Articles | Volume 16, issue 3
https://doi.org/10.5194/essd-16-1317-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-1317-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GPS displacement dataset for the study of elastic surface mass variations
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Donald F. Argus
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Felix W. Landerer
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
David N. Wiese
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Matthias Ellmer
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Related authors
No articles found.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, https://doi.org/10.5194/se-10-1971-2019, 2019
Short summary
Short summary
Due to ice sheets and glaciers losing mass, and because continents get wetter and drier, a lot of water is redistributed over the Earth's surface. The Earth is not completely rigid but deforms under these changes in the load on top. This deformation affects sea-level observations. With the GRACE satellite mission, we can measure this redistribution of water, and we compute the resulting deformation. We use this computed deformation to improve the accuracy of sea-level observations.
Surendra Adhikari, Erik R. Ivins, Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Earth Syst. Sci. Data, 11, 629–646, https://doi.org/10.5194/essd-11-629-2019, https://doi.org/10.5194/essd-11-629-2019, 2019
Short summary
Short summary
We compute monthly solutions of changes in relative sea level, geoid height, and vertical bedrock displacement and uncertainties therein for the period April 2002–August 2016. These are based on the Release-06 GRACE Level-2 Stokes coefficients distributed by three premier data processing centers: CSR, GFZ, and JPL. Solutions are provided with and without Earth's rotational feedback included and in both the center-of-mass and center-of-figure reference frames.
Nicole-Jeanne Schlegel, David N. Wiese, Eric Y. Larour, Michael M. Watkins, Jason E. Box, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 1965–1989, https://doi.org/10.5194/tc-10-1965-2016, https://doi.org/10.5194/tc-10-1965-2016, 2016
Short summary
Short summary
We investigate Greenland Ice Sheet mass change from 2003–2012 by comparing observations from GRACE with state-of-the-art atmospheric and ice sheet model simulations. We find that the largest discrepancies (in the northwest and southeast) are likely controlled by errors in modeled surface climate as well as ice–ocean interaction and hydrological processes (not included in the models). Models should consider such processes at monthly to seasonal resolutions in order to improve future projections.
K. Bentel, F. W. Landerer, and C. Boening
Ocean Sci., 11, 953–963, https://doi.org/10.5194/os-11-953-2015, https://doi.org/10.5194/os-11-953-2015, 2015
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is a key mechanism for large-scale northward heat transport and plays an important role for global climate. Previously, AMOC changes have been inferred from in situ ocean bottom pressure (OBP) observations at single latitudes. We extend the analysis to space-based observations (and the whole North Atlantic) and show on data from the ECCO2 model that AMOC anomalies can be inferred from OBP at a resolution resembling the GRACE gravity mission.
Related subject area
Domain: ESSD – Land | Subject: Geophysics and geodesy
cigFacies: a massive-scale benchmark dataset of seismic facies and its application
Synthetic ground motions in heterogeneous geologies from various sources: the HEMEWS-3D database
GravIS: mass anomaly products from satellite gravimetry
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
Global Navigation Satellite System (GNSS) time series and velocities about a slowly convergent margin processed on high-performance computing (HPC) clusters: products and robustness evaluation
TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)
Comprehensive data set of in situ hydraulic stimulation experiments for geothermal purposes at the Äspö Hard Rock Laboratory (Sweden)
An earthquake focal mechanism catalog for source and tectonic studies in Mexico from February 1928 to July 2022
Global physics-based database of injection-induced seismicity
The Weisweiler passive seismological network: optimised for state-of-the-art location and imaging methods
A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs
The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 catalogue for the European Seismic Hazard Model 2020
Rescue and quality control of historical geomagnetic measurement at Sheshan observatory, China
A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China
In situ observations of the Swiss periglacial environment using GNSS instruments
Permafrost changes in the northwestern Da Xing'anling Mountains, Northeast China, in the past decade
British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica
Hui Gao, Xinming Wu, Xiaoming Sun, Mingcai Hou, Hang Gao, Guangyu Wang, and Hanlin Sheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-337, https://doi.org/10.5194/essd-2024-337, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We propose three strategies of field seismic data curation, knowledge-guided synthesization, and GAN-based generation to construct a massive-scale, feature-rich and high-realism benchmark dataset of seismic facies and evaluate its effectiveness in training a deep learning model for automatic seismic facies classification.
