Articles | Volume 16, issue 7
https://doi.org/10.5194/essd-16-3171-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3171-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin 10129, Italy
Andrea Vergnano
Department of Earth Sciences (DST), Università degli Studi di Torino, Turin 10125, Italy
Alberto Godio
Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin 10129, Italy
Gerardo Romano
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, Bari 70125, Italy
Luigi Capozzoli
Institute of Methodologies for Environmental Analysis, National Research Council (CNR), Tito 85050, Italy
Ilaria Baneschi
Geosciences and Earth Resources (IGG) – National Research Council of Italy (CNR), Pisa 56124, Italy
Marco Doveri
Dipartimento di Scienze della Terra, Pisa University, Pisa 56126, Italy
Alessandro Santilano
Geosciences and Earth Resources (IGG) – National Research Council of Italy (CNR), Messina 98166, Italy
Related authors
No articles found.
Andrea Vergnano, Diego Franco, and Alberto Godio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2569, https://doi.org/10.5194/egusphere-2024-2569, 2024
Short summary
Short summary
We used radar to measure ice thickness in mountain glaciers, but it is challenging when the ice is temperate, or warm, due to signal scattering. Radar surveys of Rutor Glacier were inaccurate, so we used computer models to better estimate its thickness. Comparing estimates from computer models with radar measurements gave us a more accurate map, revealing more ice than previously thought. This combined method can improve future ice surveys and planning.
Elisabetta Corte, Andrea Ajmar, Carlo Camporeale, Alberto Cina, Velio Coviello, Fabio Giulio Tonolo, Alberto Godio, Myrta Maria Macelloni, Stefania Tamea, and Andrea Vergnano
Earth Syst. Sci. Data, 16, 3283–3306, https://doi.org/10.5194/essd-16-3283-2024, https://doi.org/10.5194/essd-16-3283-2024, 2024
Short summary
Short summary
The study presents a set of multitemporal geospatial surveys and the continuous monitoring of water flows in a large proglacial area (4 km2) of the northwestern Alps. Activities were developed using a multidisciplinary approach and merge geomatic, hydraulic, and geophysical methods. The goal is to allow researchers to characterize, monitor, and model a number of physical processes and interconnected phenomena, with a broader perspective and deeper understanding than a single-discipline approach.
Gerardo Romano, Marco Antonellini, Domenico Patella, Agata Siniscalchi, Andrea Tallarico, Simona Tripaldi, and Antonello Piombo
Nat. Hazards Earth Syst. Sci., 23, 2719–2735, https://doi.org/10.5194/nhess-23-2719-2023, https://doi.org/10.5194/nhess-23-2719-2023, 2023
Short summary
Short summary
The Nirano Salse (northern Apennines, Italy) is characterized by several active mud vents and hosts thousands of visitors every year. New resistivity models describe the area down to 250 m, improving our geostructural knowledge of the area and giving useful indications for a better understanding of mud volcano dynamics and for the better planning of safer tourist access to the area.
Cited articles
Beka, T. I., Smirnov, M., Bergh, S. G., and Birkelund, Y.: The first magnetotelluric image of the lithospheric-scale geological architecture in central Svalbard, Arctic Norway, Polar Res., 34, 26766, https://doi.org/10.3402/polar.v34.26766, 2015.
Beka, T. I., Smirnov, M., Birkelund, Y., Senger, K., and Bergh, S. G.: Analysis and 3D inversion of magnetotelluric crooked profile data from central Svalbard for geothermal application, Tectonophysics, 686, 98–115, https://doi.org/10.1016/j.tecto.2016.07.024, 2016.
Beka, T. I., Senger, K., Autio, U. A., Smirnov, M., and Birkelund, Y.: Integrated electromagnetic data investigation of a Mesozoic CO2 storage target reservoir-cap-rock succession, Svalbard, J. Appl. Geophys., 136, 417–430, https://doi.org/10.1016/j.jappgeo.2016.11.021, 2017a.
