawn
Short summary
Exploring deep learning for air pollutant emission estimation
Lin Huang, Song Liu, Zeyuan Yang, Jia Xing, Jia Zhang, Jiang Bian, Siwei Li, Shovan Kumar Sahu, Shuxiao Wang, and Tie-Yan Liu
Geosci. Model Dev., 14, 4641–4654, https://doi.org/10.5194/gmd-14-4641-2021,https://doi.org/10.5194/gmd-14-4641-2021, 2021
Short summary
Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study
Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 20, 14347–14359, https://doi.org/10.5194/acp-20-14347-2020,https://doi.org/10.5194/acp-20-14347-2020, 2020
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
GHOST: a globally harmonised dataset of surface atmospheric composition measurements
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024,https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary
Changes in air pollutant emissions in China during two clean-air action periods derived from the newly developed Inversed Emission Inventory for Chinese Air Quality (CAQIEI)
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024,https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Version 1 NOAA-20/OMPS Nadir Mapper total column SO2 product: continuation of NASA long-term global data record
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024,https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
GERB Obs4MIPs: a dataset for evaluating diurnal and monthly variations in top-of-atmosphere radiative fluxes in climate models
Jacqueline E. Russell, Richard J. Bantges, Helen E. Brindley, and Alejandro Bodas-Salcedo
Earth Syst. Sci. Data, 16, 4243–4266, https://doi.org/10.5194/essd-16-4243-2024,https://doi.org/10.5194/essd-16-4243-2024, 2024
Short summary
Multiwavelength aerosol lidars at the Maïdo supersite, Réunion Island, France: instrument description, data processing chain, and quality assessment
Dominique Gantois, Guillaume Payen, Michaël Sicard, Valentin Duflot, Nelson Bègue, Nicolas Marquestaut, Thierry Portafaix, Sophie Godin-Beekmann, Patrick Hernandez, and Eric Golubic
Earth Syst. Sci. Data, 16, 4137–4159, https://doi.org/10.5194/essd-16-4137-2024,https://doi.org/10.5194/essd-16-4137-2024, 2024
Short summary

Cited articles

Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013. 
Appel, K. W., Napelenok, S., Hogrefe, C., Pouliot, G., Foley, K. M., Roselle, S. J., Pleim, J., Bash, J., Pye, H. O. T., Heath, N., Murphy, B., and Mathur, R.: Overview and evaluation of the community multiscale air quality (CMAQ) modeling system version 5.2, in: Air Pollution Modeling and its Application XXV 35, Springer International Publishing, 69–73, https://doi.org/10.1007/978-3-319-57645-9_11, 2018. 
Bai, K., Li, K., Guo, J., and Chang, N. B.: Multiscale and multisource data fusion for full-coverage PM2.5 concentration mapping: Can spatial pattern recognition come with modeling accuracy? ISPRS J. Photogramm., 184, 31–44, 2022. 
Belgiu, M. and Drăguţ, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, 2016. 
Bellouin, N., Boucher, O., Haywood, J., and Reddy, M. S.: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 1138–1141, 2005. 
Download
Short summary
Surface PM2.5 data have gained widespread application in health assessments and related fields, while the inherent uncertainties in PM2.5 data persist due to the lack of ground-truth data across the space. This study provides a novel testbed, enabling comprehensive evaluation across the entire spatial domain. The optimized deep-learning model with spatiotemporal features successfully retrieved surface PM2.5 concentrations in China (2013–2021), with reduced biases induced by sample imbalance.
Altmetrics
Final-revised paper
Preprint