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Abstract. Ground-level PM2.5 data derived from satellites with machine learning are crucial for health and
climate assessments. However, uncertainties persist due to the absence of spatially covered observations. To
address this, we propose a novel testbed using nontraditional numerical simulations to evaluate PM2.5 estima-
tion across the entire spatial domain. The testbed emulates the general machine-learning approach by training
the model with grids corresponding to ground monitoring sites and subsequently testing its predictive accu-
racy for other locations. Our approach enables comprehensive evaluation of various machine-learning methods’
performance in estimating PM2.5 across the spatial domain for the first time. Unexpected results are shown in
the application in China, with larger absolute PM2.5 biases found in densely populated regions with abundant
ground observations across all benchmark models due to the higher baseline concentration, though the relative
error (approximately 20 %) is smaller compared to that in rural areas (over 50 %). The imbalance in training
samples, mostly from urban areas with high emissions, is the main reason, leading to significant overestimation
due to the lack of monitors in downwind areas where PM2.5 is transported from urban areas with varying verti-
cal profiles. Our proposed testbed also provides an efficient strategy for optimizing model structure or training
samples to enhance satellite-retrieval model performance. Integration of spatiotemporal features, especially with
conventional neural network (CNN)-based deep-learning approaches like the residual neural network (ResNet)
model, has successfully mitigated PM2.5 overestimation (by 5–30 µg m−3) and the corresponding exposure (by
3 million people · µg m−3) in the downwind area over 9 years (2013–2021) compared to the traditional approach.
Furthermore, the incorporation of 600 strategically positioned ground monitoring sites identified through the
testbed is essential for achieving a more balanced distribution of training samples, thereby ensuring precise
PM2.5 estimation and facilitating the assessment of the associated impacts in China. In addition to presenting the
retrieved surface PM2.5 concentrations in China from 2013 to 2021, this study provides a testbed dataset derived
from physical modeling simulations which can serve to evaluate the performance of data-driven methodolo-
gies, such as machine learning, in estimating spatial PM2.5 concentrations for the community (Li et al., 2024a;
https://doi.org/10.5281/zenodo.11122294).

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.11122294


3782 S. Li et al.: Retrieving ground-level PM2.5 concentrations in China

1 Introduction

Accurate knowledge of PM2.5 pollution is vital for under-
standing its impact on human health (Lelieveld et al., 2015;
Geng et al., 2021) and the climate (Mitchell et al., 1995;
Bellouin et al., 2005). Satellite products provide direct mea-
surements of aerosol loading on broad spatial and tempo-
ral scales. While the aerosol optical depth (AOD) measured
by satellites reflects the total column of particulate matter,
this is challenged by the complex relationship between AOD
and ground PM2.5 influenced by various factors (Hoff and
Christopher, 2009), including aerosol chemical composition
and vertical profiles. Compared to traditional statistics, ma-
chine learning excels in addressing nonlinearities. Therefore,
numerous recent studies leverage machine learning, such as
in the random forest (RF) (Hu et al., 2017), XGBoost (Xiao et
al., 2018), lightGBM (Zhong et al., 2021), and deep-learning
(Li et al., 2020; Yan et al., 2020; Wang et al., 2022a, b; Wei
et al., 2023) models, to establish correlations between AOD
and PM2.5, treating AOD and related factors, including mete-
orological variables, as features for predicting surface PM2.5
based on ground measurements (Ma et al., 2022). However,
a limitation arises as most ground measurements are concen-
trated in urban and polluted areas. Their main purpose is to
monitor the high pollution levels to protect human health,
leading to an uneven spatial distribution. It is expected that
training models predominantly on urban sites will introduce
an imbalance in ground-based measurements, resulting in
significant uncertainties in spatially allocating surface PM2.5
based on satellite AOD (Shin et al., 2020). This deficiency
might be particularly notable in suburban areas experiencing
downwind transport of PM2.5 from urban areas (Bai et al.,
2022). The discrepancy between urban and downwind sites
largely lies in their vertical profiles of aerosol across the en-
tire vertical layer. Urban sites, which have abundant emission
sources such as residential areas, transportation, construc-
tion, and industries, exhibit a higher share of ground-level
aerosol relative to the total AOD compared to downwind
and rural areas, where pollution tends to be lifted to upper
layers through atmospheric dynamics. Accurately represent-
ing the varying aerosol vertical profiles in source/urban and
downwind/rural areas is crucial for retrieving ground-level
PM2.5 from the AOD. However, imbalanced training samples
make the machine-learning model unable to adequately cap-
ture such variations. The traditional cross-validation methods
based either on samples or sites (Dong et al., 2020), which
still rely mostly on samples available in urban sites, fail to
provide a comprehensive assessment of model performance
across the entire prediction space. Consequently, uncertain-
ties in PM2.5 estimation for these areas remain unexplored,
and solutions to reduce such uncertainties are yet to be de-
veloped.