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data, 16, 3949–3972, https://doi.org/10.5194/essd-16-3949-2024, https://doi.org/10.5194/essd-16-3949-2024, 2024
Short summary
Short summary
Numerical simulations are a promising approach to characterizing the intensity of ground motion in the presence of geological uncertainties. However, the computational cost of 3D simulations can limit their usability. We present the first database of seismic-induced ground motion generated by an earthquake simulator for a collection of 30 000 heterogeneous geologies. The HEMEWS-3D dataset can be helpful for geophysicists, seismologists, and machine learning scientists, among others.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-347, https://doi.org/10.5194/essd-2024-347, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The satellite missions GRACE and GRACE-FO are unique observing systems to quantify global mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS provides easy access to user-friendly, regularly updated mass anomaly products. The associated portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024, https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Lavinia Tunini, Andrea Magrin, Giuliana Rossi, and David Zuliani
Earth Syst. Sci. Data, 16, 1083–1106, https://doi.org/10.5194/essd-16-1083-2024, https://doi.org/10.5194/essd-16-1083-2024, 2024
Short summary
Short summary
This study presents 20-year time series of more than 350 GNSS stations located in NE Italy and surroundings, together with the outgoing velocities. An overview of the input data, station information, data processing and solution quality is provided. The documented dataset constitutes a crucial and complete source of information about the deformation of an active but slowly converging margin over the last 2 decades, also contributing to the regional seismic hazard assessment of NE Italy.
Wenbin Tang, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang
Earth Syst. Sci. Data, 16, 387–419, https://doi.org/10.5194/essd-16-387-2024, https://doi.org/10.5194/essd-16-387-2024, 2024
Short summary
Short summary
This paper reported a daily 1 km all-weather land surface temperature (LST) dataset for Chinese land mass and surrounding areas – TRIMS LST. The results of a comprehensive evaluation show that TRIMS LST has the following special features: the longest time coverage in its class, high image quality, and good accuracy. TRIMS LST has already been released to the scientific community, and a series of its applications have been reported by the literature.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Earth Syst. Sci. Data, 15, 4781–4801, https://doi.org/10.5194/essd-15-4781-2023, https://doi.org/10.5194/essd-15-4781-2023, 2023
Short summary
Short summary
We present a comprehensive catalog of focal mechanisms for earthquakes in Mexico and neighboring areas spanning February 1928 to July 2022. The catalog comprises a wide range of earthquake magnitudes and depths and includes data from diverse geological environments. We collected and revised focal mechanism data from various sources and methods. The catalog is a valuable resource for future studies on earthquake source mechanisms, tectonics, and seismic hazard in the region.
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Jia-Hao Li, Zhao-Liang Li, Xiangyang Liu, and Si-Bo Duan
Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023, https://doi.org/10.5194/essd-15-2189-2023, 2023
Short summary
Short summary
The Advanced Very High Resolution Radiometer (AVHRR) is the only sensor that has the advantages of frequent revisits (twice per day), relatively high spatial resolution (4 km at the nadir), global coverage, and easy access prior to 2000. This study developed a global historical twice-daily LST product for 1981–2021 based on AVHRR GAC data. The product is suitable for detecting and analyzing climate changes over the past 4 decades.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Andrea Rovida, Andrea Antonucci, and Mario Locati
Earth Syst. Sci. Data, 14, 5213–5231, https://doi.org/10.5194/essd-14-5213-2022, https://doi.org/10.5194/essd-14-5213-2022, 2022
Short summary
Short summary
EPICA is the 1000–1899 catalogue compiled for the European Seismic Hazard Model 2020 and contains 5703 earthquakes with Mw ≥ 4.0. It relies on the data of the European Archive of Historical Earthquake Data (AHEAD), both macroseismic intensities from historical seismological studies and parameters from regional catalogues. For each earthquake, the most representative datasets were selected and processed in order to derive harmonised parameters, both from intensity data and parametric catalogues.
