Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-497-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-497-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
Médéric Gravelle
CORRESPONDING AUTHOR
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Guy Wöppelmann
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Kevin Gobron
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Royal Observatory of Belgium, 1180 Uccle, Belgium
Zuheir Altamimi
Institut de physique du globe de Paris,
Université de Paris, CNRS, IGN, 75005 Paris, France
ENSG-Géomatique, IGN, 77455 Marne la Vallée, France
Mikaël Guichard
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Thomas Herring
Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139-4307, USA
Paul Rebischung
Institut de physique du globe de Paris,
Université de Paris, CNRS, IGN, 75005 Paris, France
ENSG-Géomatique, IGN, 77455 Marne la Vallée, France
Related authors
Alvaro Santamaría-Gómez, Jean-Paul Boy, Florent Feriol, Médéric Gravelle, Sylvain Loyer, Samuel Nahmani, Joëlle Nicolas, José Luis García Pallero, Aurélie Panetier, Arnaud Pollet, and Pierre Sakic
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-223, https://doi.org/10.5194/essd-2025-223, 2025
Preprint under review for ESSD
Short summary
Short summary
SPOTGINS is a new cooperative of research groups producing a consistent and high-quality set of daily GNSS position and tropospheric delay time series. Each group processes a portion of the global station network using the same software, products, and corrections. These series allow for the understanding of small deformations of the Earth's surface at the millimeter level that include tectonics, earthquakes, ground subsidence, post-glacial rebound, hydrological loading, and volcanic deformation.
Alvaro Santamaría-Gómez, Jean-Paul Boy, Florent Feriol, Médéric Gravelle, Sylvain Loyer, Samuel Nahmani, Joëlle Nicolas, José Luis García Pallero, Aurélie Panetier, Arnaud Pollet, and Pierre Sakic
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-223, https://doi.org/10.5194/essd-2025-223, 2025
Preprint under review for ESSD
Short summary
Short summary
SPOTGINS is a new cooperative of research groups producing a consistent and high-quality set of daily GNSS position and tropospheric delay time series. Each group processes a portion of the global station network using the same software, products, and corrections. These series allow for the understanding of small deformations of the Earth's surface at the millimeter level that include tectonics, earthquakes, ground subsidence, post-glacial rebound, hydrological loading, and volcanic deformation.
Marie-Françoise Lalancette, Guy Wöppelmann, Sylvain Lucas, Roger Bayer, Jean-Daniel Bernard, Jean-Paul Boy, Nicolas Florsch, Jacques Hinderer, Nicolas Le Moigne, Muriel Llubes, Bernard Luck, and Didier Rouxel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-211, https://doi.org/10.5194/essd-2025-211, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents 25 years of carefully processed gravity measurements from western France, offering a unique dataset to support investigations of long-term land motion and sea level change. The data are consistent with satellite-based observations and are made available for use in future geophysical and climate-related research.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Cited articles
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J.-M., Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International Geomagnetic
Reference Field: the thirteenth generation, Earth Planets Space, 73,
49, https://doi.org/10.1186/s40623-020-01288-x, 2021.
Altamimi, Z., Boucher, C., and Sillard, P.: New trends for the realization
of the International Terrestrial Reference System, Adv. Space Res., 30,
175–184, 2002.
Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., and Collilieux,
X.: ITRF2014 plate motion model, Geophys. J. Int., 209, 1906–1912, 2017.
Altamimi, Z., Boucher, C., Sillard, P., Collilieux, X., and Rebischung, P.:
CATREF software (Combination and Analysis of Terrestrial Reference Frames),
Manual, version of 19 April 2018.
Amiri-Simkooei, A. R.: On the nature of GPS draconitic year periodic pattern
in multivariate position time series, J. Geophys. Res.-Sol. Ea., 118,
2500–2511, https://doi.org/10.1002/jgrb.50199, 2013.
Arnold, D., Meindl, M., Beutler, G., Dach, R., Schaer, S., Lutz, S., Prange,
L., Sośnica, K., Mervart, L., and Jäggi, A.: CODE's new solar
radiation pressure model for GNSS orbit determination, J. Geod., 89,
775–791, 2015.
