Articles | Volume 15, issue 11
https://doi.org/10.5194/essd-15-4781-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4781-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An earthquake focal mechanism catalog for source and tectonic studies in Mexico from February 1928 to July 2022
Quetzalcoatl Rodríguez-Pérez
CORRESPONDING AUTHOR
Dirección de Desarrollo Científico, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
F. Ramón Zúñiga
Centro de Geociencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
Related authors
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-92, https://doi.org/10.5194/nhess-2024-92, 2024
Preprint under review for NHESS
Short summary
Short summary
Seismic intensity reflects earthquake damage, although this parameter is often subjective. On the other hand, peak acceleration values are a direct measure of earthquake effects. Seismic intensity was used to describe historical earthquakes, and its use is rare today. For this reason, it is important to have a relationship between these parameters of strong movements in order to predict the acceleration of historical earthquakes.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Solid Earth, 15, 229–249, https://doi.org/10.5194/se-15-229-2024, https://doi.org/10.5194/se-15-229-2024, 2024
Short summary
Short summary
The behavior of seismic energy parameters and their possible dependence on the type of fault for globally detected earthquakes were studied. For this purpose, different energy estimation methods were used. Equations were obtained to convert energies obtained in different ways. The dependence of the seismic energy on the focal mechanism was confirmed up to depths close to 180 km. The results will help to explain the seismic rupture of earthquakes generated at greater depth.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020, https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
Quetzalcoatl Rodríguez-Pérez, Víctor Hugo Márquez-Ramírez, and Francisco Ramón Zúñiga
Solid Earth, 11, 791–806, https://doi.org/10.5194/se-11-791-2020, https://doi.org/10.5194/se-11-791-2020, 2020
Short summary
Short summary
We analyzed reported oceanic earthquakes in Mexico. We used data from different agencies. By analyzing the occurrence of earthquakes, we can extract relevant information such as the level of seismic activity, the size of the earthquakes, hypocenter depths, etc. We also studied the focal mechanisms to classify the different types of earthquakes and calculated the stress in the region. The results will be useful to understand the physics of oceanic earthquakes.
Marisol Monterrubio-Velasco, Quetzalcóatl Rodríguez-Pérez, Ramón Zúñiga, Doreen Scholz, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 12, 1809–1831, https://doi.org/10.5194/gmd-12-1809-2019, https://doi.org/10.5194/gmd-12-1809-2019, 2019
Short summary
Short summary
Earthquakes are the result of brittle failure within the heterogeneous crust of the Earth. In this article, we present a computer code called the stochasTic Rupture Earthquake MOdeL, TREMOL v0.1, developed to investigate the rupture process of asperities on the earthquake rupture surface. According to our results, TREMOL is able to simulate the magnitudes of real earthquakes, showing that it can be a powerful tool to deliver promising new insights into earthquake rupture processes.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-92, https://doi.org/10.5194/nhess-2024-92, 2024
Preprint under review for NHESS
Short summary
Short summary
Seismic intensity reflects earthquake damage, although this parameter is often subjective. On the other hand, peak acceleration values are a direct measure of earthquake effects. Seismic intensity was used to describe historical earthquakes, and its use is rare today. For this reason, it is important to have a relationship between these parameters of strong movements in order to predict the acceleration of historical earthquakes.
Quetzalcoatl Rodríguez-Pérez and F. Ramón Zúñiga
Solid Earth, 15, 229–249, https://doi.org/10.5194/se-15-229-2024, https://doi.org/10.5194/se-15-229-2024, 2024
Short summary
Short summary
The behavior of seismic energy parameters and their possible dependence on the type of fault for globally detected earthquakes were studied. For this purpose, different energy estimation methods were used. Equations were obtained to convert energies obtained in different ways. The dependence of the seismic energy on the focal mechanism was confirmed up to depths close to 180 km. The results will help to explain the seismic rupture of earthquakes generated at greater depth.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020, https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Short summary
The Mexican subduction zone along the Pacific coast is one of the most active seismic zones in the world, where every year larger-magnitude earthquakes shake huge inland cities such as Mexico City. In this work, we use TREMOL (sThochastic Rupture Earthquake ModeL) to simulate the seismicity observed in this zone. Our numerical results reinforce the hypothesis that in some subduction regions single asperities are responsible for producing the observed seismicity.
Quetzalcoatl Rodríguez-Pérez, Víctor Hugo Márquez-Ramírez, and Francisco Ramón Zúñiga
Solid Earth, 11, 791–806, https://doi.org/10.5194/se-11-791-2020, https://doi.org/10.5194/se-11-791-2020, 2020
Short summary
Short summary
We analyzed reported oceanic earthquakes in Mexico. We used data from different agencies. By analyzing the occurrence of earthquakes, we can extract relevant information such as the level of seismic activity, the size of the earthquakes, hypocenter depths, etc. We also studied the focal mechanisms to classify the different types of earthquakes and calculated the stress in the region. The results will be useful to understand the physics of oceanic earthquakes.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, José Carlos Carrasco-Jiménez, Víctor Márquez-Ramírez, and Josep de la Puente
Solid Earth, 10, 1519–1540, https://doi.org/10.5194/se-10-1519-2019, https://doi.org/10.5194/se-10-1519-2019, 2019
Short summary
Short summary
Earthquake aftershocks display spatiotemporal correlations arising from their self-organized critical behavior. Stochastical models such as the fiber bundle (FBM) permit the use of an analog of the physical model that produces a statistical behavior with many similarities to real series. In this work, a new model based on FBM that includes geometrical faults systems is proposed. Our analysis focuses on aftershock statistics, and as a study case we modeled the Northridge sequence.
Marisol Monterrubio-Velasco, Quetzalcóatl Rodríguez-Pérez, Ramón Zúñiga, Doreen Scholz, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 12, 1809–1831, https://doi.org/10.5194/gmd-12-1809-2019, https://doi.org/10.5194/gmd-12-1809-2019, 2019
Short summary
Short summary
Earthquakes are the result of brittle failure within the heterogeneous crust of the Earth. In this article, we present a computer code called the stochasTic Rupture Earthquake MOdeL, TREMOL v0.1, developed to investigate the rupture process of asperities on the earthquake rupture surface. According to our results, TREMOL is able to simulate the magnitudes of real earthquakes, showing that it can be a powerful tool to deliver promising new insights into earthquake rupture processes.