Suqin Zhang, Changhua Fu, Jianjun Wang, Guohao Zhu, Chuanhua Chen, Shaopeng He, Pengkun Guo, and Guoping Chang
Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, https://doi.org/10.5194/essd-14-5195-2022, 2022
Short summary
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2016.
Amiri‐Simkooei, A. R.: On the nature of GPS draconitic year periodic pattern in multivariate position time series, J. Geophys. Res.-Sol. Ea., 118, 2500–2511, 2013.
Amiri-Simkooei, A. R., Mohammadloo, T. H., and Argus, D. F: Multivariate analysis of GPS position timeseries of JPL second reprocessing campaign, J. Geodesy, 91, 685–704, https://doi.org/10.1007/s00190-016-0991-9, 2017.
Argus, D. F. and Peltier, W. R.: Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697–723, https://doi.org/10.1111/j.1365-246X.2010.04562.x, 2010.
Argus, D. F., Gordon, R. G., Heflin, M. B., Ma, C., Eanes, R. J., Willis, P., Peltier, W. R., and Owen, S. E.: The angular velocities of the plates and the velocity of Earth's centre from space geodesy, Geophys. J. Int., 180, 913–960, https://doi.org/10.1111/j.1365-246X.2009.04463.x, 2010.
Argus, D. F., Fu, Y., and Landerer, F. W.: Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion, Geophys. Res. Lett., 41, 1971–1980, https://doi.org/10.1002/2014GL059570, 2014a.
Argus, D. F., Peltier, W. R., Drummond, R., and Moore, A. W.: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int., 198, 537–563, https://doi.org/10.1093/gji/ggu140, 2014b.
Argus, D. F., Landerer, F. W., Wiese, D. N., Martens, H. R., Fu, Y., Famiglietti, J. S., Thomas, B. F., Farr, T. G., Moore, A. W., and Watkins, M. M.: Sustained water loss in California's mountain ranges during severe drought from 2012 to 2015 inferred from GPS, J. Geophys. Res.-Sol. Ea., 122, 10–559, https://doi.org/10.1002/2017JB014424, 2017.
Argus, D. F., Peltier, W. R., Blewitt, G., and Kreemer, C.: The Viscosity of the Top Third of the Lower Mantle Estimated Using GPS, GRACE, and Relative Sea Level Measurements of Glacial Isostatic Adjustment, J. Geophys. Res.-Sol. Ea., 126, 2020JB021537, https://doi.org/10.1029/2020JB021537, 2021.
Argus, D. F., Martens, H. R., Borsa, A. A., Knappe, E., Wiese, D. N., Alam, S., Anderson, M., Khatiwada, A., Lau, N., Peidou, A., and Swarr, M.: Subsurface water flux in California's Central Valley and its source watershed from space geodesy, Geophys. Res. Lett., 49, e2022GL099583, https://doi.org/10.1029/2022GL099583, 2022.
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/SXAVCZFAQLNO, 2020.
Becker, J. M. and Bevis, M.: Love's problem, Geophys. J. Int., 156, 171–178, https://doi.org/10.1111/j.1365-246X.2003.02150.x, 2004.
Bertiger, W., Bar-Sever, Y., Dorsey, A., Haines, B., Harvey, N., Hemberger, D., Heflin, M., Lu, W., Miller, M., Moore, A. W., and Murphy, D.: GipsyX/RTGx, a new tool set for space geodetic operations and research, Adv. Space Res., 66, 469–489, https://doi.org/10.1016/j.asr.2020.04.015, 2020.