To overcome these limitations, we introduce a novel
testbed utilizing a numerical model, specifically a chemi-
cal transport model (CTM) such as the Community Multi-

scale Air Quality Modeling System developed by the U.S.
Environmental Protection Agency (EPA) and its commu-
nity (Appel et al., 2013), to establish ground-truth data be-
yond monitoring points. This allows for the evaluation of
interpolation performance using various machine-learning
models and provides solutions to mitigate the uncertain-
ties stemming from the sample imbalance problem. More
specifically, we emulate traditional machine-learning meth-
ods by using CTM-simulated PM2.5 concentrations in grid
cells corresponding to ground monitoring sites as labels for
training machine-learning models. Subsequently, we validate
the trained model’s performance in predicting PM2.5 con-
centrations in other grid cells. In addition to providing a
“ground truth” for assessing performance across the entire
space, the CTM-simulated data act as a testbed for efficiently
seeking solutions to enhance satellite-retrieval model perfor-
mance. This involves optimizing features, model structures,
and training samples, as depicted in Fig. 1.

2 Methods

The proposed testbed is implemented in a Chinese domain,
utilizing 1 whole year’s simulation for 2017 with a 27 km
by 27 km resolution. To ensure internal consistency during
training, all the feature and label data are derived from the
input and output of the commonly used Community Multi-
scale Air Quality (CMAQ) model. The meteorological vari-
ables include U wind, V wind, humidity, 2 m temperature,
the convective velocity scale, shortwave radiation, 10 m wind
speed, planetary boundary layer (PBL) height, leaf area index
(LAI), cloud fraction, and precipitation and are simulated by
the Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008). The simulated AOD is calculated based
on simulated PM2.5 chemical compositions and correspond-
ing meteorological variables across all vertical layers (Liu
et al., 2010). We also include the NO2 column density as
an important feature as it is highly correlated with emission
sources and can be directly observed from satellites to bet-
ter represent the emission information (Martin et al., 2003).
Similarly, the simulated NO2 column density is calculated
based on simulated NO2 concentrations and corresponding
meteorological variables across all vertical layers.

In addition, we conduct model training using 9-year obser-
vational data from 2013 to 2021 to evaluate potential biases
under real-world conditions. This is quantified by measur-
ing the difference in retrieved PM2.5 between the traditional
model and the improved retrieval method optimized with the
proposed testbed. The dataset for this evaluation comprises
MODerate-resolution Imaging Spectroradiometer (MODIS)
(Remer et al., 2008) satellite observations for AOD, Ozone
Monitoring Instrument (OMI) (Celarier et al., 2008) satel-
lite data for NO2 column density, and ground monitoring ob-
servations of PM2.5 from the China National Environmental
Monitoring Center (CNEMC, covering a total of more than
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Figure 1. The proposed testbed for evaluation of satellite-retrieval surface PM2.5 concentration.

600 grid cells of 27 km by 27 km) (Kong et al., 2021). Fol-
lowing the same data-filling method (He et al., 2020), we
conduct data filling for the satellite measurement of NO2
column density and AOD when applying our approach to
real data. The generation of testbed data and the machine-
learning methods are detailed as follows.

2.1 WRF and CMAQ numerical models

In this study, we utilized version 5.2 of the CMAQ model
(Appel et al., 2018), incorporating the Carbon Bond 6
(Yarwood et al., 2010) gas-phase chemistry mechanism
and the AERO6 particulate matter chemistry mechanism.
CMAQ, a widely recognized CTM, is renowned for its ac-
curate simulation of air pollutant concentrations, including
PM2.5, which is attributed to its comprehensive representa-
tion of particulate matter formations. Meteorological data
were generated using the WRF model, version 3.8, config-
ured in the same manner as our previous studies (Ding et
al., 2019a, b). Emission data were obtained from the high-
resolution emission inventory developed by Tsinghua Uni-
versity (ABaCAS-EI) (Zheng et al., 2019), characterized by
a spatial resolution of 27 km by 27 km and a temporal reso-
lution of 1 h to match the CMAQ model. Biogenic emissions

were derived from the estimation of the Model for Emissions
of Gases and Aerosols from Nature (MEGAN) (Guenther et
al., 2012). We conducted a thorough assessment of the per-
formance of WRF and CMAQ in simulating meteorologi-
cal variables and air pollutant concentrations, employing ex-
tensive comparisons with observational data in our previous
studies (Ding et al., 2019a, b).