A. Clemente-Chavez, F. R. Zúñiga, J. Lermo, A. Figueroa-Soto, C. Valdés, M. Montiel, O. Chavez, and M. Arroyo
Nat. Hazards Earth Syst. Sci., 14, 1391–1406, https://doi.org/10.5194/nhess-14-1391-2014, https://doi.org/10.5194/nhess-14-1391-2014, 2014
A. Clemente-Chavez, A. Figueroa-Soto, F. R. Zúñiga, M. Arroyo, M. Montiel, and O. Chavez
Nat. Hazards Earth Syst. Sci., 13, 2521–2531, https://doi.org/10.5194/nhess-13-2521-2013, https://doi.org/10.5194/nhess-13-2521-2013, 2013
Related subject area
Domain: ESSD – Land | Subject: Geophysics and geodesy
Synthetic ground motions in heterogeneous geologies from various sources: the HEMEWS-3D database
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
GPS displacement dataset for the study of elastic surface mass variations
Global Navigation Satellite System (GNSS) time series and velocities about a slowly convergent margin processed on high-performance computing (HPC) clusters: products and robustness evaluation
TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)
Comprehensive data set of in situ hydraulic stimulation experiments for geothermal purposes at the Äspö Hard Rock Laboratory (Sweden)
Global physics-based database of injection-induced seismicity
The Weisweiler passive seismological network: optimised for state-of-the-art location and imaging methods
A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021
Moho depths beneath the European Alps: a homogeneously processed map and receiver functions database
DL-RMD: a geophysically constrained electromagnetic resistivity model database (RMD) for deep learning (DL) applications
The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science
In situ stress database of the greater Ruhr region (Germany) derived from hydrofracturing tests and borehole logs
The European Preinstrumental Earthquake Catalogue EPICA, the 1000–1899 catalogue for the European Seismic Hazard Model 2020
Rescue and quality control of historical geomagnetic measurement at Sheshan observatory, China
A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China
In situ observations of the Swiss periglacial environment using GNSS instruments
Permafrost changes in the northwestern Da Xing'anling Mountains, Northeast China, in the past decade
British Antarctic Survey's aerogeophysical data: releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica
Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau
Earth Syst. Sci. Data, 16, 3949–3972, https://doi.org/10.5194/essd-16-3949-2024, https://doi.org/10.5194/essd-16-3949-2024, 2024
Short summary
Short summary
Numerical simulations are a promising approach to characterizing the intensity of ground motion in the presence of geological uncertainties. However, the computational cost of 3D simulations can limit their usability. We present the first database of seismic-induced ground motion generated by an earthquake simulator for a collection of 30 000 heterogeneous geologies. The HEMEWS-3D dataset can be helpful for geophysicists, seismologists, and machine learning scientists, among others.
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024, https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
Short summary
The satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE) and its follower GRACE-FO play a vital role in monitoring mass transportation on Earth. Based on the latest observation data derived from GRACE and GRACE-FO and an updated data processing chain, a new monthly temporal gravity field series, HUST-Grace2024, was determined.
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024, https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Short summary
We present the geophysical data set acquired close to Ny-Ålesund (Svalbard islands) for the characterization of glacial and hydrological processes and features. The data have been organized in a repository that includes both raw and processed (filtered) data and some representative results of 2D models of the subsurface. This data set can foster multidisciplinary scientific collaborations among many disciplines: hydrology, glaciology, climatology, geology, geomorphology, etc.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024, https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
Short summary
This paper discusses strategies to improve the GRACE gravity field monthly solutions computed at the Astronomical Institute of the University of Bern. We updated the input observations and background models, as well as improving processing strategies in terms of instrument data screening and instrument parameterization.
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024, https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary
Short summary
This study recommends a framework for preparing and processing vertical land displacements derived from GPS positioning for future integration with Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) measurements. We derive GPS estimates that only reflect surface mass signals and evaluate them against GRACE (and GRACE-FO). We also quantify uncertainty of GPS vertical land displacement estimates using various uncertainty quantification methods.
Lavinia Tunini, Andrea Magrin, Giuliana Rossi, and David Zuliani
Earth Syst. Sci. Data, 16, 1083–1106, https://doi.org/10.5194/essd-16-1083-2024, https://doi.org/10.5194/essd-16-1083-2024, 2024
Short summary
Short summary
This study presents 20-year time series of more than 350 GNSS stations located in NE Italy and surroundings, together with the outgoing velocities. An overview of the input data, station information, data processing and solution quality is provided. The documented dataset constitutes a crucial and complete source of information about the deformation of an active but slowly converging margin over the last 2 decades, also contributing to the regional seismic hazard assessment of NE Italy.
Wenbin Tang, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang
Earth Syst. Sci. Data, 16, 387–419, https://doi.org/10.5194/essd-16-387-2024, https://doi.org/10.5194/essd-16-387-2024, 2024
Short summary
Short summary
This paper reported a daily 1 km all-weather land surface temperature (LST) dataset for Chinese land mass and surrounding areas – TRIMS LST. The results of a comprehensive evaluation show that TRIMS LST has the following special features: the longest time coverage in its class, high image quality, and good accuracy. TRIMS LST has already been released to the scientific community, and a series of its applications have been reported by the literature.
Arno Zang, Peter Niemz, Sebastian von Specht, Günter Zimmermann, Claus Milkereit, Katrin Plenkers, and Gerd Klee
Earth Syst. Sci. Data, 16, 295–310, https://doi.org/10.5194/essd-16-295-2024, https://doi.org/10.5194/essd-16-295-2024, 2024
Short summary
Short summary
We present experimental data collected in 2015 at Äspö Hard Rock Laboratory. We created six cracks in a rock mass by injecting water into a borehole. The cracks were monitored using special sensors to study how the water affected the rock. The goal of the experiment was to figure out how to create a system for generating heat from the rock that is better than what has been done before. The data collected from this experiment are important for future research into generating energy from rocks.
Iman R. Kivi, Auregan Boyet, Haiqing Wu, Linus Walter, Sara Hanson-Hedgecock, Francesco Parisio, and Victor Vilarrasa
Earth Syst. Sci. Data, 15, 3163–3182, https://doi.org/10.5194/essd-15-3163-2023, https://doi.org/10.5194/essd-15-3163-2023, 2023
Short summary
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Claudia Finger, Marco P. Roth, Marco Dietl, Aileen Gotowik, Nina Engels, Rebecca M. Harrington, Brigitte Knapmeyer-Endrun, Klaus Reicherter, Thomas Oswald, Thomas Reinsch, and Erik H. Saenger
Earth Syst. Sci. Data, 15, 2655–2666, https://doi.org/10.5194/essd-15-2655-2023, https://doi.org/10.5194/essd-15-2655-2023, 2023
Short summary
Short summary
Passive seismic analyses are a key technology for geothermal projects. The Lower Rhine Embayment, at the western border of North Rhine-Westphalia in Germany, is a geologically complex region with high potential for geothermal exploitation. Here, we report on a passive seismic dataset recorded with 48 seismic stations and a total extent of 20 km. We demonstrate that the network design allows for the application of state-of-the-art seismological methods.