Bevis, M. and Brown, A.: Trajectory models and reference frames for crustal motion geodesy, J. Geodesy, 88, 283–311, https://doi.org/10.1007/s00190-013-0685-5, 2014.
Blewitt, G., Lavallée, D., Clarke, P., and Nurutdinov, K.: A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, 2342–2345, https://doi.org/10.1126/science.1065328, 2001.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, p. 485, https://doi.org/10.1029/2018EO104623, 2018.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629, 2006.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.: Fast error analysis of continuous GPS observations, J. Geodesy, 82, 157–166, https://doi.org/10.1007/s00190-007-0165-x, 2008.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.: Fast error analysis of continuous GPS observations with missing data, J. Geodesy, 87, 351–360, https://doi.org/10.1007/s00190-012-0605-0, 2013.
Chew, C. C. and Small, E. E.: Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies, Geophys. Res. Lett., 41, 6145–6151, https://doi.org/10.1002/2014GL061206, 2014.
Crowell, B. W., Bock, Y., and Liu, Z.: Single-station automated detection of transient deformation in GPS timeseries with the relative strength index: A case study of Cascadian slow slip, J. Geophys. Res.-Sol. Ea., 121, 9077–9094, https://doi.org/10.1002/2016JB013542, 2016.
Davis, J. L., Elósegui, P., Mitrovica, J. X., and Tamisiea, M. E.: Climate-driven deformation of the solid Earth from GRACE and GPS. Geophys. Res. Lett., 31, L24605, https://doi.org/10.1029/2004GL021435, 2004.
Dill, R. and Dobslaw, H.: Numerical simulations of global-scale high resolution hydrological crustal deformations, J. Geophys. Res.-Sol. Ea., 118, 5008–5017, https://doi.org/10.1002/jgrb.50353, 2013.
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C., Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06, Geophys. J. Int., 211, 263–269, https://doi.org/10.1093/gji/ggx302, 2017.
Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., and Jamason, P.: Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis, J. Geophys. Res., 111, B03405, https://doi.org/10.1029/2005JB003806, 2006.
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y. H.: The causes of sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Fu, Y. and Freymueller, J. T.: Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements, J. Geophys. Res.-Sol. Ea., 117, B03407, https://doi.org/10.1029/2011JB008925, 2012.
Fukumori, I., Wang, O., Llovel, W., Fenty, I., and Forget, G.: A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas, Prog. Oceanogr., 134, 152–172, https://doi.org/10.1016/j.pocean.2015.01.013, 2015.
Gaspar, P. and Wunsch, C.: Estimates from altimeter data of barotropic Rossby waves in the northwestern Atlantic Ocean, J. Phys. Oceanogr., 19, 1821–1844, https://doi.org/10.1175/1520-0485, 1989.
Haines, B., Bar-Sever, Y., Bertiger, W., Desai, S., and Willis, P.: One-centimeter orbit determination for Jason-1: new GPS-based strategies, Mar. Geod., 27, 299–318, https://doi.org/10.1007/BF03321179, 2004.
Hammond, W. C., Blewitt, G., and Kreemer, C.: GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift, J. Geophys. Res.-Sol. Ea., 121, 7681–7703, https://doi.org/10.1002/2016JB013458, 2016.
He, X., Bos, M. S., Montillet, J. P., and Fernandes, R. M. S.: Investigation of the noise properties at low frequencies in long GPS timeseries, J. Geodesy, 93, 1271–1282, https://doi.org/10.1007/s00190-019-01244-y, 2019.
Ji, K. H. and Herring, T. A.: A method for detecting transient signals in GPS position timeseries: smoothing and principal component analysis, Geophys. J. Int., 193, 171–186, https://doi.org/10.1093/gji/ggt003, 2013.