Beka, T. I., Bergh, S. G., Smirnov, M., and Birkelund, Y.: Magnetotelluric signatures of the complex tertiary fold–thrust belt and extensional fault architecture beneath Brøggerhalvøya, Svalbard, Polar Res., 36, 1409586, https://doi.org/10.1080/17518369.2017.1409586, 2017b.
Binley, A.: R2 version 4.10, Lancaster [code], http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm (last access: December 2023), 2023.
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling, Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020.
Boike, J., Juszak, I., Lange, S., Chadburn, S., Burke, E., Overduin, P. P., Roth, K., Ippisch, O., Bornemann, N., Stern, L., Gouttevin, I., Hauber, E., and Westermann, S.: A 20-year record (1998–2017) of permafrost, active layer and meteorological conditions at a high Arctic permafrost research site (Bayelva, Spitsbergen), Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, 2018.
Booij, M., Leijnse, A., Haldorsen, S., Heim, M., and Rueslåtten, H.: Subpermafrost Groundwater Modelling in Ny-Ålesund, Svalbard, Hydrol. Res., 29, 385–396, https://doi.org/10.2166/nh.1998.0030, 1998.
Chave, A. D., Jones, A. G., Mackie, R., and Rodi, W.: The Magnetotelluric Method: Theory and Practice, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139020138, 2012.
Dallmann, W. K. (Ed.): Geoscience atlas of Svalbard, Norsk polarinstitutt, Tromsø, 292 pp., ISBN 8276663125, 9788276663129, 2015.
Doveri, M., Lelli, M., Baneschi, I., Raco, B., Trifirò, S., Calvi, E., and Provenzale, A.: Glacial drainges and trasfer of freshwater to the Artcic Ocean in Kongsfjorden (Svalbard), EGU General Assembly 2019, EGU2019-16518, 2019.
Doyoro, Y. G., Chang, P.-Y., Puntu, J. M., Lin, D.-J., Van Huu, T., Rahmalia, D. A., and Shie, M.-S.: A review of open software resources in python for electrical resistivity modelling, Geosci. Lett., 9, 1–16, https://doi.org/10.1186/s40562-022-00214-1, 2022.
Edwards, L. S.: A modified pseudosection for resistivity and IP, Geophysics, 42, 1020–1036, https://doi.org/10.1190/1.1440762, 1977.
Geuzaine, C. and Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities: THE GMSH PAPER, Int. J. Numer. Meth. Eng., 79, 1309–1331, https://doi.org/10.1002/nme.2579, 2009.
Gevers, M., David, D. T., Thakur, R. C., Hübner, C., and Jania, J.: SESS report 2022, Svalbard Integrated Arctic Earth Observing System (SIOS), Longyearbyen, 162 pp., ISBN 978-82-93871-07-1, 2023.
Hagelund, R. and Levin, S. A.: SEG-Y_r2.0: SEG-Y revision 2.0 Data Exchange format, SEG Technical Standards Committee, 1–151, https://doi.org/10.1190/tle36050449.1, 2017.
Haldorsen, S. and Heim, M.: An arctic groundwater system and its dependence upon climatic change: an example from Svalbard, Permafrost Periglac., 10, 137–149, 1999.
Haldorsen, S., Heim, M., and Lauritzen, S.-E.: Subpermafrost Groundwater, Western Svalbard, Hydrol. Res., 27, 57–68, https://doi.org/10.2166/nh.1996.0019, 1996.
Haldorsen, S., Heim, M., Lefauconnier, B., Pettersson, L.-E., Røros, M., and Sandsbråten, K.: The water balance of an arctic lake and its dependence on climate change: Tvillingvatnet in Ny-Ålesund, Svalbard, Norsk Geogr. Tidsskr., 56, 146–151, https://doi.org/10.1080/002919502760056477, 2002.
Haldorsen, S., Heim, M., Dale, B., Landvik, J. Y., Van Der Ploeg, M., Leijnse, A., Salvigsen, O., Hagen, J. O., and Banks, D.: Sensitivity to long-term climate change of subpermafrost groundwater systems in Svalbard, Quaternary Res., 73, 393–402, https://doi.org/10.1016/j.yqres.2009.11.002, 2010.