Ballu, V., Gravelle, M., Wöppelmann, G., de Viron, O., Rebischung, P.,
Becker, M., and Sakic, P.: Vertical land motion in the Southwest and Central
Pacific from available GNSS solutions and implications for relative sea
levels, Geophys. J. Int., 218, 1537–1551, https://doi.org/10.1093/gji/ggz247, 2019.
Blewitt, G., Kreemer, C. Hammond, W. C., and Gazeaux, J.: MIDAS robust trend
estimator for accurate GPS station velocities without step detection, J.
Geophys. Res.-Sol. Ea., 121, 2054–2068, https://doi.org/10.1002/2015JB012552, 2016.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data
explosion for interdisciplinary science, Eos, 99, 1–2,
https://doi.org/10.1029/2018EO104623, 2018.
Böhm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS
and very long baseline interferometry from European Centre for Medium-Range
Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629,
2006.
Carter, W. E. (Ed.): Report of the surrey workshop of the IAPSO tide gauge
benchmark fixing committee, Report of a meeting held 13–15 December 1993 at
the Inst. of Oceanog. Sci., Deacon Lab., NOAA Tech. Rep., NOSOES0006, 1994.
Chen, G. and Herring, T. A.: Effects of atmospheric azimuthal asymmetry on
the analysis of space geodetic data, J. Geophys. Res., 102, 20489–20502,
1997.
Desai, S. D. and Sibois, A. E.: Evaluating predicted diurnal and
semidiurnal tidal variations in polar motion with GPS-based observations, J.
Geophys. Res.-Sol. Ea., 121, 5237–5256, https://doi.org/10.1002/2016JB013125,
2016.
Dill, R. and Dobslaw, H.: Numerical simulations of global-scale
high-resolution hydrological crustal deformations, J. Geophys. Res.-Sol.
Ea., 118, 5008–5017, https://doi.org/10.1002/jgrb.50353, 2013.
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-H.: The causes of
sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore,
A. W., Ostini, L., Petrie, E., Roggero, M., Teferle, F. N., Olivares, G., and
Webb, F. H.: Detecting offsets in GPS time series: First results from the
detection of offsets in GPS experiment, J. Geophys. Res.-Sol. Ea.,
118, 2397–2407, https://doi.org/10.1002/jgrb.50152, 2013.
Gobron, K., Rebischung, P., Van Camp, M., Demoulin, A., and de Viron, O.:
Influence of aperiodic non-tidal atmospheric and oceanic loading
deformations on the stochastic properties of global GNSS vertical land
motion time series, J. Geophys. Res.-Sol. Ea., 126, e2021JB022370,
https://doi.org/10.1029/2021JB022370, 2021.
Gobron, K., Rebischung, P., de Viron, O., Demoulin, A., and Van Camp, M.:
Impact of offsets on assessing the low-frequency stochastic properties of
geodetic time series, J. Geod., 96, 42,
https://doi.org/10.1007/s00190-022-01634-9, 2022.
Gravelle, M., Wöppelmann, G. M., Gobron, K., Altamimi, Z., Guichard,
M., Herring, T., and Rebischung, P.: The ULR-repro3 GPS data reanalysis solution
(aka ULR7a), SONEL Data Center [data set],
https://doi.org/10.26166/sonel_ulr7a, 2022.
Griffiths, J. and Ray, J.: Impacts of GNSS position offsets on global frame
stability, Geophys. J. Int., 204, 480–487, https://doi.org/10.1093/gji/ggv455, 2016.
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T. M., Reager, J. T., Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A., Beckley, B. D., Bekaert, D. P. S., Blewitt, G., Caron, L., Chambers, D. P., Chandanpurkar, H. A., Christianson, K., Csatho, B., Cullather, R. I., DeConto, R. M., Fasullo, J. T., Frederikse, T., Freymueller, J. T., Gilford, D. M., Girotto, M., Hammond, W. C., Hock, R., Holschuh, N., Kopp, R. E., Landerer, F., Larour, E., Menemenlis, D., Merrifield, M., Mitrovica, J. X., Nerem, R. S., Nias, I. J., Nieves, V., Nowicki, S., Pangaluru, K., Piecuch, C. G., Ray, R. D., Rounce, D. R., Schlegel, N.-J., Seroussi, H., Shirzaei, M., Sweet, W. V., Velicogna, I., Vinogradova, N., Wahl, T., Wiese, D. N., and Willis, M. J.: Understanding of contemporary
regional sea-level change and the implications for the future, Rev.
