Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-497-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-497-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
Médéric Gravelle
CORRESPONDING AUTHOR
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Guy Wöppelmann
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Kevin Gobron
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Royal Observatory of Belgium, 1180 Uccle, Belgium
Zuheir Altamimi
Institut de physique du globe de Paris,
Université de Paris, CNRS, IGN, 75005 Paris, France
ENSG-Géomatique, IGN, 77455 Marne la Vallée, France
Mikaël Guichard
LIENSs, CNRS–La Rochelle University, 17000 La Rochelle, France
Thomas Herring
Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139-4307, USA
Paul Rebischung
Institut de physique du globe de Paris,
Université de Paris, CNRS, IGN, 75005 Paris, France
ENSG-Géomatique, IGN, 77455 Marne la Vallée, France
Related authors
J. F. Breilh, E. Chaumillon, X. Bertin, and M. Gravelle
Nat. Hazards Earth Syst. Sci., 13, 1595–1612, https://doi.org/10.5194/nhess-13-1595-2013, https://doi.org/10.5194/nhess-13-1595-2013, 2013
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
J. F. Breilh, E. Chaumillon, X. Bertin, and M. Gravelle
Nat. Hazards Earth Syst. Sci., 13, 1595–1612, https://doi.org/10.5194/nhess-13-1595-2013, https://doi.org/10.5194/nhess-13-1595-2013, 2013
Related subject area
Domain: ESSD – Land | Subject: Geophysics and geodesy
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
GPS displacement dataset for the study of elastic surface mass variations
Global Navigation Satellite System (GNSS) time series and velocities about a slowly convergent margin processed on high-performance computing (HPC) clusters: products and robustness evaluation
TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)
Comprehensive data set of in situ hydraulic stimulation experiments for geothermal purposes at the Äspö Hard Rock Laboratory (Sweden)
Synthetic ground motions in heterogeneous geologies: the HEMEW-3D dataset for scientific machine learning
An earthquake focal mechanism catalog for source and tectonic studies in Mexico from February 1928 to July 2022
Global physics-based database of injection-induced seismicity
The Weisweiler passive seismological network: optimised for state-of-the-art location and imaging methods
A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications
In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs
The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 catalogue for the European Seismic Hazard Model 2020
Rescue and quality control of historical geomagnetic measurement at Sheshan observatory, China
A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China
In situ observations of the Swiss periglacial environment using GNSS instruments
Permafrost changes in the northwestern Da Xing'anling Mountains, Northeast China, in the past decade
British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024, https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024, https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary
Short summary
This study recommends a framework for preparing and processing vertical land displacements derived from GPS positioning for future integration with Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) measurements. We derive GPS estimates that only reflect surface mass signals and evaluate them against GRACE (and GRACE-FO). We also quantify uncertainty of GPS vertical land displacement estimates using various uncertainty quantification methods.
Lavinia Tunini, Andrea Magrin, Giuliana Rossi, and David Zuliani
Earth Syst. Sci. Data, 16, 1083–1106, https://doi.org/10.5194/essd-16-1083-2024, https://doi.org/10.5194/essd-16-1083-2024, 2024
Short summary
Short summary
This study presents 20-year time series of more than 350 GNSS stations located in NE Italy and surroundings, together with the outgoing velocities. An overview of the input data, station information, data processing and solution quality is provided. The documented dataset constitutes a crucial and complete source of information about the deformation of an active but slowly converging margin over the last 2 decades, also contributing to the regional seismic hazard assessment of NE Italy.
Wenbin Tang, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang
Earth Syst. Sci. Data, 16, 387–419, https://doi.org/10.5194/essd-16-387-2024, https://doi.org/10.5194/essd-16-387-2024, 2024
Short summary
Short summary
This paper reported a daily 1 km all-weather land surface temperature (LST) dataset for Chinese land mass and surrounding areas – TRIMS LST. The results of a comprehensive evaluation show that TRIMS LST has the following special features: the longest time coverage in its class, high image quality, and good accuracy. TRIMS LST has already been released to the scientific community, and a series of its applications have been reported by the literature.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-470, https://doi.org/10.5194/essd-2023-470, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Numerical simulations are a promising approach to characterize the intensity of ground motion in the presence of geological uncertainties. However, the computational cost of three-dimensional simulations can limit their usability. We present the first database of seismic-induced ground motion generated by an earthquake simulator for a collection of 30,000 heterogeneous geologies. The HEMEW-3D dataset can be helpful for geophysicists, seismologists, and machine learning scientists, among others.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Earth Syst. Sci. Data, 15, 4781–4801, https://doi.org/10.5194/essd-15-4781-2023, https://doi.org/10.5194/essd-15-4781-2023, 2023
Short summary
Short summary
We present a comprehensive catalog of focal mechanisms for earthquakes in Mexico and neighboring areas spanning February 1928 to July 2022. The catalog comprises a wide range of earthquake magnitudes and depths and includes data from diverse geological environments. We collected and revised focal mechanism data from various sources and methods. The catalog is a valuable resource for future studies on earthquake source mechanisms, tectonics, and seismic hazard in the region.