Haldorsen, S., Heim, M., and Van der Ploeg, M. J.: Impacts of climate change on groundwater in permafrost areas: case study from Svalbard, Norway, in: Climate change effects on groundwater resources: a global synthesis of findings and recommendations, edited by: Treidel, H., Martin-Bordes, J. L., and Gurdak, J. J., IAH-International Contributions to Hydrogeology, 323–338, 2011.
Hansen, C. D. and Johnson, C. R. (Eds.): The visualization handbook, Elsevier-Butterworth Heinemann, Amsterdam, Boston, 962 pp., ISBN 012387582X, 2005.
Hauck, C. and Kneisel, C. (Eds.): Applied Geophysics in Periglacial Environments, 1st Edn., Cambridge University Press, https://doi.org/10.1017/CBO9780511535628, 2008.
Herring, T., Lewkowicz, A. G., Hauck, C., Hilbich, C., Mollaret, C., Oldenborger, G. A., Uhlemann, S., Farzamian, M., Calmels, F., and Scandroglio, R.: Best practices for using electrical resistivity tomography to investigate permafrost, Permafrost Periglac., 34, 494–512, https://doi.org/10.1002/ppp.2207, 2023.
Hill, G. J.: On the Use of Electromagnetics for Earth Imaging of the Polar Regions, Surv. Geophys., 41, 5–45, https://doi.org/10.1007/s10712-019-09570-8, 2020.
Hoel, A.: The coal deposits and coal mining of Svalbard (Spitsbergen and Bear Island), Oslo, 92 pp., http://hdl.handle.net/11250/173654 (last access: April 2024), 1925.
Horota, R. K., Senger, K., Rodes, N., Betlem, P., Smyrak-Sikora, A., Jonassen, M. O., Kramer, D., and Braathen, A.: West Spitsbergen fold and thrust belt: A digital educational data package for teaching structural geology, J. Struct. Geol., 167, 104781, https://doi.org/10.1016/j.jsg.2022.104781, 2023.
ICEtoFLUX project: https://www.icetoflux.eu/data/, last access: May 2024.
Jol, H. M.: Ground Penetrating Radar Theory and Applications, Elsevier, https://doi.org/10.1016/B978-0-444-53348-7.X0001-4, 2009.
Kasprzak, M.: Seawater Intrusion on the Arctic Coast (Svalbard): The Concept of Onshore-Permafrost Wedge, Geosciences, 10, 349, https://doi.org/10.3390/geosciences10090349, 2020.
Killingtveit, Å., Pettersson, L.-E., and Sand, K.: Water balance investigations in Svalbard, Polar Res., 22, 161–174, https://doi.org/10.1111/j.1751-8369.2003.tb00105.x, 2003.
Kodama, Y., Yukari, T., Hironori, N., and Okitsugu, W.: Hydrological observations in bregger glacier basin, spitsbergen: discharge, temperature and electric conductivity, Proceedings of the NIPR Symposium on Polar Meteorology and Glaciology, 45–53, https://doi.org/10.15094/00003878, 1995.
Koster, B. and Kruse, F.: The use of ground penetrating radar (GPR) in the investigation of historical quarry abandonment in Svalbard, Polar Record, 52, 330–344, https://doi.org/10.1017/S0032247415000844, 2016.
Kula, D., Olszewska, D., Dobiński, W., and Glazer, M.: Horizontal-to-vertical spectral ratio variability in the presence of permafrost, Geophys. J. Int., 214, 219–231, https://doi.org/10.1093/gji/ggy118, 2018.
Kuschel, E., Eppinger, S., Bernard, E., Tolle, F., Prokop, A., Friedt, J.-M., and Zangerl, C.: Landslide monitoring using multitemporal terrestrial laser scanning (TLS) and electrical resistivity tomography (ERT) in the high Arctic, Ny-Ålesund, EGU General Assembly 2019, EGU2019-13733, 2019.
Lee, J.-S., Hong, W.-T., Park, K., Hong, S., Lee, S.-H., and Byun, Y.-H.: Evaluation of Water Content in an Active Layer Using Penetration-Type Time Domain Reflectometry, Appl. Sci., 8, 935, https://doi.org/10.3390/app8060935, 2018.
