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Abstract. Quantification of uncertainty in surface mass change signals derived from Global Positioning System
(GPS) measurements poses challenges, especially when dealing with large datasets with continental or global
coverage. We present a new GPS station displacement dataset that reflects surface mass load signals and their
uncertainties. We assess the structure and quantify the uncertainty of vertical land displacement derived from
3045 GPS stations distributed across the continental US. Monthly means of daily positions are available for
15 years. We list the required corrections to isolate surface mass signals in GPS estimates and screen the data
using GRACE(-FO) as external validation. Evaluation of GPS time series is a critical step, which identifies
(a) corrections that were missed, (b) sites that contain non-elastic signals (e.g., close to aquifers), and (c) sites
affected by background modeling errors (e.g., errors in the glacial isostatic model). Finally, we quantify un-
certainty of GPS vertical displacement estimates through stochastic modeling and quantification of spatially
correlated errors. Our aim is to assign weights to GPS estimates of vertical displacements, which will be used
in a joint solution with GRACE(-FO). We prescribe white, colored, and spatially correlated noise. To quantify
spatially correlated noise, we build on the common mode imaging approach by adding a geophysical constraint
(i.e., surface hydrology) to derive an error estimate for the surface mass signal. We study the uncertainty of the
GPS displacement time series and find an average noise level between 2 and 3 mm when white noise, flicker
noise, and the root mean square (rms) of residuals about a seasonality and trend fit are used to describe uncer-
tainty. Prescribing random walk noise increases the error level such that half of the stations have noise > 4 mm,
which is systematic with the noise level derived through modeling of spatially correlated noise. The new dataset
is available at https://doi.org/10.5281/zenodo.8184285 (Peidou et al., 2023) and is suitable for use in a future
joint solution with GRACE(-FO)-like observations.
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1 Introduction

For more than 2 decades, the Gravity Recovery and Climate
Experiment (GRACE) space gravity mission and its nearly
identical successor mission, GRACE-Follow on (GRACE-
FO), have provided mass change estimates through track-
ing the time-variable part of the Earth’s gravity field (Lan-
derer et al., 2020). Mass change products are typically given
on a monthly basis and have been used to study a variety

of critical climate-related factors (Tapley et al., 2019), such
as sea level rise (Frederikse et al., 2020), ice mass change
(Velicogna et al., 2020), prolonged drought periods (Thomas
et al., 2014), and regional flood potentials (Reager et al.,
2014). The measurement geometry of GRACE(-FO) lim-
its the study of geophysical processes to spatial scales of
∼ 300 km and larger for monthly time spans. Recent commu-
nity reports (Pail et al., 2015; Wiese et al., 2022) have high-
lighted the utility of and need for mass change observations
at improved spatial resolutions to address a number of sci-
ence and applications objectives. Examples include closure
of the terrestrial water budget for small- to medium-sized
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river basins and separation of surface mass balance from ice
dynamic processes at the scale of individual outlet glacier
systems.

The spatial resolution of gravity maps derived from satel-
lite measurements is limited by sampling at altitude. Fusion
with external geodetic data sources, however, can improve
spatial resolution over what can be achieved only with satel-
lite gravimetry. GPS position time series have been used
widely to study the elastic response of Earth’s surface to mass
loading (e.g., Argus et al., 2017; Fu and Freymueller, 2012)
and can provide information at short wavelengths (∼ 100 km)
(Argus et al., 2021). The solid Earth responds elastically to
changes in the surface load of water, snow, ice, and atmo-
sphere. When the Earth’s surface is loaded with mass (e.g.,
snow and water) it subsides, and when mass loads are re-
moved the surface rises. Thus, the Earth’s response follows
the water cycles such that precipitation and snow accumula-
tion cause subsidence of the surface, and snowmelt, evapo-
ration, and water runoff allow the Earth’s surface to bounce
back (uplift). Focus is typically placed on the radial direction
(vertical) due to the rapid decrease in vertical displacement
with distance from a surface load (Argus et al., 2017), which
leads to high-fidelity estimates in the space domain. Note
that across certain geological formations such as aquifers,
subduction zones, and regions with volcanic activity surface
loading is mixed with other solid Earth and geophysical pro-
cesses, making it difficult to isolate the elastic component.
Therefore, GPS sites located in the vicinity of such forma-
tions are omitted.

GPS displacements between two epochs have many dif-
ferent signals embedded in them, i.e., those related to non-
tidal atmospheric and oceanic loading, solid Earth phenom-
ena such as tectonics and glacial isostatic adjustment, and
others related to surface mass changes. With the proper treat-
ment (see Sect. 2) GPS stations can capture local surface
mass changes. We are interested in isolating the signals that
reflect the Earth’s elastic response to mass variations; thus,
we apply a set of corrections to GPS vertical displacement
estimates, and then we screen the data for outliers or poten-
tial errors. The data screening process checks for consistency
between GPS and GRACE(-FO) vertical displacement es-
timates (similar analysis has been performed by Yin et al.,
2020; Blewitt et al., 2001; Van Dam et al., 2001; Becker and
Bevis, 2004; Davis, 2004; Tregoning et al., 2009; Tsai, 2011
and Chew et al., 2014) and identifies outliers that statistical
tests fail to pick up (He et al., 2019).