Jia-Hao Li, Zhao-Liang Li, Xiangyang Liu, and Si-Bo Duan
Earth Syst. Sci. Data, 15, 2189–2212, https://doi.org/10.5194/essd-15-2189-2023, https://doi.org/10.5194/essd-15-2189-2023, 2023
Short summary
Short summary
The Advanced Very High Resolution Radiometer (AVHRR) is the only sensor that has the advantages of frequent revisits (twice per day), relatively high spatial resolution (4 km at the nadir), global coverage, and easy access prior to 2000. This study developed a global historical twice-daily LST product for 1981–2021 based on AVHRR GAC data. The product is suitable for detecting and analyzing climate changes over the past 4 decades.
Konstantinos Michailos, György Hetényi, Matteo Scarponi, Josip Stipčević, Irene Bianchi, Luciana Bonatto, Wojciech Czuba, Massimo Di Bona, Aladino Govoni, Katrin Hannemann, Tomasz Janik, Dániel Kalmár, Rainer Kind, Frederik Link, Francesco Pio Lucente, Stephen Monna, Caterina Montuori, Stefan Mroczek, Anne Paul, Claudia Piromallo, Jaroslava Plomerová, Julia Rewers, Simone Salimbeni, Frederik Tilmann, Piotr Środa, Jérôme Vergne, and the AlpArray-PACASE Working Group
Earth Syst. Sci. Data, 15, 2117–2138, https://doi.org/10.5194/essd-15-2117-2023, https://doi.org/10.5194/essd-15-2117-2023, 2023
Short summary
Short summary
We examine the spatial variability of the crustal thickness beneath the broader European Alpine region by using teleseismic earthquake information (receiver functions) on a large amount of seismic waveform data. We compile a new Moho depth map of the broader European Alps and make our results freely available. We anticipate that our results can potentially provide helpful hints for interdisciplinary imaging and numerical modeling studies.
Muhammad Rizwan Asif, Nikolaj Foged, Thue Bording, Jakob Juul Larsen, and Anders Vest Christiansen
Earth Syst. Sci. Data, 15, 1389–1401, https://doi.org/10.5194/essd-15-1389-2023, https://doi.org/10.5194/essd-15-1389-2023, 2023
Short summary
Short summary
To apply a deep learning (DL) algorithm to electromagnetic (EM) methods, subsurface resistivity models and/or the corresponding EM responses are often required. To date, there are no standardized EM datasets, which hinders the progress and evolution of DL methods due to data inconsistency. Therefore, we present a large-scale physics-driven model database of geologically plausible and EM-resolvable subsurface models to incorporate consistency and reliability into DL applications for EM methods.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Andrea Rovida, Andrea Antonucci, and Mario Locati
Earth Syst. Sci. Data, 14, 5213–5231, https://doi.org/10.5194/essd-14-5213-2022, https://doi.org/10.5194/essd-14-5213-2022, 2022
Short summary
Short summary
EPICA is the 1000–1899 catalogue compiled for the European Seismic Hazard Model 2020 and contains 5703 earthquakes with Mw ≥ 4.0. It relies on the data of the European Archive of Historical Earthquake Data (AHEAD), both macroseismic intensities from historical seismological studies and parameters from regional catalogues. For each earthquake, the most representative datasets were selected and processed in order to derive harmonised parameters, both from intensity data and parametric catalogues.
Suqin Zhang, Changhua Fu, Jianjun Wang, Guohao Zhu, Chuanhua Chen, Shaopeng He, Pengkun Guo, and Guoping Chang
Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, https://doi.org/10.5194/essd-14-5195-2022, 2022
Short summary
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Alice C. Frémand, Julien A. Bodart, Tom A. Jordan, Fausto Ferraccioli, Carl Robinson, Hugh F. J. Corr, Helen J. Peat, Robert G. Bingham, and David G. Vaughan
Earth Syst. Sci. Data, 14, 3379–3410, https://doi.org/10.5194/essd-14-3379-2022, https://doi.org/10.5194/essd-14-3379-2022, 2022
Short summary
Short summary
This paper presents the release of large swaths of airborne geophysical data (including gravity, magnetics, and radar) acquired between 1994 and 2020 over Antarctica by the British Antarctic Survey. These include a total of 64 datasets from 24 different surveys, amounting to >30 % of coverage over the Antarctic Ice Sheet. This paper discusses how these data were acquired and processed and presents the methods used to standardize and publish the data in an interactive and reproducible manner.
Cited articles
Abbott, E. R. and Brudzinski, M. R.: Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone, J. S. Am. Earth Sci., 63, 279–292, https://doi.org/10.1016/j.jsames.2015.07.012, 2015.
Aguilar-Rosales, M. A.: Determinación del tipo de fuentes sísmicas dentro de la Cuenca de México y sus relación con la geologia local, B.Eng. thesis, UNAM, Mexico, 38 pp., https://hdl.handle.net/20.500.14330/TES01000338996, 2004.
Albores, A., Reyes, A., Brune, J. N., Gonzalez, J., Garcilazo, L., and Suarez, F.: Seismicity studies in the region of the Cerro Prieto Geothermal field, Geothermics, 9, 65–77, https://doi.org/10.1016/0375-6505(80)90024-3, 1980.
Álvarez-Gómez, J. A.: FMC- Earthquake focal mechanisms data management, cluster and classification, Software X, 9, 299–307, https://doi.org/10.1016/j.softx.2019.03.008, 2019.
Angulo-Carrillo, J.: Análisis de la actividad sísmica e hidrotermal del Volcán La Malinche, México, M.S. thesis, UNAM, Mexico, 85 pp., https://hdl.handle.net/20.500.14330/TES01000775962, 2018.
Antayhua-Vera, Y. T.: Sismicidad en el campo geotermico de los Humeros-Puebla (1997–2004), su relacion con los pozos y la tectonica local, M.S. thesis, UNAM, Mexico, 225 pp., https://hdl.handle.net/20.500.14330/TES01000697555, 2007.
Arámbula-Mendoza, R.: Estado de esfuerzos en el Volcán Popocatépetl obtenido con mecanismos focales, en el periodo de actividad de 1996 a 2003, M.S. thesis, UNAM, Mexico, 122 pp., https://hdl.handle.net/20.500.14330/TES01000619886, 2007.
Astiz, L. M.: Sismicidad en Acambay, Estado de Mexico. El temblor del 22 de febrero de 1979, B.Eng. thesis, UNAM, Mexico, 130 pp., https://hdl.handle.net/20.500.14330/TES01000021837, 1980.
