Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3261-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3261-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Lijun Zheng
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Yaozong Li
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Xiang Guo
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Zebing Zhou
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Zhicai Luo
MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Related authors
No articles found.
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data, 17, 2463–2488, https://doi.org/10.5194/essd-17-2463-2025, https://doi.org/10.5194/essd-17-2463-2025, 2025
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
Xueyu Zhang, Lin Liu, Brice Noël, and Zhicai Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1726, https://doi.org/10.5194/egusphere-2024-1726, 2024
Preprint archived
Short summary
Short summary
This study indicates that the overall characteristics of the upper firn density in the percolation zone could be captured by the choice of appropriate model configurations and climatic forcing, which is necessary for understanding the current mass balance of the GrIS and predicting its future. The modelled firn density in this study generally aligns well with observations from 16 cores, with the relative bias in density ranging from 0.36 % to 6 % at Dye-2 and being within ±5 % at KAN_U.
Xueyu Zhang, Lin Liu, Brice Noël, and Zhicai Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-122, https://doi.org/10.5194/egusphere-2024-122, 2024
Preprint archived
Short summary
Short summary
In this study, an improved firn densification model is developed by integrating the Bucket scheme and Darcy’s law to assess the capillary retention, refreezing, and runoff of liquid water within the firn layer. This model captures high-density peaks (~917 kg · m-3) or the features of high-density layers caused by the refreezing of liquid water. In general, the modelled firn depth-density profiles at KAN_U and Dye-2 agree well with the in situ measurements.
Cited articles
Abrykosov, P., Sulzbach, R., Pail, R., Dobslaw, H., and Thomas, M.: Treatment of ocean tide background model errors in the context of GRACE/GRACE-FO data processing, Geophys. J. Int., 228, 1850–1865, https://doi.org/10.1093/gji/ggab421, 2022.
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016.
Amin, H., Bagherbandi, M., and Sjöberg, L. E.: Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–2016, Adv. Space Res., 65, 1922–1940, https://doi.org/10.1016/j.asr.2020.01.029, 2020.
Argus, D. F., Landerer, F. W., Wiese, D. N., Martens, H. R., Fu, Y., Famiglietti, J. S., Thomas, B. F., Farr, T. G., Moore, A. W., and Watkins, M. M.: Sustained Water Loss in California's Mountain Ranges During Severe Drought From 2012 to 2015 Inferred From GPS, J. Geophys. Res.-Sol. Ea., 122, 10559–10585, https://doi.org/10.1002/2017jb014424, 2017.
Bandikova, T. and Flury, J.: Improvement of the GRACE star camera data based on the revision of the combination method, Adv. Space Res., 54, 1818–1827, https://doi.org/10.1016/j.asr.2014.07.004, 2014.
Bettadpur, S.: Recommendation for a-priori Bias and Scale Parameters for Level-1B ACC Data (Version 2), GRACE TN-02, ftp://isdcftp.gfz-potsdam.de:21/grace/DOCUMENTS/TECHNICAL_NOTES/TN-02_ACC_Calibration_v2.pdf (last access: 10 July 2024), 2009.
Bettadpur, S.: Gravity Recovery and Climate Experiment Level-2 Gravity Field Product User Handbook, Center for Space Research at The University of Texas at Austin, https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/L2-UserHandbook_4.0.pdf (last access: 10 July 2024), 2018.
Carlson, G., Werth, S., and Shirzaei, M.: Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California, J. Geophys. Res.-Sol. Ea., 127, e2021JB023135, https://doi.org/10.1029/2021JB023135, 2022.
Case, K., Kruizinga, G., and Wu, S.-C.: GRACE Level 1B Data Product User Handbook, ftp://isdcftp.gfz-potsdam.de/grace/DOCUMENTS/Level-1/GRACE_L1B_Data_Product_User_Handbook.pdf (last access 10 July 2024), 2010.
Chen, Q., Shen, Y., Chen, W., Francis, O., Zhang, X., Chen, Q., Li, W., and Chen, T.: An Optimized Short-Arc Approach: Methodology and Application to Develop Refined Time Series of Tongji-Grace2018 GRACE Monthly Solutions, J. Geophys. Res.-Sol. Ea., 124, 6010–6038, https://doi.org/10.1029/2018jb016596, 2019.