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Jia-Hao Li, Zhao-Liang Li, Xiangyang Liu, and Si-Bo Duan
Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023, https://doi.org/10.5194/essd-15-2189-2023, 2023
Short summary
Short summary
The Advanced Very High Resolution Radiometer (AVHRR) is the only sensor that has the advantages of frequent revisits (twice per day), relatively high spatial resolution (4 km at the nadir), global coverage, and easy access prior to 2000. This study developed a global historical twice-daily LST product for 1981–2021 based on AVHRR GAC data. The product is suitable for detecting and analyzing climate changes over the past 4 decades.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Andrea Rovida, Andrea Antonucci, and Mario Locati
Earth Syst. Sci. Data, 14, 5213–5231, https://doi.org/10.5194/essd-14-5213-2022, https://doi.org/10.5194/essd-14-5213-2022, 2022
Short summary
Short summary
EPICA is the 1000–1899 catalogue compiled for the European Seismic Hazard Model 2020 and contains 5703 earthquakes with Mw ≥ 4.0. It relies on the data of the European Archive of Historical Earthquake Data (AHEAD), both macroseismic intensities from historical seismological studies and parameters from regional catalogues. For each earthquake, the most representative datasets were selected and processed in order to derive harmonised parameters, both from intensity data and parametric catalogues.
Suqin Zhang, Changhua Fu, Jianjun Wang, Guohao Zhu, Chuanhua Chen, Shaopeng He, Pengkun Guo, and Guoping Chang
Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, https://doi.org/10.5194/essd-14-5195-2022, 2022
Short summary
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Cited articles
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., Finlay, C. C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J.-M., Lesur, V., Livermore, P. W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren, Z., and Zhou, B.: International Geomagnetic
Reference Field: the thirteenth generation, Earth Planets Space, 73,
49, https://doi.org/10.1186/s40623-020-01288-x, 2021.
Altamimi, Z., Boucher, C., and Sillard, P.: New trends for the realization
of the International Terrestrial Reference System, Adv. Space Res., 30,
175–184, 2002.
Altamimi, Z., Métivier, L., Rebischung, P., Rouby, H., and Collilieux,
X.: ITRF2014 plate motion model, Geophys. J. Int., 209, 1906–1912, 2017.
Altamimi, Z., Boucher, C., Sillard, P., Collilieux, X., and Rebischung, P.:
CATREF software (Combination and Analysis of Terrestrial Reference Frames),
Manual, version of 19 April 2018.
Amiri-Simkooei, A. R.: On the nature of GPS draconitic year periodic pattern
in multivariate position time series, J. Geophys. Res.-Sol. Ea., 118,
2500–2511, https://doi.org/10.1002/jgrb.50199, 2013.
Arnold, D., Meindl, M., Beutler, G., Dach, R., Schaer, S., Lutz, S., Prange,
L., Sośnica, K., Mervart, L., and Jäggi, A.: CODE's new solar
radiation pressure model for GNSS orbit determination, J. Geod., 89,
775–791, 2015.
Ballu, V., Gravelle, M., Wöppelmann, G., de Viron, O., Rebischung, P.,
Becker, M., and Sakic, P.: Vertical land motion in the Southwest and Central
Pacific from available GNSS solutions and implications for relative sea
levels, Geophys. J. Int., 218, 1537–1551, https://doi.org/10.1093/gji/ggz247, 2019.
Blewitt, G., Kreemer, C. Hammond, W. C., and Gazeaux, J.: MIDAS robust trend
estimator for accurate GPS station velocities without step detection, J.