Astiz, L. M. and Kanamori, H.: An earthquake doublet in Ometepec, Guerrero, Mexico, Phys. Earth Planet. Int., 34, 24–45, https://doi.org/10.1016/0031-9201(84)90082-7, 1984.
Bello-Segura, D. I.: Parámetros de la fuente de sismos con epicentros en el Valle de México durante 2008–2012, M.S. thesis, UNAM, Mexico, 85 pp., https://hdl.handle.net/20.500.14330/TES01000706225, 2013.
Benz, H.: Building a National Seismic Monitoring Center: NEIC from 2000 to the Present, Seismol. Res. Lett., 88, 457–461, https://doi.org/10.1785/0220170034, 2017.
Bernal-Esquia, Y. I.: Microzonificacion sismica de la Ciudad de Tlaxcala, Mexico, M.S. thesis, UNAM, 130 pp., https://hdl.handle.net/20.500.14330/TES01000608034, 2006.
Beroza, G., Rial, J. A., and McNally, K. C.: Source mechanisms of the June 7, 1982 Ometepec, Mexico earthquake, Geophys. Res. Lett., 11, 689–692, https://doi.org/10.1029/GL011i008p00689, 1984.
Burbach, G., Frolich, C., Pennington, W., and Matumoto, T.: Seismicity and tectonics of the subducted Cocos plate, J. Geophys. Res., 89, 7719–7735, https://doi.org/10.1029/JB089iB09p07719, 1984.
California Institute of Technology and United States Geological Survey Pasadena: Southern California Seismic Network, https://doi.org/10.7914/SN/CI, 1926.
Campos-Enriquez, J. O., Rodríguez, M., Delgado-Rodríguez, O., and Milán, M.: Contribution to the tectonics of the northern portion of the central sector of the trans-Mexican Volcanic Belt, Geol. Soc. Am., 334, 223–235, https://doi.org/10.1130/0-8137-2334-5.223, 2000.
Chael, E. P. and Stewart, G. S.: Recent large earthquakes along the Middle American Trench and their implications for the subduction process, J. Geophys. Res., 87, 329–338, https://doi.org/10.1029/JB087iB01p00329, 1982.
Chavacán-Ávila, M. R.: Catalogo de sismicidad local para la Cuenca de Mexico, M.S. thesis, UNAM, Mexico, 159 pp., https://hdl.handle.net/20.500.14330/TES01000618079, 2007.
Chavacán-Avila, M. R.: Parámetros de fuente asociados a la sismicidad del sistema de fallas de la Sierra del Chichinautzin, B.Eng. thesis, UNAM, Mexico, 90 pp., https://hdl.handle.net/20.500.14330/TES01000320606, 2003.
Chávez-Hernández, O. C.: Determinación de mecanismos focales en el Valle de México durante el periodo 2014–2016, B.Eng. thesis, IPN, Mexico, 68 pp., http://tesis.ipn.mx/handle/123456789/29975, 2019.
Clemente-Chavez, A., Figueroa-Soto, A., Zúñiga, F. R., Arroyo, M., Montiel, M., and Chavez, O.: Seismicity at the northeast edge of the Mexican Volcanic Belt (MVB) and activation of an undocumented fault: the Peñamiller earthquake sequence of 2010–2011, Querétaro, Mexico, Nat. Hazards Earth Syst. Sci., 13, 2521–2531, https://doi.org/10.5194/nhess-13-2521-2013, 2013.
Cocco, M., Pacheco, J., Singh, S. K., and Courboulex, F.: The Zihuatanejo, Mexico, earthquake of 1994 December 10 (M= 6.6): source characteristics and tectonic implications, Geophys. J. Int., 131, 135–145, https://doi.org/10.1111/j.1365-246X.1997.tb00600.x, 1997.
Cornell, C. A.: Engineering seismic risk analysis, B. Seismol. Soc. Am., 58, 1583–1606, https://doi.org/10.1785/BSSA0580051583, 1968.
Corona-Fernández, R. D. and Santoyo, M. A.: Re-examination of the 1928 Parral, Mexico earthquake (M6.3) using a new multiplatform graphical vectorization and correction software for legacy seismic data, Geosci. Data J., 10, 1–15, https://doi.org/10.1002/gdj3.159, 2022.
Cruz-Jiménez, H.: Análisis de las réplicas de los sismos del 3 (M= 4.1) y 5 (M= 4.2) de junio de 1996 en Bella Vista, Querétaro, B.Eng. thesis, IPN, Mexico, 95 pp., 2000.
Dean, B. W. and Drake, C. L.: Focal mechanism solutions and tectonics of the Middle America arc, J. Geol., 86, 111–128, https://doi.org/10.1086/649659, 1978.
De la Vega-Cabrera, O. O.: Un método de inversion del tensor de momento sismico: implementacion y aplicacion a las replicas del temblor de 20 de marzo 2012, Ometepec, Guerrero, UNAM, Mexico, B. Eng. thesis, 114 pp., https://hdl.handle.net/20.500.14330/TES01000708658, 2014.
Delgadillo-Peralta, M.: Un estudio de sismicidad en el Valle de México durante el periodo de 1996 al 2000. B.Eng. thesis, UNAM, Mexico, 63 pp., https://hdl.handle.net/20.500.14330/TES01000300224, 2001.
Delgado-Vazquez, M. A.: Zonificacion sismica para la zona urbana de Guadalajara, B.Eng. thesis, UNAM, Mexico, 95 pp., https://hdl.handle.net/20.500.14330/TES01000227931, 1995.
Di Giacomo, D., Engdahl, E. R., and Storchak, D. A.: The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877–1899, https://doi.org/10.5194/essd-10-1877-2018, 2018.
Domínguez-Reyes, T.: Estudio del temblor de Tehuantepec del 22 de Junio de 1979 (mb- 6.2, h-113 km) mediante modelado de ondas de cuerpo, B.Eng. thesis, UNAM, Mexico, 48 pp., https://hdl.handle.net/20.500.14330/TES01000021880, 1983.
Domínguez-Reyes, T., Rodríguez Lozoya, H. E., Reyes, G., Quintanar Robles, L., Aguilar Meléndez, A., and Rodríguez Leyva, H. E.: Sorce parameters, focal mechanisms and stress tensor inversion from moderate earthquakes and its relationship with subduction zone, Geofis. Int., 58, 127–137, https://doi.org/10.22201/igeof.00167169p.2018.58.2.1965, 2019.
Domínguez-Rivas, J.: Geometría de la Placa de Cocos en la región del río Balsas, Guerrero, B.Eng. thesis, UNAM, Mexico, 72 pp., https://hdl.handle.net/20.500.14330/TES01000152096, 1991.