Chen, Q., Shen, Y., Kusche, J., Chen, W., Chen, T., and Zhang, X.: High-Resolution GRACE Monthly Spherical Harmonic Solutions, J. Geophys. Res.-Sol. Ea., 126, e2019JB018892, https://doi.org/10.1029/2019jb018892, 2020.
Cheng, M. and Ries, J.: The unexpected signal in GRACE estimates of C20, J. Geod., 91, 897–914, https://doi.org/10.1007/s00190-016-0995-5, 2017.
Cheng, M. K. and Ries, J.: C-20 and C-30 Variations From SLR for GRACE/GRACE-FO Science Applications, J. Geophys. Res.-Sol. Ea., 128, e2022JB025459, https://doi.org/10.1029/2022JB025459, 2023.
Colombo, O. L.: The global mapping of gravity with two satellites, https://www.researchgate.net/publication/265868134_THE_GLOBAL_MAPPING_OF_GRAVITY_WITH_TWO_SATELLITES (last access: 10 July 2024), 1984.
Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., and König, R.: GRACE 327-743 (Gravity Recovery and Climate Experiment): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018), Scientific Technical Report STR – Data; 18/04, Potsdam, GFZ German Research Centre for Geosciences, 20 pp., https://doi.org/10.2312/GFZ.b103-18048, 2018.
Desai, S. D.: Observing the pole tide with satellite altimetry, J. Geophys. Res.-Oceans, 107, 3186, https://doi.org/10.1029/2001jc001224, 2002.
Ditmar, P., Klees, R., and Liu, X.: Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise, J. Geod., 81, 81–96, https://doi.org/10.1007/s00190-006-0074-4, 2006.
Ditmar, P., Teixeira da Encarnação, J., and Hashemi Farahani, H.: Understanding data noise in gravity field recovery on the basis of inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE, J. Geod., 86, 441–465, https://doi.org/10.1007/s00190-011-0531-6, 2011.
Dobslaw, H., Flechtner, F., Bergmann-Wolf, I., Dahle, C., Dill, R., Esselborn, S., Sasgen, I., and Thomas, M.: Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05, J. Geophys. Res.-Oceans, 118, 3704–3711, https://doi.org/10.1002/jgrc.20271, 2013.
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C., Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06, Geophys. J. Int., 211, 263–269, https://doi.org/10.1093/gji/ggx302, 2017.
Flechtner, F., Neumayer, K.-H., Dahle, C., Dobslaw, H., Fagiolini, E., Raimondo, J.-C., and Güntner, A.: What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications? Surv. Geophys., 37, 453–470, https://doi.org/10.1007/s10712-015-9338-y, 2015.
Folkner, W. M., Williams, J. G., and Boggs, D. H.: The Planetary and Lunar Ephemeris DE 421, https://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf (last access: 10 July 2024), 2009.
Goswami, S., Klinger, B., Weigelt, M., and Mayer-Gurr, T.: Analysis of Attitude Errors in GRACE Range-Rate Residuals – A Comparison Between SCA1B and the Fused Attitude Product (SCA1B + ACC1B), IEEE Sensors Lett., 2, 1–4, https://doi.org/10.1109/lsens.2018.2825439, 2018.
Guo, X., Zhao, Q., Ditmar, P., Sun, Y., and Liu, J.: Improvements in the Monthly Gravity Field Solutions Through Modeling the Colored Noise in the GRACE Data, J. Geophys. Res.-Sol. Ea., 123, 7040–7054, https://doi.org/10.1029/2018jb015601, 2018.
Gupta, D. and Dhanya, C. T.: The potential of GRACE in assessing the flood potential of Peninsular Indian River basins, Int. J. Remote Sens., 41, 9009–9038, https://doi.org/10.1080/01431161.2020.1797218, 2020.
Horwath, M., Lemoine, J.-M., Biancale, R., and Bourgogne, S.: Improved GRACE science results after adjustment of geometric biases in the Level-1B K-band ranging data, J. Geod., 85, 23–38, https://doi.org/10.1007/s00190-010-0414-2, 2010.