The last step is to estimate uncertainty in the screened
dataset. Since our purpose is to isolate surface mass load sig-
nals, we define error as any vertical displacement signal that
does not reflect an elastic surface mass load. The reported
uncertainty reflects the sum of all error sources to the mea-
surement and is the final product of this study. Error corre-
lation (temporal and spatial) and the deficiency of stochastic
noise models to describe the error realistically are the main
challenges in this uncertainty quantification task.

Error sources include errors driven by satellite antenna
phase center offsets (Haines et al., 2004; Santamaria-Gomez
et al., 2012), atmospheric pressure models (Kumar et al.,
2020), non-tidal ocean loading (Jiang et al., 2013), satellite
orbits (Ray et al., 2008; Amiri-Simkooei, 2013), Earth orien-
tation parameters (Rodriguez-Solano et al., 2014), and tec-
tonic trends and post-seismic relaxation after earthquake ac-
tivity (Ji and Herring, 2013; Crowell et al., 2016).

The GPS position time series have common mode dis-
placements (Tian and Shen 2016), including both a common
mode error strongly varying each day and a common mode
signal associated with seasonal water fluctuations. Wdowin-
ski et al. (1997) first defined common mode error to be a
series of rigid-body translations that reflect an error in the
position of all geodetic sites in an area relative to an absolute
reference frame; by removing the mean position (or stack) of
all sites in an area, scientists recover more accurate estimates
of relative position contained in the data. Dong et al. (2006)
and Serpelloni et al. (2013) defined common mode error in
a more sophisticated manner using principal or independent
component analysis such that they remove spatially corre-
lated, temporally incoherent error. Independent is different
than principal component analysis in that it finds the maxi-
mum independence of the components instead of minimum
correlation (Milliner et al., 2018; Liu et al., 2015). Common
mode displacements includes both error (such as that asso-
ciated with error in satellite orbits) and signal (such as the
seasonal oscillation of elastic vertical displacement in elastic
response to seasonal fluctuations in mass between the hemi-
spheres) (Sun et al., 2016).

Considering the increased number of GPS stations and the
limitations posed by the existing methodologies, Kreemer
and Blewitt (2021) used a robust methodology to estimate
the common spatial components of GPS residuals (i.e., the
remaining signals of a time series after subtraction of a tra-
jectory model). A trajectory model is a model consisting of
an offset, a rate, and a sinusoid with a period of 1 year (Be-
vis and Brown, 2014). The so-called common mode compo-
nent (CMC) imaging technique was originally introduced by
Tian and Shen (2016) and quantifies the spatial correlation
of the residuals (position or vertical displacement time se-
ries anomaly with respect to a trajectory model) of unequal-
length time series using information from neighbor stations.
It is important to note that CMC reflects both spatially corre-
lated noise and spatially correlated signals, including elastic
displacements, that a trajectory model fails to describe.

Spectral analysis of the residuals (with respect to a trajec-
tory model, see Eq. 2) is an alternative way to estimate the
noise level of vertical displacement series for each GPS sta-
tion. The spectrum of the residuals can be approximated by
white or colored noise (flicker, random walk, power-law ap-
proximation, generalized Gauss–Markov, etc.) or by a com-
bination of white and colored noise (Williams et al., 2004;
Bos et al., 2008; Klos et al., 2014). A summary of the differ-
ent noise models and their power distribution can be found
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in He et al. (2019). Several standard GPS time series analy-
sis packages are available to perform such an analysis, e.g.,
Create and Analyze Time Series (CATS) (Williams, 2008)
and Hector (Bos et al., 2013). Various studies in the past sug-
gested that the residuals are better described by a combina-
tion of white and flicker noise (see e.g., Klos et al., 2014;
Argus et al., 2017), with the latter contributing the most (Ar-
gus and Peltier, 2010). Recently, Argus et al. (2022) showed
that the longer the time series the more the spectrum of GPS
residuals converges with the noise model of random walk.

Here, we outline a comprehensive framework for process-
ing large datasets (continental and/or global) of GPS time se-
ries to derive estimates that only reflect surface mass signals
for use in a joint inversion with GRACE(-FO) measurements.
We lay out the corrections required to capture local surface
mass changes (Sect. 2.1). Our interest is to make the process
as automated as possible, and thus we set a number of eval-
uation metrics to detect outliers among all candidate (for the
joint inversion) sites. Stations flagged as outliers are further
evaluated for extra corrections (e.g., offsets, poor site main-
tenance). Finally, we assign weights to each GPS vertical dis-
placement record. We test the most popular methodologies to
quantify the error, considering time correlation, spatial cor-
relation, and/or white noise (Sect. 3). Note that for spatially
correlated noise the commonly used PCA/ICA is not as ap-
plicable to our use case because our dataset extends over very
large spatial areas (continental). CMC imaging (Kreemer and
Blewitt, 2021) fits our needs better. We build on the existing
CMC algorithm to remove hydrology signals from the error
estimate by deriving surface loading signals from a hydrol-
ogy model and removing them from the GPS vertical dis-
placements (see Sect. 3 for more details). The final product
is a new dataset with GPS vertical displacement estimates
that reflect elastic mass variations and their uncertainties.