Geophys., 58, e2019RG0000672, https://doi.org/10.1029/2019RG000672, 2020.
Hammond, W. C., Blewitt, G., Kreemer, C., and Nerem, R. S.: GPS imaging of
global vertical land motion for studies of sea level rise, J. Geophys. Res.-Sol. Ea., 126, e2021JB022355, https://doi.org/10.1029/2021JB022355, 2021.
Heflin, M., Bertiger, W., Blewitt, G., Freedman, A., Hurst, K., Lichten, S., Lindqwister, U., Vigue, Y., Webb, F., Yunck, T., and Zumberge, J.: Global geodesy using GPS without fiducial sites,
Geophys. Res. Lett., 19, 131–134, 1992.
Herring, T. A., Floyd, M. A., and McClusky, S. C.: GLOBK Reference Manual,
release 10.6, http://geoweb.mit.edu/gg/ (last access: 9 July 2022), 16 June 2015.
Herring, T. A., King, R. W., Floyd, M. A., King, R. W., and McClusky, S. C.: GAMIT
Reference Manual, release 10.7,
http://geoweb.mit.edu/gg/ (last access: 9 July 2022), 7 June 2018.
IOC: Global Sea-Level Observing System (GLOSS) Implementation Plan (2012),
IOC Tech. Ser., Vol. 100, 41 pp., 2012.
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service,
Springer Handbook of Global Navigation Satellite Systems, 967–982,
https://doi.org/10.1007/978-3-319-42928-1_33, 2017.
Koch, K: Maximum likelihood estimate of variance components, Bulletin
Géodésique, 60, 329–338, https://doi.org/10.1007/BF02522340, 1986.
Kouba, J.: A simplified yaw-attitude model for eclipsing GPS satellites, GPS
Solut., 13, 1–12, https://doi.org/10.1007/s10291-008-0092-1, 2009.
Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., and Nilsson,
T.: GPT2: Empirical slant delay model for radio space geodetic techniques,
Geophys. Res. Lett., 40, 1069–1073, https://doi.org/10.1002/grl.50288, 2013.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Magnan, A. K., Schipper, E. L. F., and Duvat, V. K. E.: Frontiers in climate
change adaptation science: advancing guidelines to design adaptation
pathways, Curr. Clim. Change Rep., 6, 166–177,
https://doi.org/10.1007/s40641-020-00166-8, 2020.
Männel, B., Schöne, T., Bradke, M., and Schuh, H.: Vertical land motion at tide gauges observed by GNSS: a new GFZ-TIGA solution, in: International Association of Geodesy Symposia, Springer, Berlin, Heidelberg, https://doi.org/10.1007/1345_2022_150, 2022.
Marcos, M., Wöppelmann, G., Matthews, A., Ponte, R. M., Birol, F.,
Ardhuin, F., Coco, G., Santamaria-Gomez, A., Ballu, V., Testut, L.,
Chambers, D., and Stopa, J. E.: Coastal sea level and related fields from
existing observing systems, Surv. Geophys., 40, 1293–1317,
https://doi.org/10.1007/s10712-019-09513-3, 2019.
Métivier, L., Collilieux, X., Lercier, D., Altamimi, Z., and Beauducel,
F.: Global coseismic deformations, GNSS time series analysis, and earthquake
scaling laws, J. Geophys. Res.-Sol. Ea., 119, 9095–9109, 2014.
Patterson, H. D. and Thompson, R.: Recovery of inter-block information when
block sizes are unequal, Biometrika, 58, 545–554, https://doi.org/10.1093/biomet/58.3.545, 1971.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development
and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys.
Res., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Penna, N. T. and Stewart, M. P.: Aliased tidal signatures in continuous GPS
height time series, Geophys. Res. Lett., 30, 2184,
https://doi.org/10.1029/2003GL018828, 2003.
Petit, G. and Luzum, B.: IERS conventions, Tech. Note 36, Bureau
International des Poids et Mesures, Sevres (France),
https://iers-conventions.obspm.fr/ (last access: 9 July 2022), 2010.
Poitevin, C., Wöppelmann, G., Raucoules, D., Le Cozannet, G., Marcos,
M., and Testut, L.: Vertical land motion and relative sea level changes
along the coastline of Brest (France) from combined space-borne geodetic
methods, Remote Sens. Environ., 222, 275–285, https://doi.org/10.1016/j.rse.2018.12.035,
2019.