Huang, Q., Zhang, Q., Xu, C., Li, Q., and Sun, P.: Terrestrial Water Storage in China: Spatiotemporal Pattern and Driving Factors, Sustainability, 11, 6646, https://doi.org/10.3390/su11236646, 2019.
Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., and Schuh, H.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans, Earth Syst. Sci. Data, 11, 647–674, https://doi.org/10.5194/essd-11-647-2019, 2019.
Kim, J. and Tapley, B. D.: Simulation study of a low-low satellite-to-satellite tracking mission, doctoral thesis, https://doi.org/10.26153/tsw/12695, 2000.
Klinger, B. and Mayer-Gürr, T.: The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016, Adv. Space Res., 58, 1597–1609, https://doi.org/10.1016/j.asr.2016.08.007, 2016.
Koch, I., Shabanloui, A., and Flury, J.: Calibration of GRACE Accelerometers Using Two Types of Reference Accelerations, Paper presented at the International Symposium on Advancing Geodesy in a Changing World, Cham, https://doi.org/10.1007/1345_2018_46, 2019.
Kvas, A., Behzadpour, S., Ellmer, M., Klinger, B., Strasser, S., Zehentner, N., and Mayer-Gürr, T.: ITSG-Grace2018: Overview and Evaluation of a New GRACE-Only Gravity Field Time Series, J. Geophys. Res.-Sol. Ea., 124, 9332–9344, https://doi.org/10.1029/2019jb017415, 2019a.
Kvas, A., Mayer-Gürr, T., Krauss, S., Brockmann, J. M., Schubert, T., Schuh, W., Pail, R., Gruber, T., Jäggi, A., and Meyer, U.: The satellite-only gravity field model GOCO06s, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.2019.002, 2019b.
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H., Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D., McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S., Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H. Y., Wiese, D. N., and Yuan, D. N.: Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance, Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020gl088306, 2020.
Loomis, B. D., Rachlin, K. E., Wiese, D. N., Landerer, F. W., and Luthcke, S. B.: Replacing GRACE/GRACE-FO With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change, Geophys. Res. Lett., 47, e2019GL085488, https://doi.org/10.1029/2019gl085488, 2020.
Mayer-Gürr, T., Behzadpour, S., Ellmer, M., Kvas, A., Klinger, B., Strasser, S., and Zehentner, N.: ITSG-Grace2018 – Monthly, Daily and Static Gravity Field Solutions from GRACE, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.2018.003, 2018.
Meyer, U., Jaeggi, A., Dahle, C., Flechtner, F., Kvas, A., Behzadpour, S., Mayer-Gürr, T., Lemoine, J. M., and Bourgogne, S.: International Combination Service for Time-variable Gravity Fields (COST-G) Monthly GRACE Series. V. 01, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.COST-G.001, 2020.
Nie, Y., Shen, Y., Pail, R., Chen, Q., and Xiao, Y.: Revisiting Force Model Error Modeling in GRACE Gravity Field Recovery, Surv. Geophys., 43, 1169–1199. https://doi.org/10.1007/s10712-022-09701-8, 2022.
Petit, G. and Luzum, B.: IERS Conventions, IERS Technical Note, 36, http://www.iers.org/TN36/ (last access: 10 July 2024), 2010.
Reigber, C.: Gravity field recovery from satellite tracking data, Paper presented at the Theory of Satellite Geodesy and Gravity Field Determination, Berlin, Heidelberg, https://doi.org/10.1007/BFb0010552, 1989.
Ries, J., Bettadpur, S., Eanes, R. J., Kang, Z., Ko, U., McCullough, C., Nagel, P., Pie, N., Poole, S., Richter, T., Save, H., and Tapley, B.: The Combined Gravity Model GGM05C, GFZ Data Services [data set], https://doi.org/10.5880/icgem.2016.002, 2016.
Savcenko, R., Bosch, W., Dettmering, D., and Seitz, F.: EOT11a – Global Empirical Ocean Tide model from multi-mission satellite altimetry, with links to model results, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.834232, 2012.
Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., Longuevergne, L., and Chen, J.: Global evaluation of new GRACE mascon products for hydrologic applications, Water Resour. Res., 52, 9412–9429, https://doi.org/10.1002/2016WR019494, 2016.