Geophys. Res.-Sol. Ea., 121, 2054–2068, https://doi.org/10.1002/2015JB012552, 2016.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data
explosion for interdisciplinary science, Eos, 99, 1–2,
https://doi.org/10.1029/2018EO104623, 2018.
Böhm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS
and very long baseline interferometry from European Centre for Medium-Range
Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, https://doi.org/10.1029/2005JB003629,
2006.
Carter, W. E. (Ed.): Report of the surrey workshop of the IAPSO tide gauge
benchmark fixing committee, Report of a meeting held 13–15 December 1993 at
the Inst. of Oceanog. Sci., Deacon Lab., NOAA Tech. Rep., NOSOES0006, 1994.
Chen, G. and Herring, T. A.: Effects of atmospheric azimuthal asymmetry on
the analysis of space geodetic data, J. Geophys. Res., 102, 20489–20502,
1997.
Desai, S. D. and Sibois, A. E.: Evaluating predicted diurnal and
semidiurnal tidal variations in polar motion with GPS-based observations, J.
Geophys. Res.-Sol. Ea., 121, 5237–5256, https://doi.org/10.1002/2016JB013125,
2016.
Dill, R. and Dobslaw, H.: Numerical simulations of global-scale
high-resolution hydrological crustal deformations, J. Geophys. Res.-Sol.
Ea., 118, 5008–5017, https://doi.org/10.1002/jgrb.50353, 2013.
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y.-H.: The causes of
sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore,
A. W., Ostini, L., Petrie, E., Roggero, M., Teferle, F. N., Olivares, G., and
Webb, F. H.: Detecting offsets in GPS time series: First results from the
detection of offsets in GPS experiment, J. Geophys. Res.-Sol. Ea.,
118, 2397–2407, https://doi.org/10.1002/jgrb.50152, 2013.
Gobron, K., Rebischung, P., Van Camp, M., Demoulin, A., and de Viron, O.:
Influence of aperiodic non-tidal atmospheric and oceanic loading
deformations on the stochastic properties of global GNSS vertical land
motion time series, J. Geophys. Res.-Sol. Ea., 126, e2021JB022370,
https://doi.org/10.1029/2021JB022370, 2021.
Gobron, K., Rebischung, P., de Viron, O., Demoulin, A., and Van Camp, M.:
Impact of offsets on assessing the low-frequency stochastic properties of
geodetic time series, J. Geod., 96, 42,
https://doi.org/10.1007/s00190-022-01634-9, 2022.
Gravelle, M., Wöppelmann, G. M., Gobron, K., Altamimi, Z., Guichard,
M., Herring, T., and Rebischung, P.: The ULR-repro3 GPS data reanalysis solution
(aka ULR7a), SONEL Data Center [data set],
https://doi.org/10.26166/sonel_ulr7a, 2022.
Griffiths, J. and Ray, J.: Impacts of GNSS position offsets on global frame
stability, Geophys. J. Int., 204, 480–487, https://doi.org/10.1093/gji/ggv455, 2016.
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T. M., Reager, J. T., Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A., Beckley, B. D., Bekaert, D. P. S., Blewitt, G., Caron, L., Chambers, D. P., Chandanpurkar, H. A., Christianson, K., Csatho, B., Cullather, R. I., DeConto, R. M., Fasullo, J. T., Frederikse, T., Freymueller, J. T., Gilford, D. M., Girotto, M., Hammond, W. C., Hock, R., Holschuh, N., Kopp, R. E., Landerer, F., Larour, E., Menemenlis, D., Merrifield, M., Mitrovica, J. X., Nerem, R. S., Nias, I. J., Nieves, V., Nowicki, S., Pangaluru, K., Piecuch, C. G., Ray, R. D., Rounce, D. R., Schlegel, N.-J., Seroussi, H., Shirzaei, M., Sweet, W. V., Velicogna, I., Vinogradova, N., Wahl, T., Wiese, D. N., and Willis, M. J.: Understanding of contemporary
regional sea-level change and the implications for the future, Rev.
Geophys., 58, e2019RG0000672, https://doi.org/10.1029/2019RG000672, 2020.
Hammond, W. C., Blewitt, G., Kreemer, C., and Nerem, R. S.: GPS imaging of
global vertical land motion for studies of sea level rise, J. Geophys. Res.-Sol. Ea., 126, e2021JB022355, https://doi.org/10.1029/2021JB022355, 2021.
