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Figure S1. ResNet model structure 
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(a) RF (b) RF-new (c) ResNet-time 

   

 

Figure S2. Comparison of relative errors in predicting ground-level PM2.5 using RF, RF-new, 

and ResNet-time models with the testbed. 
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Figure S3. Errors in predicting surface PM2.5 with monitor-located grids training models 
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Figure S4. Improvement after implementing the features in surrounding grid cells (compared to 

each baseline model without spatiotemporal-neighbourhood features) 
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Figure S5. Error distribution across the distance to monitor sites (D-site) based on ResNet-time 

model 

 



 

Figure S6. Error distribution across the monitor concentrations (B-conc) based on ResNet-time 

model 
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Figure S7. Spatial distribution of selected adding sites with certain levels of sampling (B-conc: 

conc in closed monitor sites; D-site: distance from monitor sites) 
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Figure S8. Improvement with selected adding sites with certain levels of sampling 

 

  



 

 (a) predicted surface PM2.5 concentration (b) performance on the sites 
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Figure S9. Improved performance with inclusion of spatiotemporal-neighbourhood features 

trained with real measurement dataset 
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*Note: within 5 grid cells 

Figure S10. Uncertainties in estimation of PM2.5-related exposure across China 

  



 

(a) performance in scenarios with adding points 

across distance to monitor sites 

 
  

(b) +sample new sites during 2017-2021 
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*black dot: original monitor sites (619) 

  
 

Figure S11. Improvement with the inclusion of new sites after 2017 in testing with CMAQ 

simulations 
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Figure S12. Comparison of predicted PM2.5 by adding simulation data and the proposed method 

in this study (2017 for example) 
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Figure 13. Comparison of model performance in predicting surface PM2.5 without NO2 column 

feature 

 

 