2 GPS data processing and screening

2.1 Isolating surface mass loading fingerprint from GPS
vertical displacements

We analyze positions of 3054 GPS sites as a function of
time from 2006 to 2021 estimated by scientists at the Nevada
Geodetic Laboratory (NGL) (Blewitt et al., 2018). Technol-
ogists at Jet Propulsion Laboratory (JPL) first estimate satel-
lite orbits, satellite clocks, and positions for a core set of
roughly 50 sites on Earth’s surface (Bertiger et al., 2020).
NGL uses JPL’s clock and orbit products and performs point
positioning to a total of about 18 500 GPS sites distributed
across the world. Following the International Earth Rota-
tion Standards (IERS) (Luzum and Petit, 2012) NGL’s po-
sitions are corrected for solid Earth, ocean, and pole tides.
NGL’s positions in International Terrestrial Reference Frame
2014 (ITRF2014) (Altamimi et al., 2016) are more accurate
than NGL’s previous estimates of positions in ITRF2008.
NGL estimates GPS wet tropospheric delays each day using

the ECMWF weather model (Simmons et al., 2007) and the
VMF1 tropospheric mapping function (Boehm et al., 2006).
We input the NGL position time series, derive the displace-
ment relative to a reference epoch, and then follow Argus et
al. (2010, 2017, 2021) to isolate the part of GPS displace-
ments reflecting solid Earth’s elastic response.

a. Construct time series of elastic displacement uninter-
rupted by offsets due to antenna substitutions or earth-
quakes that pass through a specific reference time (such
as 1 January 2014) by eliminating data before and/or
after an offset.

b. Identify and omit GPS sites recording primarily
(i) poroelastic response to change in groundwater,
(ii) strong volcanic fluctuations, and (iii) post-seismic
transients following Argus et al. (2014a, 2017, 2022). In
the western US, GPS sites responding to groundwater
change have maximum height around April when wa-
ter is maximum, subside in the long term faster than
1.8 mm yr−1, exhibit strong transients, and/or are lo-
cated in known aquifers (Argus et al., 2014a). Volcanic
activity is readily identified by interferometric synthetic
aperture radar (InSAR) and GPS observations of strong
transients and anomalous sustained uplift or subsidence
(Argus et al., 2014a; Hammond et al., 2016).

c. Remove non-tidal atmospheric (NTAL) and non-tidal
oceanic (NTOL) mass loading by interpolating global
grids of elastic displacements calculated by the German
Center for Geoscience (GFZ) (Dill and Dobslaw, 2013)
following the method of Martens et al. (2020).

d. Remove glacial isostatic adjustment as predicted by
model ICE-6G_D (VM5a) (Peltier et al., 2015, 2018;
Argus et al., 2014b).

e. Remove interseismic strain accumulation associated
with locking of the Cascadia subduction zone using an
upgrade of the model of Li et al. (2018). The model is
a superposition of 2/3 of the elastic and 1/3 of the vis-
coelastic model of Li et al. (2018). We communicated to
Kelin Wang and his team at National Resources Canada
that the Li et al. (2018) model does not fit the available
GPS data; they have produced an interim model using
our input that more nearly fits the GPS data.

f. Average the daily estimates of GPS vertical displace-
ments into monthly means centered at the center of each
month from January 2006 to June 2021.

To compare GPS with GRACE(-FO) vertical displacement
estimates we reference the series to the epoch with the most
GPS site records, which is September 2012. This process re-
sults in an 11 % loss of stations (i.e., no available measure-
ment on September 2012). Similar to Yin et al. (2020), de-
trended monthly estimates of each station that are larger than
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3σ relative to the mean of the time series are considered out-
liers and removed from the dataset. Statistical outliers com-
prise ∼ 0.5 % of the records.

A total of 2705 (or 88.8 %) of the GPS stations remain af-
ter the choice of reference epoch, the 3σ test, and the removal
of sites with non-elastic loading response. The distribution
of sites is denser along the east and west coasts and fairly
sparse in the central-northern US (Fig. 1). Series of two ar-
bitrary stations (HIVI and NJWT) located on the west and
east coast, respectively, are shown in Fig. 1. The response
of the Earth during the extensive drought period in Califor-
nia between May 2011 and May 2015 is captured in the uplift
trend mapped by HIVI station (Fig. 1, top right panel; dashed
blue line).

2.2 External validation datasets – time-variable gravity
field

We compare GPS observations of vertical displacement
against GRACE(-FO) estimates of solid Earth’s elastic verti-
cal displacement from terrestrial water, snow, and ice.

To compare to GRACE(-FO), we analyze JPL’s 3° mas-
con solution (Release 6, Watkins et al., 2015; Wiese et al.,
2016). The effect of glacial isostatic adjustment is removed
from GRACE(-FO) products using ICE-6G_D model esti-
mates (Peltier et al., 2018). The geocenter motion (degree 1)
coefficient is using the technique of Sun et al. (2016) (Tech-
nical Note 13). Values of C20 (Earth’s oblateness) and C30
(for months after August 2016) are substituted with SLR data
(Loomis et al., 2019). We calculate solid Earth’s elastic re-
sponse by using the loading Love number of the Preliminary
Reference Earth Model (Wang et al., 2012).