Jiang, W., Li, Z., van Dam, T., and Ding, W.: Comparative analysis of different environmental loading methods and their impacts on the GPS height timeseries, J. Geodesy, 87, 687–703, https://doi.org/10.1007/s00190-013-0642-3, 2013.
Klos, A., Bogusz, J., Figurski, M., and Kosek, W.: Uncertainties of geodetic velocities from permanent GPS observations: the Sudeten case study, Acta Geodyn. Geomater., 11, p. 175, https://doi.org/10.13168/AGG.2014.0005, 2014.
Klos, A., Kusche, J., Fenoglio-Marc, L., Bos, M. S., and Bogusz, J.: Introducing a vertical land displacement model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes, GPS Solut., 23, 1–12, https://doi.org/10.1007/s10291-019-0896-1, 2019.
Klos, A., Dobslaw, H., Dill, R., and Bogusz, J.: Identifying the sensitivity of GPS to non-tidal loadings at various time resolutions: examining vertical displacements from continental Eurasia, GPS Solut., 25, 89, https://doi.org/10.1007/s10291-021-01135-w, 2021.
Klos, A., Kusche, J., Leszczuk, G., Gerdener, H., Schulze, K., Lenczuk, A., and Bogusz, J.: Introducing the Idea of Classifying Sets of Permanent GNSS Stations as Benchmarks for Hydrogeodesy, J. Geophys. Res.-Sol. Ea., 128, e2023JB026988, https://doi.org/10.1029/2023JB026988, 2023.
Kreemer, C. and Blewitt, G.: Robust estimation of spatially varying common-mode components in GPS timeseries, J. Geodesy, 95, 1–19, https://doi.org/10.1007/s00190-020-01466-5, 2021.
Kumar, U., Chao, B. F., and Chang, E. T.: What causes the common-mode error in array GPS displacement fields: Case study for Taiwan in relation to atmospheric mass loading, Earth Space Sci., 7, e2020EA001159, https://doi.org/10.1029/2020EA001159, 2020.
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H., and Fahnestock, E.: Extending the global mass change data record: GRACE Follow-On instrument and science data performance, Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020GL088306, 2020.
Li, S., Wang, K., Wang, Y., Jiang, Y., and Dosso, S. E.: Geodetically inferred locking state of the Cascadia megathrust based on a viscoelastic Earth model, J. Geophys. Res.-Sol. Ea., 123, 8056–8072, https://doi.org/10.1029/2018JB015620, 2018.
Liu, B., Dai, W., Peng, W., and Meng, X.: Spatiotemporal analysis of GPS timeseries in vertical direction using independent component analysis. Earth, Planet. Space, 67, 1–10, https://doi.org/10.1186/s40623-015-0357-1, 2015.
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise, Geophys. Res. Lett., 46, 6910–6917, https://doi.org/10.1029/2019GL082929, 2019.
Luzum, B. and Petit, G.: The IERS Conventions: Reference systems and new models, Proceedings of the International Astronomical Union, 10, 227–228, https://doi.org/10.1017/S1743921314005535, 2012.
Martens, H. R., Argus, D. F., Norberg, C., Blewitt, G., Herring, T. A., Moore, A. W., Hammond, W. C., and Kreemer, C.: Atmospheric pressure loading in GPS positions: Dependency on GPS processing methods and effect on assessment of seasonal deformation in the contiguous USA and Alaska, J. Geodyn., 94, 115, https://doi.org/10.1007/s00190-020-01445-w, 2020.
Michel, A., Santamaría-Gómez, A., Boy, J. P., Perosanz, F., and Loyer, S.: Analysis of GPS Displacements in Europe and Their Comparison with Hydrological Loading Models, Remote Sens., 13, 4523, https://doi.org/10.3390/rs13224523, 2021.