The simulation domain spans a significant portion of East
Asia and is depicted by a grid consisting of 182 rows and
232 columns, featuring a horizontal resolution of 27 km by
27 km. The entirety of the troposphere (from ground level to
100 mbar) is represented using 14 layers with sigma values,
i.e., 1.00, 0.995, 0.99, 0.98, 0.96, 0.94, 0.91, 0.86, 0.8, 0.74,
0.65, 0.55, 0.4, 0.2, and 0.00. These sigma values correspond
to altitudes of 19, 57, 114, 230, 386, 584, 910, 1375, 1908,
2618, 3598, 5061, 7620, and 11944 m above ground level,
both in the domain and on an annually averaged basis.

We align the simulated PM2.5 concentrations from CMAQ
with the CNEMC based on their respective locations, treating
them as the “label” for training the machine-learning model.
Though previous studies provide some validation schemes
to evaluate the model’s extrapolation capacity (Dong et al.,
2020), for the remaining grid cells that encompass surround-
ing PM2.5 areas where observations are not available, the pre-
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dicted concentrations with machine-learning methods cannot
be directly compared and examined. This paper focuses on
assessing the model’s performance in predicting these points,
accounting for over 90 % of the total number of grid cells.
The simulation data serve as the ground truth for the evalua-
tion of the output of the machine-learning model.

The WRF and CMAQ simulations were evaluated in our
previous studies (Ding et al., 2019a, b), demonstrating ac-
ceptable agreement with CNEMC observations, albeit with
limitations in areas where observations are available. In rural
areas where no observations are available, direct comparison
of CMAQ predictions with actual observations is not possi-
ble. However, the CMAQ data used in this study primarily
serve to establish a testbed representing scenarios based on
physical laws such as emission, diffusion, advection, and de-
position. This approach contrasts with reanalysis or data fu-
sion methods, which may deviate from these physical func-
tions, even though they might exhibit better agreement with
observations when available.

2.2 Decision-tree-based machine-learning method

This study employed three decision-tree-based machine-
learning algorithms, i.e., random forest (Belgiu and Drăguţ,
2016), XGBoost (Chen and Guestrin, 2016), and LightGBM
(Ke et al., 2017), to serve as benchmark cases given their
widespread use in previous studies. Additionally, Deep For-
est (denoted as DeepRF in this study) (Zhou and Feng, 2019),
known for its superior performance (Wei et al., 2023), was in-
cluded as an additional method to be evaluated in this study.

We incorporated similar features used in the machine-
learning model, including observed meteorological variables
(WRF output) and land use information. The reason is that
we deliberately avoided using CTM simulation results for
two key reasons, while some previous studies included CTM
results as additional features in training machine-learning
models. First, the CTM will be applied to the testbed to eval-
uate the model’s performance, and introducing CTM results
could leak information as these results are utilized as labels
and therefore cannot be used as input thereafter. Second, we
aimed to propose a comprehensive CTM-free method that re-
lies exclusively on satellite products and meteorological vari-
ations obtained from observations. This choice is motivated
by the low efficiency when using the CTM and the uncer-
tainties that this introduces. Furthermore, the only additional
information provided by the CTM is related to emissions,
which still suffer from uncertainties. Therefore, instead of
relying on the CTM or prior emission data, we introduce the
NO2 column density. This variable is highly correlated with
emission sources and can be directly observed from satel-
lites, offering a more accurate representation of emission in-
formation.

Given our objective of assessing grid cells outside the des-
ignated label, there is no overlap between the training and
test datasets. To evaluate the model’s performance on the la-

bels, we employ temporal validation. Specifically, the model
is trained using data from only the first 25 d of each month,
and the remaining days are reserved for testing. This ap-
proach helps gauge the model’s effectiveness in handling
temporal variations and provides a robust assessment of its
performance on the specified labels. We fixed the days for
training rather than selecting them randomly to ensure that
all the methods use exactly the same data for training and
testing, enabling a fair comparison. Random selection would
still require us to fix the randomly selected days for all the
methods, similar to fixing all the days at the outset. More-
over, the purpose of this study is to investigate prediction er-
rors for grid cells not included in the training dataset. Even
when using the first 25 d of the training dataset, we consis-
tently observe similar prediction errors in other sites (similar
to out-of-sample validation), regardless of which days are se-
lected for training or testing.

2.3 Residual neural network (ResNet) method

The incorporation of spatiotemporal-neighborhood features
is crucial for enhancing the model’s ability to discern the
evolution of vertical profiles in both urban and downwind
areas (Chen et al., 2023). Beyond simply including corre-
sponding features from the surrounding neighborhood grid
cells as additional predictors of PM2.5 concentrations at tar-
get grid cells in decision-tree-based methods, we also employ
a deep-learning method, i.e., ResNet (He et al., 2016). This
choice is motivated by its demonstrated advantage in han-
dling the nonlinearity inherent in atmospheric processes, as
suggested in our previous study (Xing et al., 2020).