Estimates of GPS positions in ITRF2014 (Altamimi et al.,
2016) are relative to the center of mass (CM) in the long term
but relative to the center of the figure (CF) in the seasons (be-
cause ITRF2014 does not allow seasonal oscillations of CM).
We therefore remove the long-term rate of CM relative to CF
to transform the GRACE estimates in the long term from CF
to CM (but do not remove seasonal oscillations of CM rela-
tive to CF so as to preserve the ITRF seasonal frame relative
to CF). The annual signal of the geocenter (as realized by
ITRF 2014) projected on the up component in North Amer-
ica on average explains 3 % of the GPS vertical displacement
signal and can explain up to 20 % for certain sites.

GRACE(-FO) vertical displacement monthly estimates are
derived as follows (e.g., Davis et al., 2004):

U (φ,λ)= a
∑
l,m

(
hE

l

1+ kE
l

)
Plm (sinλ)

×[Clm cosmφ+ Slm sinmφ], (1)

where U is the estimate of vertical displacement; a denotes
the Earth’s radius; φ and λ denote the latitude and longitude,
respectively; Plm represents the associated Legendre polyno-
mials; kE

l and hE
l are the elastic gravity and vertical load Love

numbers (Wang et al., 2012), respectively; and C and S are
the spherical harmonic coefficients derived from GRACE(-
FO) monthly solutions with respect to degree l and order m.
JPL releases gridded mascon fields to derive spherical har-
monics (C and S in Eq. 1). We transform fields of equivalent
water height to normalized harmonic coefficients using the
inverse of Eq. (9) in Wahr et al. (1998). Like GPS, we sub-
tract the GRACE(-FO) vertical displacement field of Septem-
ber 2012 from each monthly field to establish a common ref-
erence basis. GRACE(-FO) fields are estimated at a 0.5° spa-
tial resolution (φλ in Eq. 1). Thus, we extract GRACE(-FO)
estimates at the station level by bilinearly interpolating the
vertical displacement from the nearest 0.5° grid-point neigh-
bors to the station’s location.

2.3 Screening metrics

GPS vertical displacement estimates are evaluated against
the ones derived from GRACE(-FO) to assist in identifying
outliers or further corrections that may be needed. We em-
ploy a number of different metrics to evaluate the agreement
between the two datasets and to determine whether to include
it in the joint solution or not. Similar to Yin et al. (2020)
we quantify correlation and variance reduction between GPS
and GRACE(-FO) vertical displacements. The structure of
surface mass periodic signals (e.g., annual cycles, trends)
as picked up by the two measurement techniques also en-
tails critical information regarding mis-modeled offsets and
is evaluated as well.

This process flags sites that need correction and corrob-
orates joint inversion’s hypothesis (Argus et al., 2021) that
a basic level of agreement is needed for the GPS data to be
used to infer surface mass change.

2.3.1 Correlation

First, we specify the level of agreement between the datasets
by estimating the Pearson correlation coefficient between
GPS and GRACE(-FO) time series. On average correlation
is 62 %, but stations located on the west coast exhibit agree-
ment higher than 80 %, which in most cases is driven by the
larger annual signal amplitude there. A more detailed look
into the correlation metric is performed to evaluate the agree-
ment of GPS/GRACE(-FO) in retrieving the seasonal cycle
amplitude in different watersheds. We fit and remove a tra-
jectory model y(t):

y(t)= a+ bt +Asin(2πt)+B cos(2πt), (2)

with a being the intercept, b being the trend, and A and B
being the amplitudes of the sine and cosine components of a
periodic function. In a future release of the dataset, we will
evaluate the presence of draconitic periods in the time series
and add them to the trajectory model if justified. With the
time span of the current time series being up to 15 years,
we cannot resolve for the draconitics (i.e., the first draconitic
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Figure 1. (a) Map of the study area. GPS stations are shown in yellow; (b) vertical displacement time series of two random stations (red
line). The solid blue line denotes the overall trend of the time series and the dashed blue line the trend between May 2011 and May 2015.
Note the significant uplift of the HIVI station located in southern California.

period of 351.6 d and the annual cycle of 365.25 d are very
close and require a long time series to be deciphered). For
a more thorough discussion we refer the interested reader to
Amiri-Simkooei et al. (2017) and Klos et al. (2023).