Doser, D. I.: Faulting process of the 1956 San Miguel, Baja California, earthquake sequence, Pure Appl. Geophys., 139, 3–16, https://doi.org/10.1007/BF00876824, 1992.
Doser, D. I. and Rodriguez, J.: The seismicity of Chihuahua, Mexico, and the 1928 Parral earthquake, Phys. Earth Planet. Int., 78, 97–104, https://doi.org/10.1016/0031-9201(93)90086-O, 1993.
Dougherty, S. L. and Clayton, R. W.: Seismicity and structure in central Mexico: evidence for a possible slab tear in the South Cocos plate, J. Geophys. Res., 119, 3424–3447, https://doi.org/10.1002/2013JB010883, 2014.
Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H.: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981.
Dziewonski, A. M. and Woodhouse, J. H.: An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981, J. Geophys. Res., 88, 3247–3271, https://doi.org/10.1029/JB088iB04p03247, 1983.
Ebel, J. E., Burdick, L. J., and Stewart, G. S.: The source mechanism of the August 7, 1966 El Golfo earthquake, B. Seismol. Soc. Am., 68, 1281–1292, https://doi.org/10.1785/BSSA0680051281, 1978.
Ekström, G., Nettles, M., and Dziewonski, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Int., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Escobedo-Zenil, D.: El sismo del 09 de Octubre de 1995 en Colima, Un estudio telesísmico, M.S. thesis, UNAM, Mexico, 67 pp., https://hdl.handle.net/20.500.14330/TES01000249023, 1997.
Euler, G. G.: Seizmo package, https://github.com/g2e/seizmo (last access: October 2023), 2014.
Fabriol, H. and Munguía, L.: Seismic activity at the Cerro Prieto geothermal area (Mexico) from August 1994 to December 1995, and its relationship with tectonics and fluid exploitation, Geophys. Res. Lett., 24, 1807–1810, https://doi.org/10.1029/97GL01669, 1997.
Franco, S. I., Canet, C., Iglesias, A., and Valdés-Gonzalez, C.: Seismic activity in the Gulf of Mexico. A preliminary analysis, Bol. Soc. Geol. Mex., 65, 447–455, https://doi.org/10.18268/BSGM2013v65n3a2, 2013.
Franco, S. I., Iglesias, A., and Fukuyama, E.: Moment tensor catalog for Mexican earthquakes: almost two decades of seismicity, Geofis. Int., 59, 54–82, https://doi.org/10.22201/igeof.00167169p.2020.59.2.2081, 2020.
Frohlich, C.: Seismicity of the central Gulf of Mexico, Geology, 10, 103–106, https://doi.org/10.1130/0091-7613(1982)10<103:SOTCGO>2.0.CO;2, 1982.
García, D., Singh, S. K., Herrádiz, M., Pacheco, J. F., and Ordaz, M.: Inslab earthquakes of Central Mexico: Q, source spectra, and stress drop, Bull. Seismol. Soc. Am., 94, 789–802, https://doi.org/10.1785/0120030125, 2004.
GEMex project: Seismic structures of the Acoculco and Los Humeros geothermal fields, European Union's Horizon 2020 programme for Research and Innovation, Open File Rep. D5.3, 128 pp., https://www.gemex-h2020.eu/index.php?option=com_content&view=article&id=12&catid=2&lang=en&Itemid=114 (last access: October 2023), 2020.
Goff, J. A., Bergman, E. A., and Solomon, S. C.: Earthquake source mechanisms and transform fault tectonics in the Gulf of California, J. Geophys. Res., 92, 10485–10510, https://doi.org/10.1029/JB092iB10p10485, 1987.
Gómez-Arredondo, C. M., Montalvo-Arrieta, J. C., Iglesias-Mendoza, A., and Espindola-Castro, V. H.: Relocation and seismotectonic interpretation of the seismic swarm of August–December of 2012 in the Linares area, northeastern Mexico, Geofis. Int., 55, 95–106, https://doi.org/10.22201/igeof.00167169p.2016.55.2.1714, 2016.
González, J., Nava, F. A., and Reyes, C. A.: Foreshock and aftershock activity of the 1976 Mesa de Andrade, Mexico, earthquake, B. Seismol. Soc. Am., 74, 223–233, https://doi.org/10.1785/BSSA0740010223, 1984.
González, J. J. and Suárez, F.: Geological and seismic evidence of a new branch of the Agua Blanca Fault, Geophys. Res. Lett., 11, 42–45, https://doi.org/10.1029/GL011i001p00042, 1984.
González, M., Munguía, L., Vidal, A., and Wong, V.: Two MW 4.8 Cerro Prieto, Baja California, México, earthquakes on 1 June and 10 September 1999: strong-motion observations, B. Seismol. Soc. Am., 91, 1456–1470, https://doi.org/10.1785/0120000033, 2001.
González, M., Vidal, A., and Munguía, L.: An ML scale for the La Paz-Los Cabos region, Baja California Sur, Mexico, B. Seismol. Soc. Am., 96, 1296–1304, https://doi.org/10.1785/0120050196, 2006.
González-Ruiz, J.: Earthquake source rnechanics and tectonophysics of the middle America subduction zone in Mexico, Ph.D. Thesis, U. of California, Santa Cruz, 1986.
Gonzalez-Ruiz, L. C.: Patrones de sismicidad en Guerrero y peligro sismico, M.S. thesis, UNAM, Mexico, 69 pp., https://hdl.handle.net/20.500.14330/TES01000057548, 1987.
Granados-Chavarría, I.: Analisis de los sismos de Julio de 2012 en el Valle de Chalco, Estado de Mexico: estudios de fuente y efectos en superficie, B.Eng. thesis, UNAM, Mexico, 115 pp., https://hdl.handle.net/20.500.14330/TES01000739713, 2016.
Guilhem, A. and Dreger, D. S.: Rapid detection and characterization of large earthquakes using quasi-finite-source Green's functions in continuous moment tensor inversion, Geophys. Res. Lett., 38, L13318, https://doi.org/10.1029/2011GL047550, 2011.
Guzmán-Speziale, M., Pennington, W. D., and Matumoto, T.: The triple junction of the North America Cocos, and Caribbean plates: seismicity and tectonics, Tectonics, 8, 981–997, https://doi.org/10.1029/TC008i005p00981, 1989.
Havskov, J., Singh, S. K., Nava, E., Dominguez, T., and Rodríguez, M.: Playa Azul, Michoacan, Mexico, earthquake of 25 October 1981 (Ms= 7.3), B. Seismol. Soc. Am., 73, 449–457, 1983.