Milliner, C., Materna, K., Bürgmann, R., Fu, Y., Moore, A. W., Bekaert, D., Adhikari, S., and Argus, D. F.: Tracking the weight of Hurricane Harvey's stormwater using GPS data, Sci. Adv., 4, eaau2477, https://doi.org/10.1126/sciadv.aau2477, 2018.
NASA Jet Propulsion Laboratory (JPL): GRACE-FO Monthly Geopotential Spherical Harmonics JPL Release 6.0, JPL [data set], https://doi.org/10.5067/GFL20-MJ060, 2019.
Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., and Wouters, B.: Science and user needs for observing global mass transport to understand global change and to benefit society, Surv. Geophys., 36, 743–772, https://doi.org/10.1007/s10712-015-9348-9, 2015.
Peidou, A., Argus, D., Ellmer, M., Landerer, F., and Wiese, D.: A novel GPS displacement dataset for study of elastic surface mass variations, Zenodo [data set], https://doi.org/10.5281/zenodo.8184285, 2023.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Sol. Ea., 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on the paper by Purcell et al., 2016 entitled An assessment of ICE-6G_C (VM5a) glacial isostatic adjustment model (2018), J. Geophys. Res.-Sol. Ea., 122, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Ray, J., Altamimi, Z., Collilieux, X., and van Dam, T.: Anomalous harmonics in the spectra of GPS position estimates, GPS Solut., 12, 55–64, https://doi.org/10.1007/s10291-007-0067-7, 2008.
Reager, J. T., Thomas, B. F., and Famiglietti, J. S.: River basin flood potential inferred using GRACE gravity observations at several months lead time, Nat. Geosci., 7, 588–592, https://doi.org/10.1038/ngeo2203, 2014.
Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., and Entin, J. K.: The global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rodriguez-Solano, C.J., Hugentobler, U., Steigenberger, P., Bloßfeld, M. and Fritsche, M.: Reducing the draconitic errors in GPS geodetic products, J. Geodesy, 88, 559–574, https://doi.org/10.1007/s00190-014-0704-1, 2014.
Santamaria-Gomez, A., Gravelle, M., Collilieux, X., Guichard, M., Míguez, B. M., Tiphaneau, P., and Wöppelmann, G.: Mitigating the effects of vertical land displacement in tide gauge records using a state-of-the-art GPS velocity field, Global Planet. Change, 98, 6–17, https://doi.org/10.1016/j.gloplacha.2012.07.007, 2012.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Müller Schmied, H., Van Beek, L. P., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., and Longuevergne, L.: Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, P. Natl. Acad. Sci. USA, 115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018.
Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464, https://doi.org/10.1214/aos/1176344136, 1978.
Serpelloni, E., Faccenna, C., Spada, G., Dong, D., and Williams, S. D.: Vertical GPS ground motion rates in the Euro-Mediterranean region: New evidence of velocity gradients at different spatial scales along the Nubia-Eurasia plate boundary, J. Geophys. Res.-Sol. Ea., 118, 6003–6024, https://doi.org/10.1002/2013JB010102, 2013.
Simmons, A., Uppala, S., Dee, D., and Kobayashi, S.: ERA-Interim: New ECMWF reanalysis products from 1989 onwards, ECMWF Newsletter, 110, 25–35, https://doi.org/10.21957/pocnex23c6, 2007.
Sun, Y., Riva, R., and Ditmar, P.: Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models, J. Geophys. Res.-Sol. Ea., 121, 8352–8370, https://doi.org/10.1002/2016JB013073, 2016.
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S., Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P., and Reager, J. T.: Contributions of GRACE to understanding climate change, Nat. Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019.
Thomas, A. C., Reager, J. T., Famiglietti, J. S., and Rodell, M.: A GRACE-based water storage deficit approach for hydrological drought characterization, Geophys. Res. Lett., 41, 1537–1545, https://doi.org/10.1002/2014GL059323, 2014.
Tian, Y. and Shen, Z. K.: Extracting the regional common-mode component of GPS station position timeseries from dense continuous network, J. Geophys. Res.-Sol. Ea., 121, 1080–1096, https://doi.org/10.1002/2015JB012253, 2016.