We classify stations in watersheds and plot the GPS–
GRACE(-FO) correlation coefficient (R) of each station in
different watershed against the amplitude of annual signals
(Fig. 2b). To quantify the relationship between the magni-
tude of the annual cycle and correlation between the two
datasets we fit a linear function between the magnitude of the
annual signals and the GPS–GRACE(-FO) vertical displace-
ment correlations for each watershed separately. A steep
slope (a) of the fit (a > 0.5) indicates agreement between the
two datasets, which depends on the magnitude of the annual
cycle. This relationship breaks when stations of a basin ex-
hibit smaller annual cycles. We discuss an interesting case in
the Supplement, where stations located in the Great Lakes re-
gion (part of the St. Lawrence watershed) demonstrate a neg-
ative trend if a =−1.26. The disagreement is even more pro-
nounced when assessing the second metric (i.e., trends). Both
metrics, when taken together, helped us identify the source
problem (i.e., unlogged offset that affected nearly 25 % of the
stations located in the St. Lawrence watershed) and take cor-
rective actions (see the Supplement for more details). Note
that for Figs. 2 and 3 the corrected data were used.

2.3.2 Trends

In order to study the agreement between GPS and GRACE(-
FO) in more detail, we split the time series of each station
into non-overlapping intervals of 36 months and fit Eq. (2)
for each station during each time window. Different time
lengths of the GPS series may lead to misinterpretation of the
geophysical content. For example, a station that has records
only for the first 13 months out of the total 36-month window

may reflect different fit constituents compared to a neighbor
station with full records if the actual behavior of Earth’s re-
sponse changes during the 36-month window. Although in
our dataset this case is rare, we proceed with deriving the
rate (slope) and the annual cycles only for stations that have
records for at least 28 out of the 36 months. We did not inter-
polate the series during the GRACE(-FO) gap; thus, the last
time window reflects trends estimated using only GRACE-
FO and GPS time series between June 2018 and 2021. As
expected, GPS rates feature higher spatial variability than
GRACE(-FO). However, both techniques capture large-scale
quasi-periodic variations every 3 years (Fig. 3), agreement
that is noteworthy. The effect of this metric to detect outliers
is pronounced when the two techniques show flipped trends.

Regions with pronounced trend disagreement include the
following.

– St. Lawrence watershed (stations located in the Great
Lakes region in the state of Michigan). The trend dur-
ing 2015–2018 was flipped between GPS and GRACE(-
FO) at 62 stations (St. Lawrence watershed has a total of
243 stations available between 2015 and 2018). We dis-
covered a missed offset in the series occurring in April
2016 and corrected for it, which led to improved agree-
ment in the trend (see the Supplement).

– Cascadia region (northwest coast). The disagreement is
evident in maps spanning 2009–2012, 2015–2018, and
2018–May 2021. GPS sites record a large surface uplift,
which over the course of 15 years sums to 60 mm at sites
located on Vancouver Island. GRACE(-FO) does not
capture any such behavior. We attribute this disagree-
ment partly to (1) glacial isostatic adjustment model-
ing error, which manifests oppositely with the two tech-
niques. ICE6G_D predicts too much subsidence, and
thus when we correct GPS, we find too much uplift and
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Figure 2. (a) GPS site clusters at watersheds in the US. Each watershed has a different color; (b) magnitude of annual GPS vertical
displacement cycles derived with respect to GPS–GRACE(-FO) correlation; (c) linear fit between the magnitude of the annual GPS vertical
displacement cycles and GPS–GRACE(-FO) correlation.

when we correct GRACE(-FO) we find too much wa-
ter gain which predicts too much subsidence. The dis-
agreement is also partly attributed to (2) the interseis-
mic strain accumulation correction applied in the GPS
dataset over this area (Argus et al., 2021). The sites have
been flagged and are not going to be used in the joint in-
version.

– San Andreas Fault (southern California). Sites located
in the vicinity of the Parkfield segment of the fault (Car-
rizon plain) exhibit consistent disagreement in the trend.
More investigation is required to understand the mech-
anism that the fault presents in GPS/GRACE(-FO) ver-
tical displacement estimates. The disagreement is also
seen in Argus et al. (2022, Fig. S12). The sites have
been flagged and are not going to be used in the joint
inversion.

2.3.3 Variance reduction

Similarity in both amplitude and phase between two quanti-
ties is quantified via the variance attenuation factor (Gaspar
and Wunsch, 1989; Fukumori et al., 2015).

varred =

(
1−

var (GPS-GRACE(-FO))
var (GPS)

)
× 100 (3)

The higher the agreement in phase and amplitude between
GPS and GRACE(-FO), the closer the metric gets to 100 %.
varred may also be negative when the differences in ampli-
tude and/or phase are large. Overall, GPS and GRACE(-FO)
are consistent when varred exceeds 50 %. The areas of main
disagreement are near coasts, especially along the Atlantic
Ocean. This inconsistency can be partly explained by model-
ing errors of the non-tidal oceanic and atmospheric loading
model (e.g., Klos et al., 2021; van Dam et al., 2007). Ad-
ditionally, agreement is poor for sites located in the vicin-
ity of the Parkfield segment (specific regions across the fault
perform poorly), which is consistent with the disagreement
shown in Fig. 3.
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Figure 3. Rates of vertical displacements derived by GPS and GRACE. The rates are calculated every 36 months (3 years) between 2006
and 2021.
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Figure 4. Variance reduction between GPS and GRACE(-FO) ver-
tical displacements.

We also compared the annual amplitudes of GPS and
GRACE(-FO) vertical displacements (cosine and sine com-
ponents in Eq. 2). This analysis was not informative for the
presence of outliers or errors in the current data sample stud-
ied.