ResNet consists of an initial layer with 128 channels and
incorporates eight residual blocks. The feature maps, encom-
passing meteorological variables, land use information, and
AOD, are fed into the conventional neural network (CNN)-
based structure with a 3-by-3 kernel size, as illustrated in
Fig. S1 in the Supplement. Additionally, we incorporate the
feature into the previous and next days to help capture the
transport flow of pollutants in the model. The training loss
will concentrate solely on points corresponding to the moni-
toring sites, generating predictions exclusively for these spe-
cific locations given the scattered nature of the labels. As a
result, predictions for other points will be entirely out of sam-
ple, relying on data from the same locations as the monitor-
ing sites.

One thing should be noted: all machine-learning meth-
ods use the same input features to ensure a fair comparison.
The only difference is that the features for the new proposed
methods (e.g., ResNet) include data from the neighborhood
(nearby grid cells and the previous or next time steps) in ad-
dition to the local grid and time data.

Throughout the training phase, we employed the mean
squared error (MSE) loss function, conducting a total of
1000 epochs, which demonstrated sufficient effectiveness in
achieving robust performance during both training and test-
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ing. The learning rate started at 0.0001 and underwent linear
decay, reaching zero by the conclusion of the training pro-
cess. Additionally, we utilized the Adam optimizer (Kingma
and Ba, 2014) to enhance the convergence of the model.

3 Results

3.1 Imbalance in site distribution leads traditional
methods to overestimate downwind PM2.5

To explore uncertainties in traditional machine-learning
methods, we initially adhere to their typical design, relying
exclusively on local features within each grid cell. This ap-
proach involves utilizing only the feature data from the same
location as the target grid cell. The model trained with the
RF method successfully captures the spatial distribution of
PM2.5, showing elevated levels in eastern China and lower
levels in the west (Fig. 2a–b). It exhibits acceptable perfor-
mance for the label grid cells during validation (Fig. 2c–d:
R2
= 0.98 and RMSE= 5.28 µg m−3 in the training dataset,

R2
= 0.81 and RMSE= 16.1 µg m−3 in the test dataset).

However, considerable errors are observed across space,
particularly in polluted regions with high baseline PM2.5
concentrations (Fig. 2e). Positive biases (i.e., predictions
greater than those of CMAQ) increase with the distances
from the monitoring sites, even as PM2.5 concentrations de-
crease. This suggests an overestimation in predictions for
downwind areas away from the monitoring sites (Fig. 2f).
This is mainly attributed to the traditional model’s difficulty
in discerning variations in vertical profiles between urban
and suburban areas. Training is primarily focused on urban
areas, where pollution is concentrated near the surface due
to ground-level emission sources. In contrast, pollution in
downwind areas is transported aloft. Therefore, the model,
trained on urban sites where ground-level pollution from
AOD is more prominent, failed to accurately capture the
diverse aerosol vertical profiles in source/urban and down-
wind/rural areas. This discrepancy resulted in overestima-
tions in downwind areas (as illustrated in Fig. 2g).

Contrary to traditional expectations, significant absolute
errors mostly occur in eastern China rather than in the west
due to the large baseline concentration, even though the rela-
tive error is smaller (about 20 %) (Fig. S2 in the Supplement).
While the east has more densely located monitoring sites,
these are primarily situated in urban centers. This imbalance
in site distribution, combined with much higher concentra-
tions, results in substantial biases in eastern China.

Similar phenomena are observed in three other benchmark
models that have been applied in previous studies, i.e., Xg-
Boost, LightGBM, and DeepRF. All of these models demon-
strate robust performance in both training and testing at the
monitoring sites (R2>0.8 and RMSE <16.2 µg m−3 in the
test cases, as depicted in Fig. S3 in the Supplement). How-
ever, they display similar uncertainties in downwind PM2.5,
with significant errors occurring in the surrounding grid cells

of the monitoring sites rather than in remote sites where con-
centrations are relatively low. Clearly, we can conclude that
the uneven distribution of sites introduces considerable bi-
ases into PM2.5 estimation when using traditional methods
that rely on local features.