Loke, M. H.: Tutorial: 2-D and 3-D electrical imaging surveys, 136 pp., https://sites.ualberta.ca/~unsworth/UA-classes/223/loke_course_notes.pdf (last access: January 2024), 2004.
Loke, M. H. and Barker, R. D.: Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1, Geophys. Prospect, 44, 131–152, https://doi.org/10.1111/j.1365-2478.1996.tb00142.x, 1996.
Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B.: Recent developments in the direct-current geoelectrical imaging method, J. Appl. Geophys., 95, 135–156, https://doi.org/10.1016/j.jappgeo.2013.02.017, 2013.
Martorana, R., Capizzi, P., D'Alessandro, A., and Luzio, D.: Comparison of different sets of array configurations for multichannel 2D ERT acquisition, J. Appl. Geophys., 137, 34–48, https://doi.org/10.1016/j.jappgeo.2016.12.012, 2017.
Norwegian Polar Institute: Terrengmodell Svalbard (S0 Terrengmodell), Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2014.dce53a47, 2014.
Oldenburg, D. W. and Li, Y.: Estimating depth of investigation in dc resistivity and IP surveys, Geophysics, 64, 403–416, https://doi.org/10.1190/1.1444545, 1999.
Orr, E., Hansen, G., Lappalainen, H., Hübner, C., and Lihavainen, H.: SESS report 2018, Svalbard Integrated Arctic Earth Observing System (SIOS), Longyearbyen, 216 pp., ISBN 978-82-691528-0-7, 2019.
Orvin, A. K.: Geology of the King's Bay Region, Spitsbergen, Skrifter om Svalbard og Ishavet, Nr. 57. pp. 195, with 3 plates, 4 maps, and 52 text-figures. Oslo: Jacob Dybwad, 1934, Geol. Mag., 57, 195, https://doi.org/10.1017/S0016756800093328, 1934.
Pace, F., Vergnano, A., Godio, A., Romano, G., Capozzoli, L., Baneschi, I., Doveri, M., and Santilano, A.: A new repository of electrical resistivity tomography and ground penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard, Zenodo [data set], https://zenodo.org/doi/10.5281/zenodo.10260056, 2023.
Paglia, E.: A higher level of civilisation? The transformation of Ny-Ålesund from Arctic coalmining settlement in Svalbard to global environmental knowledge center at 79° North, Polar Record, 56, e15, https://doi.org/10.1017/S0032247419000603, 2020.
Pälli, A., Moore, J. C., Jania, J., Kolondra, L., and Glowacki, P.: The drainage pattern of Hansbreen and Werenskioldbreen, two polythermal glaciers in Svalbard, Polar Res., 22, 355–371, https://doi.org/10.3402/polar.v22i2.6465, 2003.
Park, K., Kim, K., Kim, K., and Hong, W.-T.: Characterization of active layer at different degrees of patterned ground development using electrical resistivity tomography survey, Cold Reg. Sci. Technol., 208, 103734, https://doi.org/10.1016/j.coldregions.2022.103734, 2023.
Pedersen, Å. Ø., Convey, P., Newsham, K. K., Mosbacher, J. B., Fuglei, E., Ravolainen, V., Hansen, B. B., Jensen, T. C., Augusti, A., Biersma, E. M., Cooper, E. J., Coulson, S. J., Gabrielsen, G. W., Gallet, J. C., Karsten, U., Kristiansen, S. M., Svenning, M. M., Tveit, A. T., Uchida, M., Baneschi, I., Calizza, E., Cannone, N., De Goede, E. M., Doveri, M., Elster, J., Giamberini, M. S., Hayashi, K., Lang, S. I., Lee, Y. K., Nakatsubo, T., Pasquali, V., Paulsen, I. M. G., Pedersen, C., Peng, F., Provenzale, A., Pushkareva, E., Sandström, C. A. M., Sklet, V., Stach, A., Tojo, M., Tytgat, B., Tømmervik, H., Velazquez, D., Verleyen, E., Welker, J. M., Yao, Y.-F., and Loonen, M. J. J. E.: Five decades of terrestrial and freshwater research at Ny-Ålesund, Svalbard, Polar Res., 41, 6310, https://doi.org/10.33265/polar.v41.6310, 2022.