Overall, the screening process not only assisted in outlier
detection, but it also allowed for a deeper look into the struc-
ture of vertical displacement periodic signals. We identified
the need for antenna offset corrections (in sites located in the
Great Lakes region); removed sites affected by glacial iso-
static adjustment and interseismic modeling errors; and sites
located at the Parkfield segment of San Andreas Fault.

3 Uncertainty quantification

With the updated dataset we are now ready to proceed with
the uncertainty quantification of the GPS vertical displace-
ment time series. We apply different error characterization
schemes consisting of a root sum square of a random error,
white noise error, power-law noise error (flicker noise and
random walk), and spatially coherent error.

3.1 Methods

3.1.1 Root mean square error

Residuals r of a series with respect to a trajectory model
(Eq. 2) are often used as a first approximation of noise in ver-
tical displacement series (e.g., Bos et al., 2013; Michel et al.,
2021). Practically, r shows how well a trajectory model can
describe the original time series. Therefore, the root mean
square (rms) of r can give a first approximation of the noise
floor of each station.

3.1.2 Spectral analysis, white, flicker, and random walk
noise

The power distribution of residuals (and its agreement with
noise models) is another popular way to quantify uncertainty
of GPS time series (e.g., Klos et al., 2019; Argus et al., 2022).
Typically, GPS series are evaluated for white, flicker, and
random walk noise or a combination of them. Hector soft-
ware (Bos et al., 2013) is used to estimate full noise covari-
ance information by means of a maximum likelihood esti-
mator. The covariance matrix C from a combination of white
and power-law (i.e., flicker and random walk) noise is given
as

C= a× I+ b× J, (4)

where a is the amplitude of white noise, I is the identity ma-
trix of size N (number of samples and/or epochs in the se-
ries), b is the amplitude, and J is the covariance matrix of
power-law noise. The J matrix is a full covariance matrix that
describes the time-correlated error (as the data record length
increases, the displacement uncertainty changes; Bos et al.,
2008, Eqs. 8–11). The optimal selection of the noise models
is done via two optimality criteria, namely the Akaike infor-
mation criterion (Akaike, 1974) and the Bayesian criterion
(Schwarz, 1978).

In this study, we consider three cases:

a. white noise (WN),

b. a combination of WN and flicker noise (WN+FN), and

c. a combination of WN, FN, and random walk noise
(WN+FN+RW).

We take the root sum squares of the noise magnitudes as
our noise floor. For example, for the case of WN+FN noise,

noise is derived as σ =±
√
σ 2

WN+ σ
2
FN. Our data are sampled

on a monthly basis, and thus σFN needs to be scaled appropri-
ately, i.e., σFN = σPL( 1

12 )−
k
4 , where, σPL is the uncertainty of

the power law (PL) and k the spectral index outputted from
Hector (more information on power-law noise estimation can
be found in Bos et al., 2008, and Williams, 2003).

3.1.3 Common mode noise

The common mode component (CMC) is derived following
the processing scheme suggested by Kreemer and Blewitt
(2021), which can be summarized as follows.

1. Input GPS displacement time series (referenced to
September 2012) for j stations (lj ).

2. Derive each station’s residuals by removing the trajec-
tory part of the series (lj (t)− yj (t)).
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3. Quantify the correlation coefficient rMAD using robust
statistics. rMAD is defined as

rMAD =
MAD2 (u)−MAD2 (v)

MAD2 (u)+MAD2 (v)
. (5)

The median absolute deviation (MAD) is the absolute
deviation around the median. For example, for a residual
series res(t) MAD= |res (t)−median(res (t)). u and v
are derived as

u=
p−median(p)
√

2MAD(p)
+
q −median(q)
√

2MAD(q)
, (6)

v =
p−median(p)
√

2MAD(p)
−
q −median(q)
√

2MAD(q)
, (7)

with p and q being the residual series of the reference
station and the neighbor station, respectively. For each
station there are j − 1 correlation coefficients rMAD. In
order to decide the cut-off distance for which a neigh-
bor station will be considered in the analysis we plot the
rMAD coefficient against its distance from the reference
station (Fig. 5). Based on results from all stations we de-
cide to set a cut-off at 1500 km, slightly higher than the
1350 km suggested by Kreemer and Blewitt (2021). The
1500 km cut-off allows us to separate stations between
the east and west coast, as spatially coherent signals at
stations located across the continent are negligible.

4. Derive the median slope estimator (ccs) using the Theil–
Sen median trend. The ccs is the median trend of the
rMAD coefficients of a station against their distance with
the reference station.

5. Derive the zero-distance intercept ccij for each station
as median(rMAD− ccs× d), with d being the distance
between the station of reference and the neighbor station
(maximum d = 1500 km).

6. Construct CMC: calculate the cumulative (cj ) and per-
centile (pj ) weights for each station and then find the
weighted median that corresponds to pj = 50 %. This
weighted median represents the CMC of the station
(Fig. 6).