Herrman, R. B., Benz, H., and Ammon, C. J.: Monitoring the earthquake source process in North America, B. Seismol. Soc. Am., 101, 2609–2625, https://doi.org/10.1785/0120110095, 2011.
Huesca-Pérez, E.: Sismicidad y el campo de esfuerzos en la Cuenca de Mexico, M.S. thesis, UNAM, Mexico, 118 pp., https://hdl.handle.net/20.500.14330/TES01000631690, 2008.
Huesca-Pérez, E., Gutierrez-Reyes, E., and Quintanar, L.: Seismic source processes of 25 earthquakes (MW > 5) in the Gulf of California, B. Seismol. Soc. Am., 112, 714–733, https://doi.org/10.1785/0120210218, 2022.
Hurtado-Díaz, A.: Geometria y estado de esfuerzos de la zona de Benioff de la placa de Rivera bajo el Bloque de Jalisco, B.Eng. thesis, UNAM, Mexico, 61 pp., 2005.
Iglesias, A., Singh, S. K., Pacheco, J. F., and Ordaz, M.: A source and wave propagation study of the Copalillo, Mexico, earthquake of 21 July 2000 (Mw 5.9): implications for seismic hazard in Mexico City from inslab earthquakes, B. Seismol. Soc. Am., 92, 1060–1071, https://doi.org/10.1785/0120010144, 2002.
International Seismological Centre: On-line Bulletin, https://doi.org/10.31905/D808B830, 2022.
Jaramillo, S. H. and Suárez, G.: The 4 december 1948 earthquake (Mw 6.4): evidence of reverse faulting beneath the Tres Marías escarpment and its implications for the Rivera-North American relative plate motion, Geofis. Int., 50, 313–317, https://doi.org/10.22201/igeof.00167169p.2011.50.3.229, 2011.
Jimenez, Z. and Ponce, L.: Focal mechanism of six large earthquakes in Northern Oaxaca, Mexico, for the period 1928–1973, Geofis. Int., 17, 379–386, https://doi.org/10.22201/igeof.00167169p.1978.17.3.1059, 1978.
Jimenez-Jimenez, Z.: Mecanismo focal de siete temblores (mb≥5.5) ocurridos en la región de Orizaba, México, en el periodo de 1928 a 1973, B.Eng. thesis, UNAM, Mexico, 102 pp., https://hdl.handle.net/20.500.14330/TES01000072217, 1977.
Jimenez-Jimenez, Z.: Evolución del proceso eruptivo del Volcán El Chichón de Marzo-Abril de 1982, M.S. thesis, UNAM, Mexico, 102 pp., https://hdl.handle.net/20.500.14330/TES01000272990, 1999.
Johnson, T. L., Madrid, J., and Koczynski, T.: A study of microseismicity in Northern Baja California, Mexico, B. Seismol. Soc. Am., 66, 1921–1929, https://doi.org/10.1785/BSSA0660061921, 1976.
Kanamori, H. and Stewart, G.: Seismological aspects of the Guatemala earthquake of February 4, 1976, J. Geophys. Res., 83, 3427–3434, https://doi.org/10.1029/JB083iB07p03427, 1978.
Kaverina, A. N., Lander, A. V., and Prozorov, A. G.: Global creepex distribution and its relation to earthquake-source geometry and tectonic origin, Geophys. J. Int., 125, 249–265, https://doi.org/10.1111/j.1365-246X.1996.tb06549.x, 1996.
Knopoff, L. and Gilbert, F.: First motions from seismic sources, B. Seismol. Soc. Am., 50, 117–134, https://doi.org/10.1785/BSSA0500010117, 1960.
Lahr, J. C.: HYPOELLIPSE: a computer program for determining local earthquake hypocenter parameters, magnitude and first motion pattern, U.S. Geol. Surv., Open-File Rept, 79-431, 57 pp., https://doi.org/10.3133/ofr79431, 1979.
LeFevre, L. V. and McNally, K. C.: Stress distribution and subduction of aseismic ridges in the Middle America subduction zone, J. Geophys. Res., 90, 4495–4510, https://doi.org/10.1029/JB090iB06p04495, 1985.
Lees, J. M.: RFOC. Graphics for Spherical Distributions and Earthquake FocalMechanisms, R package, R Foundation for Statistical Computing, Vienna, Austria, https://cran.r-project.org/web/packages/RFOC/index.html (last access: October 2023), 2018.
Lentas, K. and Harris, J.: Enhanced performance of ISC focal mechanism computations as a result of automatic first-motion polarity picking optimization, J. Seismol., 23, 1141–1159, https://doi.org/10.1007/s10950-019-09862-x, 2019.
Lentas, K., Di Giacomo, D., Harris, J., and Storchak, D. A.: The ISC Bulletin as a comprehensive source of earthquake source mechanisms, Earth Syst. Sci. Data, 11, 565–578, https://doi.org/10.5194/essd-11-565-2019, 2019.
Lesage, P.: Determinacion de parametros focales del temblor de Huajuapan de Leon, Oaxaca, del 24 de Octubre de 1980, usando sismogramas sinteticos de ondas compresionales y un metodo de inversion linealizada, Geofis. Int., 23, 57–72, https://doi.org/10.22201/igeof.00167169p.1984.23.1.796, 1984.
Mai, P. M. and Thingbaijam, K. K. S.: SRCMOD: An online database of finite-fault rupture models, Seismol. Res. Lett., 85, 1348—1357, https://doi.org/10.1785/0220140077, 2014.
Martínez-López M. R.: Estudio sismico de la estructura cortical en el bloque de Jalisco a partir de registros locales del proyecto MARS, M.S. thesis, UNAM, Mexico, 129 pp., https://hdl.handle.net/20.500.14330/TES01000667086, 2011.
Masse, R. P. and Needham, R. E.: NEIC – The National Earthquake Information Center, Earthquakes and Volcanoes, USGS, 21, 4–44, 1989. -
Méndez-Alarcón, M. A.: Análisis del sismo del 19 de septiembre del 2017 y su secuencia de réplicas, B.Eng. thesis, UNAM, Mexico, 108 pp., https://hdl.handle.net/20.500.14330/TES01000812837, 2020.
Mendoza-Zúñiga, J. F.: Fallamiento asociado a la sismicidad mayor ocurrida en el Valle de México durante 2017, B.Eng. thesis, UNAM, Mexico, 75 pp., https://hdl.handle.net/20.500.14330/TES01000810969, 2021.
Molnar, P. and Sykes, L. R.: Tectonics of the Caribbean and Middle American region from focal mechanisms and seismicity, Geol. Soc. Am. Bull., 80, 1639–1684, https://doi.org/10.1130/0016-7606(1969)80[1639:TOTCAM]2.0.CO;2, 1969.