Heflin, M., Bertiger, W., Blewitt, G., Freedman, A., Hurst, K., Lichten, S., Lindqwister, U., Vigue, Y., Webb, F., Yunck, T., and Zumberge, J.: Global geodesy using GPS without fiducial sites,
Geophys. Res. Lett., 19, 131–134, 1992.
Herring, T. A., Floyd, M. A., and McClusky, S. C.: GLOBK Reference Manual,
release 10.6, http://geoweb.mit.edu/gg/ (last access: 9 July 2022), 16 June 2015.
Herring, T. A., King, R. W., Floyd, M. A., King, R. W., and McClusky, S. C.: GAMIT
Reference Manual, release 10.7,
http://geoweb.mit.edu/gg/ (last access: 9 July 2022), 7 June 2018.
IOC: Global Sea-Level Observing System (GLOSS) Implementation Plan (2012),
IOC Tech. Ser., Vol. 100, 41 pp., 2012.
Johnston, G., Riddell, A., and Hausler, G.: The International GNSS Service,
Springer Handbook of Global Navigation Satellite Systems, 967–982,
https://doi.org/10.1007/978-3-319-42928-1_33, 2017.
Koch, K: Maximum likelihood estimate of variance components, Bulletin
Géodésique, 60, 329–338, https://doi.org/10.1007/BF02522340, 1986.
Kouba, J.: A simplified yaw-attitude model for eclipsing GPS satellites, GPS
Solut., 13, 1–12, https://doi.org/10.1007/s10291-008-0092-1, 2009.
Lagler, K., Schindelegger, M., Böhm, J., Krásná, H., and Nilsson,
T.: GPT2: Empirical slant delay model for radio space geodetic techniques,
Geophys. Res. Lett., 40, 1069–1073, https://doi.org/10.1002/grl.50288, 2013.
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L., and Picot, N.: FES2014 global ocean tide atlas: design and performance, Ocean Sci., 17, 615–649, https://doi.org/10.5194/os-17-615-2021, 2021.
Magnan, A. K., Schipper, E. L. F., and Duvat, V. K. E.: Frontiers in climate
change adaptation science: advancing guidelines to design adaptation
pathways, Curr. Clim. Change Rep., 6, 166–177,
https://doi.org/10.1007/s40641-020-00166-8, 2020.
Männel, B., Schöne, T., Bradke, M., and Schuh, H.: Vertical land motion at tide gauges observed by GNSS: a new GFZ-TIGA solution, in: International Association of Geodesy Symposia, Springer, Berlin, Heidelberg, https://doi.org/10.1007/1345_2022_150, 2022.
Marcos, M., Wöppelmann, G., Matthews, A., Ponte, R. M., Birol, F.,
Ardhuin, F., Coco, G., Santamaria-Gomez, A., Ballu, V., Testut, L.,
Chambers, D., and Stopa, J. E.: Coastal sea level and related fields from
existing observing systems, Surv. Geophys., 40, 1293–1317,
https://doi.org/10.1007/s10712-019-09513-3, 2019.
Métivier, L., Collilieux, X., Lercier, D., Altamimi, Z., and Beauducel,
F.: Global coseismic deformations, GNSS time series analysis, and earthquake
scaling laws, J. Geophys. Res.-Sol. Ea., 119, 9095–9109, 2014.
Patterson, H. D. and Thompson, R.: Recovery of inter-block information when
block sizes are unequal, Biometrika, 58, 545–554, https://doi.org/10.1093/biomet/58.3.545, 1971.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development
and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys.
Res., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Penna, N. T. and Stewart, M. P.: Aliased tidal signatures in continuous GPS
height time series, Geophys. Res. Lett., 30, 2184,
https://doi.org/10.1029/2003GL018828, 2003.
Petit, G. and Luzum, B.: IERS conventions, Tech. Note 36, Bureau
International des Poids et Mesures, Sevres (France),
https://iers-conventions.obspm.fr/ (last access: 9 July 2022), 2010.
Poitevin, C., Wöppelmann, G., Raucoules, D., Le Cozannet, G., Marcos,
M., and Testut, L.: Vertical land motion and relative sea level changes
along the coastline of Brest (France) from combined space-borne geodetic
methods, Remote Sens. Environ., 222, 275–285, https://doi.org/10.1016/j.rse.2018.12.035,
2019.