Tregoning, P., Watson, C., Ramillien, G., McQueen, H., and Zhang, J.: Detecting hydrologic deformation using GRACE and GPS, Geophys. Res. Lett., 36, L15401, https://doi.org/10.1029/2009GL038718, 2009.
Tsai, V. C.: A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations, J. Geophys. Res.-Sol. Ea., 116, B04404, https://doi.org/10.1029/2010JB008156, 2011.
Van Dam, T., Wahr, J., Milly, P. C. D., Shmakin, A. B., Blewitt, G., Lavallée, D., and Larson, K. M.: Crustal displacements due to continental water loading, Geophys. Res. Lett., 28, 651–654, https://doi.org/10.1029/2000GL012120, 2001.
van Dam, T., Wahr, J., and Lavallée, D.: A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe, J. Geophys. Res.-Sol. Ea., 112, B03404, https://doi.org/10.1029/2006JB004335, 2007.
Velicogna, I., Mohajerani, Y., Landerer, F., Mouginot, J., Noel, B., Rignot, E., Sutterley, T., van den Broeke, M., van Wessem, M., and Wiese, D.: Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions, Geophys. Res. Lett., 47, e2020GL087291, https://doi.org/10.1029/2020GL087291, 2020.
Wahr, J., Molenaar, M., and Bryan, F.: Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res.-Sol. Ea., 103, 30205–30229, https://doi.org/10.1029/98JB02844, 1998.
Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., and Gao, P.: Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0, Comput. Geosci., 49, 190–199, https://doi.org/10.1016/j.cageo.2012.06.022, 2012.
Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, F. W.: Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons, J. Geophys. Res.-Sol. Ea., 120, 2648–2671, https://doi.org/10.1002/2014JB011547, 2015.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., and Genrich, J.: Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res.-Sol. Ea., 102, 18057–18070, https://doi.org/10.1029/97JB01378, 1997.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H., and Tian, D.: The generic mapping tools version 6, Geochem. Geophys. Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Wiese, D. N., Landerer, F. W., and Watkins, M. M.: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution, Water Resour. Res., 52, 7490–7502, https://doi.org/10.1002/2016WR019344, 2016.
Wiese, D. N., Bienstock, B., Blackwood, C., Chrone, J., Loomis, B. D., Sauber, J., Rodell, M., Baize, R., Bearden, D., Case, K., and Horner, S.: The mass change designated observable study: overview and results, Earth Space Sci., 9, e2022EA002311, https://doi.org/10.1029/2022EA002311, 2022.
Williams, S. D.: CATS: GPS coordinate timeseries analysis software, GPS Solut., 12, 147–153, https://doi.org/10.1007/s10291-007-0086-4, 2008.
Williams, S. D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., Miller, M., and Johnson, D. J.: Error analysis of continuous GPS position timeseries, J. Geophys. Res.-Sol. Ea., 109, B03412, https://doi.org/10.1029/2003JB002741, 2004.
Yin, G., Forman, B. A., Loomis, B. D., and Luthcke, S. B.: Comparison of Vertical Surface Deformation Estimates Derived From Space-Based Gravimetry, Ground-Based GPS, and Model-Based Hydrologic Loading Over Snow-Dominated Watersheds in the United States, J. Geophys. Res.-Sol. Ea., 125, e2020JB01943, https://doi.org/10.1029/2020JB019432, 2020.
Short summary
This study recommends a framework for preparing and processing vertical land displacements derived from GPS positioning for future integration with Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) measurements. We derive GPS estimates that only reflect surface mass signals and evaluate them against GRACE (and GRACE-FO). We also quantify uncertainty of GPS vertical land displacement estimates using various uncertainty quantification methods.
This study recommends a framework for preparing and processing vertical land displacements...
Altmetrics
Final-revised paper
Preprint