3.2 Inclusion of spatiotemporal-neighborhood features
improves the surrounding PM2.5 prediction over
traditional approaches

As previously discussed, the ineffectiveness of a machine-
learning model trained on imbalanced samples can be at-
tributed primarily to insufficient information regarding the
spatial variation of vertical profiles from the source to
the downwind area. To enhance the integration of cru-
cial information regarding vertical profiles, we introduce
spatiotemporal-neighborhood features into the model. This
addition aims to empower the model with the ability to dis-
tinguish between urban and downwind areas. Leveraging the
CNN-based structure, known for its effectiveness in explor-
ing nonlinear relationships between neighboring grid cells,
we opt for the widely used deep-learning ResNet model.
This choice facilitates the establishment of nonlinear rela-
tionships between predicted PM2.5 concentrations and multi-
ple spatiotemporal-neighborhood features. In contrast to tra-
ditional methods that solely focus on single time features, our
approach incorporates both preceding and succeeding time
features to enhance a model’s capacity to discern differences
between urban and downwind grid cells. This inclusion is
motivated by the fact that plume transport is predominantly
influenced by flow dynamics represented by the variation in
the temporal neighborhood (before and after) features. Our
previous studies also demonstrated the effectiveness of link-
ing grid cells to time series information on PM2.5 estimation,
underscoring the rationale for this inclusive approach (Teng
et al., 2023; Ding et al., 2024). Additionally, considering that
AOD measured by satellites, such as MODIS, captures only
a single time step while predictions are made for daily av-
erages, the inclusion of extra time step information proves
beneficial in capturing a broader temporal context compared
to a single time snapshot (the model is called ResNet-time).

The results indicate that, while the spatial pattern of PM2.5
predicted with ResNet closely resembles that of other models
(Fig. 3a), it significantly enhances model performance in pre-
dicting PM2.5 for both the training dataset (reducing RMSE
from 4 to 2 µg m−3 and increasing R2 slightly) and the test
dataset (reducing RMSE from 14 to 8 µg m−3 and increas-
ing R2 from 0.8 to 0.9). This improvement can be attributed
to the incorporation of both spatial and temporal features.
The performance of the traditional RF model is enhanced
by replacing it with the ResNet model, and this improve-
ment is further amplified by including temporal features (pre-
vious and next time steps) in the ResNet-time model (see
Fig. 3b). The incorporation of surrounding features in the
ResNet-time model significantly mitigates both absolute and
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Figure 2. Performance of the monitor-located RF model in predicting surface PM2.5 levels. The comparison includes the spatial distribution
of surface PM2.5 (a: ground truth; b: model prediction), PM2.5 levels at monitoring sites (c: label values; d: predicted values), the error
distribution across space (e) and distance (f), and the vertical structure of PM2.5 concentration (g) across the distances from the monitors,
with their spatial distribution shown in panel (h).

relative errors in eastern China across the spatial domain (see
Figs. 3c and S2). However, some deterioration is observed in
the west, which is primarily attributable to limited samples.
The model, becoming more complex, lacks sufficient train-
ing samples in the west, leading to overfitting in that region.

The inclusion of spatiotemporal-neighborhood features
also significantly improves the performance of traditional
benchmark models by incorporating corresponding features
of the surrounding eight neighborhood grid cells and the tem-
poral (before and after) neighborhood information as addi-
tional predictors of PM2.5 concentrations at the target grid
cells. Improvements are observed in both the training and
test datasets across all four benchmark models, as depicted
in Fig. S4 in the Supplement. Notably, all the models demon-
strate a reduction in RMSE after integrating spatiotemporal-
neighborhood features, especially for the downwind area
(within a distance of one to three grid cells) (see Fig. 3d).
However, performance is barely improved or even worsens
in faraway sites (distance of more than four grid cells) due to
the limitations of the training samples. Even the ResNet-time
model demonstrates better performance, primarily in eastern
China, where the distance to the monitoring sites is within
zero to two grid cells. The performance is slightly worse in
the western region, where the distance to the monitoring sites
exceeds four grid cells (Fig. 3d). The “new” method, applied

to the original tree-based method, also shows superior perfor-
mance compared to the original, although it performs slightly
worse in western China. Clearly, enhancing the training sam-
ple is crucial for further improving the model predictions, as
discussed in the following.

3.3 Balancing site distribution is crucial for improving
the prediction for the entire space of PM2.5

Utilizing the ResNet-time model, we explore the correla-
tion between model errors and the distance to the monitoring
sites, together with the concentrations at the nearest moni-
tor. Notably, significant errors were observed in sites within a
distance of two grid cells (refer to Fig. S5 in the Supplement)
and those near monitors exhibiting high concentrations (re-
fer to Fig. S6 in the Supplement). Consequently, two criteria,
i.e., (1) the baseline concentration in nearby monitoring sites
(referred to as “B-conc”) and (2) the distance from monitor-
ing sites (referred to as “D-site”), are established to select
the potential samples to refine predictions across the spatial
domain.