Ray, J., Altamimi, Z., Collilieux, X., and van Dam, T.: Anomalous harmonics
in the spectra of GPS position estimates, GPS Solut., 12, 55–64, https://doi.org/10.1007/s10291-007-0067-7, 2008.
Rebischung, P.: Terrestrial frame solutions from the IGS third reprocessing, EGU General Assembly 2021, online, 19–30 April 2021, EGU21-2144, https://doi.org/10.5194/egusphere-egu21-2144, 2021.
Rebischung, P., Altamimi, Z., Ray, J., and Garayt, B.: The IGS contribution
to ITRF2014, J. Geodesy, 90, 611–630, https://doi.org/10.1007/s00190-016-0897-6, 2016.
Rebischung, P., Collilieux, X., Métivier, L., Altamimi, Z., and Chanard,
K.: Analysis of IGS repro3 Station Position Time Series, AGU Fall Meeting,
13–17 December 2021, https://doi.org/10.1002/essoar.10509008.1, 2021.
Sanli, D. U. and Blewitt, G.: Geocentric sea level trend using GPS and
>100-year tide gauge record on a postglacial rebound nodal line,
J. Geophys. Res., 106, 713–719, https://doi.org/10.1029/2000JB900348, 2001.
Santamaria-Gomez, A. and Ray, J.: Chameleonic noise in GPS position time
series, J. Geophys. Res.-Sol. Ea., 126, e2020JB019541, https://doi.org/10.1029/2020JB019541, 2021.
Santamaria-Gomez, A., Bouin, M.-N., Collilieux, X., and Wöppelmann, G.:
Correlated errors in GPS position time series: Implications for velocity
estimates, J. Geophys. Res., 116, B01405, https://doi.org/10.1029/2010JB007701, 2011.
Santamaria-Gomez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G.,
and Wöppelmann, G.: Uncertainty of the 20th century sea-level rise due
to vertical land motion errors, Earth Planet. Sc. Lett., 473,
24–32, 2017.
Schöne, T., Schön, N., and Thaller, D.: IGS Tide gauge benchmark
monitoring pilot project (TIGA): scientific benefits, J. Geod., 83,
249–261, https://doi.org/10.1007/s00190-008-0269-y, 2009.
Springer, T. A., Beutler, G., and Rothacher, M.: A new solar radiation
pressure model for GPS, Adv. Space Res., 23, 673–676,
https://doi.org/10.1016/S0273-1177(99)00158-1, 1999.
Steigenberger, P., Rothacher, M., Dietrich, R., Fritsche, M., Rülke, A.,
and Vey, S.: Reprocessing of a global GPS network, J. Geophys. Res., 111,
B05402, https://doi.org/10.1029/2005JB003747, 2006.
Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M.,
Prawirodirdjo, L., Miller, M., and Johnson, D. J.: Error analysis of
continuousGPS position time series, J. Geophys. Res., 109, B03412,
https://doi.org/10.1029/2003JB002741, 2004.
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G.,
Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and
Merrifield, M. A.: Forcing factors affecting sea level changes at the coast,
Surv. Geophys., 40, 1351–1397, 2019.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54, 64–92,
2016.
Wöppelmann, G., Martin Miguez, B., Bouin, M.-N., and Altamimi, Z.:
Geocentric sea-level trend estimates from GPS analyses at relevant tide
gauges world-wide, Global Planet. Change, 57, 396–406,
https://doi.org/10.1016/j.gloplacha.2007.02.002, 2007.
Wöppelmann, G., Letetrel, C., Santamaria, A., Bouin, M.-N., Collilieux,
X., Altamimi, Z., Williams, S. D. P., and Martin Miguez, B.: Rate of
sea-level change over the past century in a geocentric reference frame,
Geophys. Res. Lett., 36, L12607, https://doi.org/10.1029/2009GL038720, 2009.
Wöppelmann, G., Gravelle, M., and Testut, L.: SONEL sea-level observing
infrastructure: French contribution to the IUGG Centennial in 2019 and
beyond, Collection du Bureau des Longitudes, 1, 43–53, ISBN 978-2-491688-08-0, 2021.
Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., and Lichten, S. M.: Effects
of antenna orientation on GPS carrier phase, Manuscr. Geodaet. 18, 91–98,
1993.
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS...
Altmetrics
Final-revised paper
Preprint