CMC is limited in providing a realistic error approxi-
mation in that the technique cannot isolate spatially cor-
related noise from signal (e.g., hydrology signals not de-
scribed by the trajectory model are present in the residuals
fed into CMC). Under the realistic assumption that a com-
ponent of the high-frequency signal contained in CMC re-
flects real hydrological processes, we remove the contribu-
tion of surface hydrology using Global Land Data Assim-
ilation System (GLDAS) (Rodell et al., 2004) vertical dis-
placement estimates. GLDAS does not model deep ground-
water and open surface water, so these signals remain in the

residual (Scanlon et al., 2018). Vertical displacement esti-
mates driven by surface hydrology are derived similarly to
GRACE(-FO) (Sect. 2.2). We use Noah v2.1 monthly esti-
mates of soil moisture storage given at 0.25° grids (Beaudo-
ing and Rodell, 2020), convert the fields from terrestrial wa-
ter storage (kg m−2) to units of equivalent water height, de-
rive the spherical harmonic coefficients of the equivalent wa-
ter height mass load using Wahr et al. (1998), and predict the
elastic response of the Earth (Eq. 1). Afterwards, we remove
the reference epoch (September 2012) similar to GPS and es-
timate the vertical displacement at the locations of the GPS
sites by interpolating the estimates of the closest neighbors
to the station’s location. Note that because our interest is to
prepare the data for a combined solution with GRACE(-FO)
we interpolate the time series at the times of GRACE(-FO)
monthly series availability. The interested reader is referred
to the Supplement, where we show the vertical displacement
estimated by GPS, GRACE(-FO), and GLDAS (Fig. S2) for
randomly selected stations. Finally, we derive residuals rel-
ative to the trajectory model (Eq. 2). GLDAS (surface hy-
drology) residuals should ideally reflect high-frequency hy-
drological processes and are therefore removed from GPS
residuals. Overall, CMC of surface hydrology residuals ex-
hibits a fairly small magnitude (∼ 0.5 mm). We remove the
contribution of surface hydrology within the CMC algorithm
by first subtracting GLDAS vertical displacement estimates
from GPS and next inputting the residuals of this differ-
ence into the algorithm. The output of this process (CMCHF)
slightly decreases the magnitude of CMC and expresses a
more realistic representation of spatially correlated noise.

3.2 Results

Vertical displacement uncertainty of each station is estimated
by means of all the different approaches discussed in Sect. 3.
Mean (µ), median, and standard deviation (SD) values are
shown in Table 1. On average, an assumption of white noise
shows slightly reduced uncertainty compared to the other
techniques, followed by RMSE. When flicker noise is con-
sidered in addition to white noise (WN+FN) the average un-
certainty increases by nearly 0.8 mm compared to the white
noise only. We note that the contribution of white noise
in the case of WN+FN is negligible for 97 % of the sta-
tions (that is, flicker noise describes the noise exclusively).
Noise level from the combination of all three noise models
(WN+FN+RW) is less than 4 mm on average. In this case
too, white noise is negligible, and noise is described exclu-
sively from flicker noise for 1550 stations and from random
walk for 600 stations. The rest of the data sample reflects a
contribution from both noise models. We additionally ana-
lyzed the amplitude of the noise of each noise model (σPL)
with respect to the length of the input series. Results did not
identify any clear relationship between σPL and the length of
each station’s time series. The CMC noise floor is 3.6 mm on
average with a relatively large standard deviation (±1.6 mm),

https://doi.org/10.5194/essd-16-1317-2024 Earth Syst. Sci. Data, 16, 1317–1332, 2024



1326 A. Peidou et al.: GPS displacement dataset

Figure 5. rMAD coefficient of four random stations with the rest of the station sample, plotted against the distance of the reference station
with the rest of the stations. Each cross resembles the rMAD of the reference station with a station located at distance d .

Table 1. Different uncertainty quantification cases.

Mean (µ) Median ±SD
(mm) (mm) (mm)

RMSE 2.8 2.7 0.8
WN 2.4 2.2 0.8
WN+FN 3.2 3.1 0.7
WN+FN+RW 3.8 3.5 1.1
CMC 3.6 3.2 1.6
CMCHF 3.5 3.1 1.6

which suggests that spatially correlated noise has higher vari-
ability than time-correlated noise (±1.6 mm as opposed to
∼±1 mm). When surface hydrology is removed (CMCHF)
the noise floor drops by a fraction of a millimeter on average
compared to CMC.

RMSE and WN exhibit a smooth transition among the re-
gions, which indicates the presence of a spatially coherent
regime signal mostly driven by hydrology (Fig. 6). The com-
bination of WN+FN is mostly dominated by FN, and the un-
certainty exhibits local (in space) coherence. The uncertainty
is larger when random walk is included in the combination
(WN+FN+RW). A recent study from Argus et al. (2022) on
groundwater flux in Central Valley (California) suggests that
noise on GPS-derived uplift motion can be well described
by a combination of flicker noise and random walk due to
the ability of these noise models to reflect low-frequency
noise. When a simulated contribution of the surface hydro-
logical component is removed from the series, CMCHF re-

flects a more realistic picture of the noise. Arguably the level
of change compared to CMC is sub-millimeter. Signal con-
tributions from un-modeled groundwater variations are po-
tentially still present, but groundwater changes are typically
slower in time.