Three sample groups are delineated based on these criteria:

1. B-conc >30 µg m−3 and D-site of one to five grid cells;

2. B-conc within 20–30 µg m−3 and D-site of two to five
grid cells; and
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Figure 3. Improvement after implementing surrounding grid cell features. The panels show (a) prediction of surface PM2.5 using ResNet, (b)
comparison with the random forest (RF) model at the monitoring sites, (c) error comparison between ResNet and RF (where blue indicates
better performance by ResNet and red indicates worse performance), and (d) error comparison across the distances to the monitors for all
the models, including the new addition of surrounding features to each model’s prediction.

3. B-conc within 10–20 µg m−3 and D-site of three to five
grid cells.

This design not only focused on the area suffering from large
impacts of pollution but also allowed the selection of sites in
remote regions with moderate baseline concentrations, as il-
lustrated in Fig. S7 in the Supplement. To enhance the repre-
sentativeness of the chosen sites, random selections are inde-
pendently conducted in each of the three groups, encompass-
ing 10 % (∼ 300 sites, half of the existing sites), 20 % (∼ 600
sites, equal to the existing sites), 30 % (∼ 900 sites, 1.5 times
the existing sites), 40 % (∼ 1200 sites), 70 % (∼ 2100 sites),
and all of the samples (∼ 3000 sites). The testbed developed
in this study enables an efficient evaluation of the model’s
performance by training it with these additional sites.

The results indicate that an increase in the number of
training samples effectively enhances a model’s performance
in PM2.5 estimation, with RMSEs continuously decreasing
as the number of samples increases (see Fig. 4a). This im-
provement is primarily observed in the downwind area, while
the performance at the monitoring sites deteriorates due to
the original model being overfitted to these specific sites
(Fig. 4b). The rate of improvement diminishes after the in-
clusion of 20 % of the samples, implying that just doubling
the current ground monitors wisely can effectively balance
the training samples to ensure the accuracy of PM2.5 estima-
tions (RMSE reduced by 20 %–30 %). As illustrated in the
example with 20 % sample inclusion in Fig. 4c–e, it is rec-
ommended that more than half of the new sites be set up in
eastern China, where PM2.5 concentration is high. Addition-
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ally, it is suggested that 10 % of the sites be set up in remote
areas that are influenced by transport from heavy pollution
regions but lack nearby ground measurements. The inclusion
of additional sites proves effective in significantly reducing
prediction errors across the entire spatial domain, leading to
much closer agreement with the ground truth (Fig. 2a) in the
PM2.5 spatial pattern.

It is important to acknowledge that errors may be influ-
enced by factors beyond site distribution problems, such as
systematic errors arising from insufficient features. Baseline
errors are referenced to those trained with all points using
ResNet, amounting to within 1.7 µg m−3 (Fig. S8 in the Sup-
plement). Similarly, training with all points may increase er-
rors in monitoring sites, as the original model might be over-
fitted to these sites rather than representing the overall situa-
tion (Fig. 4b).

3.4 Potential biases and optimized site selections under
real-world conditions

While ground measurements are unavailable for the entire
space, we conducted the evaluation using both the tradi-
tional RF method and the ResNet-time model developed pre-
viously with satellite data. Both models were trained using
real-world satellite data and ground monitoring PM2.5 obser-
vations during 2013–2021, and their differences can be con-
sidered part of the potential biases associated with the influ-
ence of incorporating spatiotemporal features for enhancing
the model’s ability to identify vertical structures.

The results suggest that both models effectively replicate
the time series of monthly mean PM2.5 concentrations across
monitoring sites from 2013 to 2021 (see Fig. 5a–b). How-
ever, considerable disparities emerge in their predictions for
other areas (Fig. 5c). The new predictions using the ResNet-
time model generally exhibit lower PM2.5 concentrations,
particularly in the northern and western regions (Fig. 5d–
f), with a more significant impact observed as the distance
to the ground monitoring sites increases (Fig. 5j). A notable
discrepancy in the population-weighted PM2.5 concentration
is observed in eastern China, which has a large population,
implying that the errors also applied to human health as-
sessment (Fig. 5g). Since the ResNet-time model demon-
strates superior performance compared to the traditional RF
model in both training (reducing RMSE from 6 to 2.5 µg m−3

and increasing R2 from 0.9 to 1.0) and test data (reduc-
ing RMSE from 20 to 15 µg m−3 and increasing R2 from
0.4 to 0.6), it appears that traditional methods might signifi-
cantly overestimate PM2.5 concentrations (by 5–30 µg m−3)
and PM2.5 exposure in suburban and rural areas by 3 mil-
lion people · µg m−3 (Fig. 5k) due to the sample imbalance
problem throughout 2013–2021. Similar results are also sug-
gested in the other three benchmark models (Figs. S9–S10 in
the Supplement). The actual errors might be even larger, as
the inclusion of spatiotemporal-neighborhood features in the
ResNet-time model can only mitigate a portion of the errors.