Putkonen, J.: Soil thermal processes and heat transfer processes near Ny-Ålesund, northwestern Spitsbergen, Svalbard, Polar Res., 17, 165–179, https://doi.org/10.3402/polar.v17i2.6617, 1998.
Repp, K.: The Hydrology of Bayelva, Spitsbergen, Hydrol. Res., 19, 259–268, https://doi.org/10.2166/nh.1988.0018, 1988.
Rønning, J. S.: Finetuning ground penetrating radar velocity analysis from hyperbola fitting using migration, Near Surf. Geophys., 21, 171–181, https://doi.org/10.1002/nsg.12250, 2023.
Rossi, M., Dal Cin, M., Picotti, S., Gei, D., Isaev, V. S., Pogorelov, A. V., Gorshkov, E. I., Sergeev, D. O., Kotov, P. I., Giorgi, M., and Rainone, M. L.: Active Layer and Permafrost Investigations Using Geophysical and Geocryological Methods – A Case Study of the Khanovey Area, Near Vorkuta, in the NE European Russian Arctic, Front. Earth Sci., 10, 910078, https://doi.org/10.3389/feart.2022.910078, 2022.
Sandmeier, K. J.: Reflexw Version 9.5 Windows™ XP/7/8/10-program for the processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data, Sandmeyer geophysical research, Karlsruhe, 728 pp., https://www.sandmeier-geo.de/Download/reflexw_manual_a4.pdf (last access: December 2023), 2021.
Schwamborn, G., Heinzel, J., Schirrmeister, L., and Boike, J.: Verifying georadar records from permafrost in the Ny-Ålesund area using core data and wavelet modelling, AWIPEV – Workshop, Joint French-German Collaborations for science in Svalbard, 2–3 March, Strassbourg, France, Eprint ID 12303, 2005.
Son, D. and Lee, E. J.: Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny–Ålesund, Svalbard, J. Microbiol. Biotechnol., 32, 1275–1283, https://doi.org/10.4014/jmb.2208.08009, 2022.
Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Børre Ørbæk, J., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., and Wiencke, C.: The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard, Polar Res., 21, 133–166, https://doi.org/10.3402/polar.v21i1.6479, 2002.
Telford, W. M., Geldart, L. P., and Sheriff, R. E.: Applied geophysics, 2nd Edn., Cambridge university press, 770 pp., https://doi.org/10.1017/CBO9781139167932, 1990.
Van der Ploeg, M. J.: Simulation of coupled groundwater flow and transport of heat in the groundwater system under Vestre Lovénbreen, with the model METROHEAT; a surveying study, TU Delft report, 100 pp., http://resolver.tudelft.nl/uuid:8889c4d7-5ad4-489d-9e1e-82b5cf67ab34 (last access: April 2024), 2002.
Wadhams, P.: A farewell to ice: a report from the Arctic, Oxford University Press, New York, NY, 256 pp., ISBN 9780241009413, 2017.
Wannamaker, P., Hill, G., Stodt, J., Maris, V., Ogawa, Y., Selway, K., Boren, G., Bertrand, E., Uhlmann, D., Ayling, B., Green, A. M., and Feucht, D.: Uplift of the central transantarctic mountains, Nat. Commun., 8, 1588, https://doi.org/10.1038/s41467-017-01577-2, 2017.
Wannamaker, P. E., Stodt, J. A., and Olsen, S. L.: Dormant state of rifting below the Byrd Subglacial Basin, West Antarctica, implied by magnetotelluric (MT) profiling, Geophys. Res. Lett., 23, 2983–2986, https://doi.org/10.1029/96GL02887, 1996.
Westermann, S., Wollschläger, U., and Boike, J.: Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar, The Cryosphere, 4, 475–487, https://doi.org/10.5194/tc-4-475-2010, 2010.
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the...
Altmetrics
Final-revised paper
Preprint