Molnar, P.: Fault plane solutions of earthquakes and direction of motion in the Gulf of California and on the Rivera Fracture zone, Geol. Soc. Am. Bull., 84, 1651–1658, https://doi.org/10.1130/0016-7606(1973)84, 1973.
Morales-Matamoros, L. D.: Microtemblores y sismotectonica de la Costa de Guerrero entre Acapulco y Tecpan, Master Thesis, UNAM, 118 pp., https://hdl.handle.net/20.500.14330/TES01000053327, 1980.
Mota-Palomino, R., Andrieux, J., and Bonnin, J.: Bosquejo sismotectonico del Sur de Mexico, Geofis. Int., 25, 207–231, https://doi.org/10.22201/igeof.00167169p.1986.25.1.805, 1986.
Munguía, L. and Brune, J. N.: High stress drop events in the Victoria, Baja California earthquake swarm of 1978 March, Geophys. J. Int., 76, 725–752, https://doi.org/10.1111/j.1365-246X.1984.tb01919.x, 1984.
Munguía, L., González-Escobar, M., Navarro, M., Valdez, T., Mayer, S., Aguirre, A., Wong, V., and Luna, M.: Active crustal deformation in the area of San Carlos, Baja California Sur, Mexico as shown by data of local earthquakes sequences, Pure Appl. Geophys., 173, 3631–3644, https://doi.org/10.1007/s00024-015-1217-4, 2016a.
Munguía, L., Mayer, S., Aguirre, A., Méndez, I., González-Escobar, M., and Luna, M.: The 2006 Bahía Asunción earthquake swarm: seismic evidence of active deformation along the Western Margin of Baja California Sur, Mexico, Pure Appl. Geophys., 173, 3615–3629, https://doi.org/10.1007/s00024-015-1184-9, 2016b.
Natali, S. G. and Sbar, M. L.: Seismicity in the epicentral region of the 1887 Northeastern Sonoran earthquake, Mexico, B. Seismol. Soc. Am., 72, 181–196, https://doi.org/10.1785/BSSA0720010181, 1982.
Néquiz-Guillén, B. A.: Estudio de las características focales de la sismicidad en el estado de Hidalgo, B.Eng. thesis, UNAM, Mexico, 78 pp., https://hdl.handle.net/20.500.14330/TES01000812225, 2021.
Núñez-Cornú, F. J. and Sánchez-Mora, C.: Stress field estimations for Colima Volcano, Mexico, based on seismic data, B. Volcanol., 60, 568–580, https://doi.org/10.1007/s004450050252, 1998.
Núñez-Cornú, F. J., Reyes-Dávila, G. A., Rutz Lopez, M., Trejo Gómez, E., Camarena-García, M. A., and Ramírez-Vazquez, C. A.: The 2003 Armería, México earthquake (MW 7.4): mainshock and early aftershocks, Seismol. Res. Lett., 75, 734–743, https://doi.org/10.1785/gssrl.75.6.734, 2004.
Núñez-Cornú, F. J., Rengifo, W. M., Escalona Alcázar, F. J., Núñez, D., Quinteros Cartaya, C. B., and Trejo Gómez, E.: The seismic sequences of December 2015 (ML = 4.3) and May 2016 (ML
= 4.9) in Guadalajara, Jalisco, México, J. S. Am. Earth Sci., 108, 103201, https://doi.org/10.1016/j.jsames.2021.103201, 2021.
Núñez, D., Núñez-Cornú, F. J., and Rowe, C. A.: Recent seismicity at Ceboruco Volcano (Mexico), J. Vol. Geotherm. Res., 421, 107451, https://doi.org/10.1016/j.jvolgeores.2021.107451, 2022.
Okal, E. A. and Borrero, J. C.: The “tsunami earthquake” of 1932 June 22 in Manzanillo, Mexico: seismological study and tsunami simulations, Geophys. J. Int., 187, 1443–1459, https://doi.org/10.1111/j.1365-246X.2011.05199.x, 2011.
Oregel-Morales, L. A.: Análisis de la sismicidad en el Campo Geotérmico de Humeros Puebla, México en el marco del Proyecto GEMEX, B.S. thesis, UMSNH, Mexico, 105 pp., 2019.
Ortega, R. and Quintanar, L.: Seismic evidence of a ridge-parallel strike-slip fault off the transform system in the Gulf of California, Geophys. Res. Lett., 37, L06301, https://doi.org/10.1029/2009GL042208, 2010.
Pacheco, J. F. and Singh, S. K.: Source parameters of two moderate Mexican earthquakes estimated from single-station, near-source recording, and from MT inversion of regional data: a comparison of the results, Geofis. Int., 37, 95–102, https://doi.org/10.22201/igeof.00167169p.1998.37.2.398, 1998.
Pacheco, J. F. and Singh, S. K.: Seismicity and state of stress in Guerrero segment of the Mexican subduction zone, J. Geophys. Res., 115, B01303, https://doi.org/10.1029/2009JB006453, 2010.
Pacheco, J. F., Sykes, L. R., and Scholz, C. H.: Nature of seismic coupling along simple plate boundaries of the subduction type, J. Geophys. Res., 98, 14133–14159, https://doi.org/10.1029/93JB00349, 1993.
Pacheco, J. F., Bandy, W., Reyes-Dávila, G. A., Núñez-Cornú, F. J., Ramírez-Vázquez, C. A., and Barrón, J. R.: The Colima, Mexico earthquake (MW 5.3) of 7 March 2000: seismic activity along the Southern Colima Rift, B. Seismol. Soc. Am., 93, 1458–1467, https://doi.org/10.1785/0120020193, 2003.
Pardo, M. and Suárez, G: Steep subduction geometry of the Rivera plate beneath the Jalisco Block in Western Mexico, Geophys. Res. Lett., 20, 2391–2394, https://doi.org/10.1029/93GL02794, 1993.
Pardo, M. and Suárez, G.: Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications, J. Geophys. Res., 100, 12357–12373, https://doi.org/10.1029/95JB00919, 1995.
Pasyanos, M. E., Dreger, D. S., Romanowicz, B.: Toward real-time estimation of regional moment tensors, B. Seismol. Soc. Am., 86, 1255–1269, https://doi.org/10.1785/BSSA0860051255, 1996.
Pérez, J. L.: Estudio de microsismicidad en la caldera La Reforma del complejo volcanico Las Tres Virgenes, Baja California Sur, Mexico, M.S. thesis, CICESE, Mexico, 88 pp., http://cicese.repositorioinstitucional.mx/jspui/handle/1007/1042, 2017.