Incorporating a significant number of additional sites is
necessary to balance the training samples and further reduce
the uncertainties. Following the two previously defined cri-
teria (i.e., B-conc and D-site), three groups of samples are
selected. Similarly, 20 % of the samples (631 in total, close
to the number of existing sites) in each group are proposed as
potential additional sites in the future, as presented in Fig. 5l–
m. Group 1 (30 % of the total number of add-on sites) is
primarily situated in polluted regions (B-conc >60 µg m−3,
D-site one to five grids), encompassing areas such as the
Beijing–Tianjin–Hebei region and the desert region in the
west. Group 2 (40 % of the total number of add-on sites) rep-
resents sites with a moderate distance to existing monitor-
ing sites with a heavier pollution level, compared to Group 1
(B-conc within 40–60 µg m−3, D-site two to five grid cells).
Lastly, Group 3 (30 % of the total number of add-on sites)
represents sites located far away from existing monitoring
sites with a low pollution level (B-conc <40 µg m−3, D-site
four to five grid cells), situated in remote areas with limited
influence from transport originating in polluted regions. As
indicated by the previous testbed analysis, including these
additional sites has the potential to reduce errors by at least
20 %, leading to more accurate machine-learning estimation
of PM2.5 concentrations with a more balanced training sam-
ple set.

4 Data availability

The numerical-model-informed testbed and the correspond-
ing estimated PM2.5 concentrations spanning the 9 years
(2013–2021) can be found at https://doi.org/10.5281/zenodo.
11122294 (Li et al., 2024a), and an updated version with files
in NetCDF format can be found at https://doi.org/10.5281/
zenodo.12636976 (Li et al., 2024b). In addition to the long-
term PM2.5 dataset created using our new method, which
can be used for health assessments and studying air pollu-
tion influences, we provide testbed data crucial for evaluat-
ing machine-learning-based retrieval methods, especially in
scenarios where no ground-truth data are available.

The testbed dataset includes all inputs and outputs follow-
ing the physical model simulation, which naturally correlates
with physical laws such as emission, diffusion, advection,
and deposition, representing typical conditions that any pre-
diction method should meet. These data can be used to eval-
uate and compare methods using the same dataset, allow-
ing for continuous improvement. Besides traditional cross-
validation, our proposed testbed validation is highly recom-
mended for examining a method’s predictive ability. We will
continue updating the testbed data for other pollutants and
with different resolutions and regions in future studies.
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Figure 4. Improved performance through the integration of additional sites using the ResNet model. The comparison includes model perfor-
mance when adding points across the overall domain (a) and across distances to the monitoring sites (b), the scenario of adding 20 % more
sample details to the locations of specific sites (black dots represent the 619 original monitoring sites) (c), the prediction of the surface PM2.5
concentration in this scenario (d), and the corresponding reduction in errors (e).

5 Code availability

The ResNet-time model developed in this study can be down-
loaded at https://doi.org/10.5281/zenodo.11122294 (Li et al.,
2024a).

6 Discussion and conclusions

Amidst the advancements in satellite products and machine-
learning techniques, ground-level PM2.5 data have found ex-
tensive applications in health assessments and related fields.
However, their uncertainties have remained unexplored due
to the lack of ground-truth data covering the whole space.
This study designed a physically informed testbed by lever-
aging CTM simulations to evaluate PM2.5 estimation across
the entire spatial domain and quantified the associated un-
certainties in the PM2.5 mapping across the whole space.
Traditionally, it was believed that errors would be signifi-