We obtain the relative likelihood of each uncertainty quan-
tification method by estimating the probability density func-
tion (PDF) (Fig. 7). White noise has a flat power spectrum,
having the same amplitude across frequencies. Estimating
a best fit for a flat spectrum does not allow for capturing
the long tail skew of the residuals (low frequency), which
are biased towards their mean. Thus, the amplitude of white
noise is smaller compared to the rest of the techniques (Ta-
ble 1). Flicker and random walk noise models add to the long
tail of the power distribution: that is, they allow more low-
frequency noise, which explains the higher amplitude of the
uncertainty when these two noise types are considered.

RMSE and WN show a 50 % probability of a station hav-
ing an uncertainty (σ ) between 1.5 and 2 mm and less than
a 10 % probability of a station exceeding σ = 4 mm. The
noise level fells within [2 4] mm for ∼ 93 % of the stations
when we consider combination of WN+FN. PDFs of RMSE,
WN, and WN+FN resemble a normal distribution, with the
mean being shifted for each case. When random walk is
also considered (WN+FN+RW) 64 % of the stations exhibit
noise within [2 4] mm. In this case, the distribution is more
spread, resembling a gamma-like distribution, with a peak
being at 3 mm (18 %). CMC and CMCHF PDFs also follow
a gamma shape, and the probability of the uncertainty rang-
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Figure 6. Noise amplitudes of GPS time series estimated using different techniques.

ing [2 4] mm is nearly 60 % for CMC and 65 % when surface
hydrology is removed.

4 Data availability

The data product described in the paper is available on Zen-
odo (DOI: https://doi.org/10.5281/zenodo.8184285, Peidou
et al., 2023). GPS time series are provided by the Global
Station List from the Nevada Geodetic Laboratory (http:
//geodesy.unr.edu/, last access: 28 January 2024, Blewitt et

al., 2018). The non-atmospheric and oceanic tidal aliasing
product (AOD1B RL06) is provided by GFZ’s Information
System and Data Center (ftp://isdc.gfz-potsdam.de/grace/
Level-1B/GFZ/AOD/RL06, last access: 28 January 2024,
Dobslaw et al., 2017). GRACE-FO Level 2 products are
available from PODAAC (https://doi.org/10.5067/GFL20-
MJ060, NASA JPL, 2019).
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Figure 7. Probability density function of vertical displacement es-
timate uncertainty.

5 Conclusions and discussion

GPS-derived vertical displacements are very useful for sup-
plementing GRACE(-FO) gravity products to infer mass
change signals at spatial scales smaller than what can typi-
cally be achieved with current satellite gravimetry alone (i.e.,
< 300 km). This work provides a general workflow to isolate
elastic surface mass signals from GPS vertical displacement
by developing processing standards; additionally, it suggests
uncertainty quantification schemes to quantify error in GPS
vertical displacement estimates. The ultimate goal is to pre-
pare GPS estimates for merging with satellite gravimetry ob-
servations. First, we provide a list of corrections needed for
isolating surface mass following recommendations outlined
in Argus et al. (2017, 2022). Additionally, a detailed inves-
tigation of trends, correlation, and variance reduction high-
lights the need for better background modeling (glacial iso-
static adjustment and interseismic strain), as the two obser-
vation techniques respond differently in the presence of such
errors. At this point the recommendation is to remove sites
located in the vicinity of regions where background models
are known to perform poorly, before any joint inversion. Ex-
cept detecting outlier stations, screening metrics point to ex-
tra corrections that need to be applied in certain sites (e.g.,
missed antenna offsets).

Several uncertainty quantification schemes have been
tested to prescribe weights on GPS vertical displacement es-
timates that are needed for a joint inversion with GRACE(-
FO) data. The average noise level indicated by RMSE is
2.8 mm. White noise average is 2.5 mm. The errors increase
when lower frequencies are included in the noise estimation.
When we account for flicker noise, one-third of the sites ex-
hibit noise levels of up to 3 mm. The average noise increases
significantly in the presence of random walk, as more power
of the lower frequencies gets into the estimations, and the
distribution of noise is more dispersed. In this case, half of
the stations are prescribed with> 4 mm uncertainty. Argus et
al. (2022) find that random walk is the most realistic repre-
sentation of noise based on post-fit residuals. We notice that
the spectrum of CMC provides similar uncertainties to ran-

dom walk, which implies that despite the different character-
ization procedure, CMC is able to provide equally realistic
noise estimates of GPS time series. We attempted to mini-
mize lingering hydrology signals embedded in CMC by re-
ducing the GPS vertical displacement observations with dis-
placements from the GLDAS hydrology model. The average
noise floor dropped slightly (∼ 0.5 mm drop in sigma). Fu-
ture work will provide further information on GPS station
errors when the weight of each GPS site is also considered
based on its impact on the performance in a formal data com-
bination of GPS and GRACE(-FO). The suggested frame-
work can be easily adjusted to account for global datasets.
The new dataset provides GPS vertical displacements of elas-
tic mass variations in North America and their associated un-
certainties.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-16-1317-2024-supplement.
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