Shihora, L., Balidakis, K., Dill, R., Dahle, C., Ghobadi-Far, K., Bonin, J., and Dobslaw, H.: Non-tidal background modeling for satellite gravimetry based on operational ECWMF and ERA5 reanalysis data: AOD1B RL07, J. Geophys. Res.-Sol. Ea., 127, e2022JB024360, https://doi.org/10.1029/2022JB024360, 2022.
Strasser, S., Mayer-Gürr, T., and Zehentner, N.: Processing of GNSS constellations and ground station networks using the raw observation approach, J. Geod., 93, 1045–1057, doi:https://doi.org/10.1007/s00190-018-1223-2, 2018.
Suesser-Rechberger, B., Krauss, S., Strasser, S., and Mayer-Guerr, T.: Improved precise kinematic LEO orbits based on the raw observation approach, ITSG [data set], http://ftp.tugraz.at (last access: 10 July 2024), 2022.
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
Velicogna, I., Mohajerani, Y., A, G., Landerer, F., Mouginot, J., Noel, B., Rignot, E., Sutterley, T., van den Broeke, M., van Wessem, M., and Wiese, D.: Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions, Geophys. Res. Lett., 47, e2020GL087291, https://doi.org/10.1029/2020gl087291, 2020.
Wen, H., Kruizinga, G., Paik, M., Landerer, F., Bertiger, W., Sakumura, C., Bandikova, T., and Mccullough, C.: Gravity recovery and climate experiment Follow-On (GRACE-FO) level-1 data product user handbook, JPL [data set], http://isdcftp.gfz-potsdam.de (last access: 10 July 2024), 2019.
Yuan, D. N.: GRACE JPL level-2 processing standards document for level-2 product release 06, GRACE 327-744 (v6.0), https://doi.org/10.5067/GFL20-MJ060, 2018.
Zhang, C., Duan, Q., Yeh, P. J. F., Pan, Y., Gong, H., Gong, W., Di, Z., Lei, X., Liao, W., Huang, Z., Zheng, L., and Guo, X.: The Effectiveness of the South-to-North Water Diversion Middle Route Project on Water Delivery and Groundwater Recovery in North China Plain, Water Resour. Res., 56, e2019WR026759, https://doi.org/10.1029/2019wr026759, 2020.
Zhou, H., Luo, Z. C., Zhou, Z. B., Zhong, B., and Hsu, H. Z.: HUST-Grace2016s: A new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period, Adv. Space Res., 60, 597–611, https://doi.org/10.1016/j.asr.2017.04.026, 2017a.
Zhou, H., Luo, Z. C., Tangdamrongsub, N., Wang, L. C., He, L. J., Xu, C., and Li, Q.: Characterizing Drought and Flood Events over the Yangtze River Basin Using the HUST-Grace2016 Solution and Ancillary Data, Remote Sens., 9, 1100, https://doi.org/10.3390/rs9111100, 2017b.
Zhou, H., Luo, Z., Zhou, Z., Li, Q., Zhong, B., Lu, B., and Hsu, H.: Impact of different kinematic empirical parameters processing strategies on temporal gravity field model determination, J. Geophys. Res.-Sol. Ea., 123, 252–276, https://doi.org/10.1029/2018JB015556, 2018.
Zhou, H., Zhou, Z. B., and Luo, Z. C.: A New Hybrid Processing Strategy to Improve Temporal Gravity Field Solution, J. Geophys. Res.-Sol. Ea., 124, 9415–9432, https://doi.org/10.1029/2019jb017752, 2019.
Zhou, H., Zheng, L., Pail, R., Liu, S., Qing, T., Yang, F., Guo, X., and Luo, Z.: The impacts of reducing atmospheric and oceanic de-aliasing model error on temporal gravity field model determination, Geophys. J. Int., 234, 210–227, https://doi.org/10.1093/gji/ggad064, 2023.
Zhou, H., Zheng, L., Zhou, Z., and Luo, Z.: HUST-Grace2024: GRACE and GRACE Follow-On monthly gravity field solution, GFZ Data Services [data set], https://doi.org/10.5880/ICGEM.2024.001, 2024.
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its...
Altmetrics
Final-revised paper
Preprint