Ray, J., Altamimi, Z., Collilieux, X., and van Dam, T.: Anomalous harmonics
in the spectra of GPS position estimates, GPS Solut., 12, 55–64, https://doi.org/10.1007/s10291-007-0067-7, 2008.
Rebischung, P.: Terrestrial frame solutions from the IGS third reprocessing, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-2144, https://doi.org/10.5194/egusphere-egu21-2144, 2021.
Rebischung, P., Altamimi, Z., Ray, J., and Garayt, B.: The IGS contribution
to ITRF2014, J. Geodesy, 90, 611–630, https://doi.org/10.1007/s00190-016-0897-6, 2016.
Rebischung, P., Collilieux, X., Métivier, L., Altamimi, Z., and Chanard,
K.: Analysis of IGS repro3 Station Position Time Series, AGU Fall Meeting,
13–17 December 2021, https://doi.org/10.1002/essoar.10509008.1, 2021.
Sanli, D. U. and Blewitt, G.: Geocentric sea level trend using GPS and
>100-year tide gauge record on a postglacial rebound nodal line,
J. Geophys. Res., 106, 713–719, https://doi.org/10.1029/2000JB900348, 2001.
Santamaria-Gomez, A. and Ray, J.: Chameleonic noise in GPS position time
series, J. Geophys. Res.-Sol. Ea., 126, e2020JB019541, https://doi.org/10.1029/2020JB019541, 2021.
Santamaria-Gomez, A., Bouin, M.-N., Collilieux, X., and Wöppelmann, G.:
Correlated errors in GPS position time series: Implications for velocity
estimates, J. Geophys. Res., 116, B01405, https://doi.org/10.1029/2010JB007701, 2011.
Santamaria-Gomez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G.,
and Wöppelmann, G.: Uncertainty of the 20th century sea-level rise due
to vertical land motion errors, Earth Planet. Sc. Lett., 473,
24–32, 2017.
Schöne, T., Schön, N., and Thaller, D.: IGS Tide gauge benchmark
monitoring pilot project (TIGA): scientific benefits, J. Geod., 83,
249–261, https://doi.org/10.1007/s00190-008-0269-y, 2009.
Springer, T. A., Beutler, G., and Rothacher, M.: A new solar radiation
pressure model for GPS, Adv. Space Res., 23, 673–676,
https://doi.org/10.1016/S0273-1177(99)00158-1, 1999.
Steigenberger, P., Rothacher, M., Dietrich, R., Fritsche, M., Rülke, A.,
and Vey, S.: Reprocessing of a global GPS network, J. Geophys. Res., 111,
B05402, https://doi.org/10.1029/2005JB003747, 2006.
Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M.,
Prawirodirdjo, L., Miller, M., and Johnson, D. J.: Error analysis of
continuousGPS position time series, J. Geophys. Res., 109, B03412,
https://doi.org/10.1029/2003JB002741, 2004.
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G.,
Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and
Merrifield, M. A.: Forcing factors affecting sea level changes at the coast,
Surv. Geophys., 40, 1351–1397, 2019.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54, 64–92,
2016.
Wöppelmann, G., Martin Miguez, B., Bouin, M.-N., and Altamimi, Z.:
Geocentric sea-level trend estimates from GPS analyses at relevant tide
gauges world-wide, Global Planet. Change, 57, 396–406,
https://doi.org/10.1016/j.gloplacha.2007.02.002, 2007.
Wöppelmann, G., Letetrel, C., Santamaria, A., Bouin, M.-N., Collilieux,
X., Altamimi, Z., Williams, S. D. P., and Martin Miguez, B.: Rate of
sea-level change over the past century in a geocentric reference frame,
Geophys. Res. Lett., 36, L12607, https://doi.org/10.1029/2009GL038720, 2009.
Wöppelmann, G., Gravelle, M., and Testut, L.: SONEL sea-level observing
infrastructure: French contribution to the IUGG Centennial in 2019 and
beyond, Collection du Bureau des Longitudes, 1, 43–53, ISBN 978-2-491688-08-0, 2021.
Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., and Lichten, S. M.: Effects
of antenna orientation on GPS carrier phase, Manuscr. Geodaet. 18, 91–98,
1993.
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS...
Altmetrics
Final-revised paper
Preprint