cant in remote areas with few or no ground-based measure-
ments, while observation-dense regions, following the spa-
tial interpolation principle, were expected to exhibit better
accuracy. Contrary to our expectations, our findings reveal
that the largest absolute biases occur differently. One rea-
son is the heavier baseline PM2.5 concentration, and another
significant factor is the sample training imbalance problem.
Ground-based measurements, designed for monitoring heavy
pollution, are predominantly located in urban or industrial ar-
eas. Using these measurements as training samples misleads
the machine-learning model into assuming uniform similar-
ity to urban sites, especially in vertical structures. In reality,
the vertical profile varies significantly with the flow after the
pollutant is emitted from the source. This sample imbalance
issue causes the machine-learning model to fail to provide
accurate predictions for PM2.5 across the entire spatial do-
main.
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Figure 5. Improved estimation of PM2.5 and the related exposure across China using satellite products and ground observations from 2013
to 2021. The comparison of predicting the time series of monthly mean PM2.5 concentrations from 2013 to 2021 is conducted using the
original RF model and the new ResNet-time model based on monitoring sites (a) and other grid cells (b), with the difference between the
new and original predictions shown in panel (c). The prediction of the 9-year average PM2.5 concentration over 2013–2021 is compared using
the new ResNet-time model (d) and the original RF model (e), with their differences being in absolute concentrations (f) and population-
weighted concentrations (g). The influence of considering spatiotemporal features in the new model on the performance at the monitoring
sites is shown for RMSE (h), R2 (i), PM2.5 prediction across the distances to the monitors (j), and PM2.5 exposure (k, where suburban/rural
represents areas within a distance of five grid cells from the monitoring sites). Potential grid cells as additional sites to improve the accuracy
of downwind PM2.5 prediction are shown with their spatial locations (l) and the selection of each group (m).
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The newly developed testbed also enables us to seek
the best solutions, such as optimizing model structures or
enhancing training samples, to improve satellite-retrieval
model performance. Our results underscore the importance
of incorporating spatiotemporal features to enhance the
machine-learning model’s ability to identify differences be-
tween urban and downwind conditions that are not explored
in the recent literature. However, fully addressing the sam-
ple imbalance problem necessitates the addition of more
ground monitoring sites to achieve a more balanced distri-
bution of training samples for machine learning in China. In
recent years, the Chinese government has expanded monitor-
ing sites towards suburban areas, increasing the total num-
ber of monitoring sites by about 400 (from about 1600 in
2017 to about 2020 in 2021). While these additional samples
have effectively improved PM2.5 predictions (as presented in
Fig. S11 in the Supplement), they only account for about 100
grid cells in the 27 km-by-27 km domain. According to the
estimations in this study, approximately 600 grid cells are
needed to locate monitoring sites in the future. Some studies
incorporate CTM simulation data as an additional feature for
predicting PM2.5, while the uncertainties of CTM hinder per-
formance enhancement. To demonstrate this, we conducted
RF predictions with CMAQ data as an additional feature,
but the improvement compared to the original RF model was
minimal, especially when compared to using the additional
neighborhood information proposed in this study (Fig. S12
in the Supplement). Besides, compared to CTM simulations,
NO2 column density better represents emission information
and can significantly enhance model performance. As illus-
trated in Fig. S13 in the Supplement, excluding NO2 column
data from the features used in the machine-learning model
reduces its performance in predicting surface PM2.5, leading
to even more errors due to the sample imbalance problem.

Although this study is conducted at a relatively coarse res-
olution of 27 km over China due to the computational burden
of running a CTM at a fine resolution in a large-scale do-
main, the testbed method proposed here can also be applied
with higher-resolution retrievals when the simulation data are
available. A similar testbed study conducted in the Continen-
tal United States (CONUS) domain at 12 km resolution re-
vealed the same imbalance problem (Zhang et al., in prepa-
ration), indicating that this issue persists at finer-resolution
scales, especially in urban and industrial areas, due to spatial
heterogeneity in emissions (Li and Xing, 2024) and the com-
plexity of spatial gradients of particulate matter pollution ob-
served at high resolution through AOD (Lin et al., 2021). At a
fine resolution (e.g., 1 km), while the number of observation
sites may increase slightly (eliminating the need for group-
ing to one 27 km grid cell like in this study), the number of
grid cells to be predicted increases significantly. Therefore,
it is essential to conduct similar testbed studies using 1 km
CMAQ results (Tao et al., 2020) to evaluate the performance
of machine-learning methods. This might be more feasible

with a more comprehensive CMAQ dataset using nesting
rather than specific subdomains.

This study also successfully demonstrates leveraging
of the CTM to generate abundant data to test machine-
learning methods, overcoming limitations associated with
data availability. While derived from a numerical-model-
based testbed, it is important to acknowledge that the numeri-
cal model itself may encounter uncertainties related to emis-
sions and chemical mechanisms, potentially leading to dis-
crepancies with real observations. Nevertheless, the testbed
serves as a specific scenario for evaluating satellite-retrieval
methods, with the expectation that these methods should per-
form effectively in various scenarios, including those gener-
ated from CTM simulations. Therefore, the errors observed
in the CTM-based testbed also imply their existence when
applied to real data. Additionally, although this study pri-
marily focuses on the analysis of PM2.5 in China, the iden-
tified errors may extend to other pollutants and countries as
a whole, particularly when facing similar sample imbalance
problems (i.e., lacking suburban or rural representative sites).
Leveraging the testbed developed in this study can be im-
mensely helpful in examining uncertainties in other pollu-
tants and countries or in other geoscience applications facing
similar sample imbalance challenges.
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