Pérez-Campos, X., Singh, S. K., Iglesias, A., Alcántara, L., Ordaz, M., and Legrand, D.: Intraslab Mexican earthquakes of the 27 April 2009 (Mw 5.8) and 22 May 2009 (Mw 5.6): a source and ground motion study, Geofis. Int., 49, 153–163, https://doi.org/10.22201/igeof.00167169p.2010.49.3.111, 2010.
Pinzón, J. I., Núñez-Cornú, F. J., and Rowe, C. A.,: Magma intrusion near Volcan Tancítaro: evidence from seismic analysis, Phys. Earth Planet. Int., 262, 66–79, https://doi.org/10.1016/j.pepi.2016.11.004, 2017.
Quintanar, L., Yamamoto, J., and Jiménez, Z.: Source mechanism of two 1994 intermediate-depth-focus earthquakes in Guerrero, Mexico, B. Seismol. Soc. Am., 89, 1004–1018, https://doi.org/10.1785/BSSA0890041004, 1999.
Quintanar, L., Rodríguez-González, M., and Campos-Enríquez, O.: A shallow crustal earthquake doublet from the Trans-Mexican Volcanic Belt (Central Mexico), B. Seismol. Soc. Am., 94, 845–855, https://doi.org/10.1785/0120030057, 2004.
Quintanar, L., Ortega, R., Rodríguez-Lozoya, H. E., and Domínguez-Reyes, T.: The 4 January 2006 (MW 6.6), San Pedro Martir earthquake: example of an earthquake for calibrating excitation and attenuation studies, B. Seismol. Soc. Am., 109, 2399–2414, https://doi.org/10.1785/0120190146, 2019.
re3data.org: GEOFON, re3data.org – Registry of Research Data Repositories [data set], https://doi.org/10.17616/R36613, 2023.
Rebollar, C. J., Espíndola, V. H., Uribe, A., Mendoza, A., and Pérez-Vertti, A.: Distributions of stresses and geometry of the Wadati-Benioff zone under Chiapas, Mexico, Geofis. Int., 38, 95–106, https://doi.org/10.22201/igeof.00167169p.1999.38.2.386, 1999.
Rebollar, C. J., Quintanar, L., Castro, R. R., Day, S. M., Madrid, J., Brune, J. N., Astiz, L., and Vernon, F.: Source characteristics of a 5.5 magnitude earthquake that occurred in the transform fault system of the Delfin Basin in the Gulf of California, B. Seismol. Soc. Am., 91, 781–791, https://doi.org/10.1785/0120000077, 2001.
Rebollar, C. J., Reyes, L. M., Quintanar, L., and Arellano, J. F.: Stress heterogeneity in the Cerro Prieto Geothermal field, Baja California, Mexico, B. Seismol. Soc. Am., 93, 783–794, https://doi.org/10.1785/0120020003, 2003.
Reyes, A., Brune, J. N., and Lomnitz, C.: Source mechanism and aftershock study of the Colima Mexico earthquake of January 30, 1973, B. Seismol. Soc. Am., 69, 1819–1840, https://doi.org/10.1785/BSSA0690061819, 1979.
Rodríguez-Cardozo, F. R.: Inversion del tensor de momento sismicos asociado a eventos de magnitud intermedia en Mexico, M.S. thesis, UNAM, Mexico, 84 pp., https://hdl.handle.net/20.500.14330/TES01000740195, 2016.
Rodríguez-Lozoya, H. E., Quintanar Robles, L., Ortega, R., Rebollar, C. J., and Yagi, Y.: Rupture process of four medium-sized earthquakes that occurred in the Gulf of California, J. Geophys. Res., 113, B10301, https://doi.org/10.1029/2007JB005323, 2008.
Rodríguez-Lozoya, H. E., Quintanar Robles, L., Huerta López, C. I., Bojórquez-Mora, E., and León-Monzón, I.: Source parameters of the July 30, 2006 (Mw 5.5) Gulf of California earthquake and a comparison with other moderate earthquakes in the region, Geofis. Int., 49, 119–129, https://doi.org/10.22201/igeof.00167169p.2010.49.3.108, 2010.
Rodríguez-Pérez, Q. and Singh, S. K.: Seismic source parameters of normal-faulting inslab earthquakes in Central Mexico, Pure Appl. Geophys., 173, 2587–2619, https://doi.org/10.1007/s00024-016-1329-5, 2016.
Rodríguez-Pérez, Q. and Zúñiga, F. R.: Earthquake focal mechanism catalog for Mexico, Figshare, [data set] https://doi.org/10.6084/M9.FIGSHARE.21663668.V1, 2022.
Rodríguez-Pérez, Q., Márquez-Ramírez, V. H., Zúñiga, F. R., Plata-Martínez, R., and Pérez-Campos, X.: The Mexican earthquake source parameter database: a new resource for earthquake physics and seismic hazard analyses in Mexico, Seismol. Res. Lett., 89, 1846–1862, https://doi.org/10.1785/0220170250, 2018.
Romero-Domínguez, J. C.: Estado de esfuerzos en la region geotermica de Tres Virgenes, B.C.S., B.Eng. thesis, UNAM, Mexico, 69 pp., https://hdl.handle.net/20.500.14330/TES01000706112, 2013.
Ruff, L. J. and Miller, A. D.: Rupture process of large earthquakes in the Northern Mexico subduction zone, Pure Appl. Geophys., 142, 101–171, https://doi.org/10.1007/BF00875970, 1994.
Ruiz-Kitcher, R. E.: Estudio del mecanismo de reajuste litostático posterior al evento de Oaxaca (Ms = 7.8) del 29 de Noviembre de 1978, Geofis. Int., 25, 587–608, https://doi.org/10.22201/igeof.00167169p.1986.25.4.780, 1986.
Rutz-López, M., Núñez-Cornú, F. J., and Suárez-Placencia, C.: Study of seismic clusters at Bahía de Banderas region, Mexico, Geofis. Int., 52, 59–72, https://doi.org/10.1016/S0016-7169(13)71462-4, 2013.
Sánchez-Alvaro, E.: Actividad sismica en la vecindad de la central hidroelectrica Aguamilpa un caso de sismicidad inducida, B.Eng. thesis, UNAM, Mexico, 82 pp., https://hdl.handle.net/20.500.14330/TES01000317611, 2003.
Sánchez-Lopez, G.: La secuencia sísmica de Ixtlán del río? Un caso de sismicidad disparada por presas?, B.Eng. thesis, UNAM, Mexico, 78 pp., https://hdl.handle.net/20.500.14330/TES01000819599, 2021.
Santoyo-García-Galeano, M. A.: Estudio del proceso de ruptura del sismo del 25 de abril de 1989 usando registros de movimientos fuertes y telesísmicos, M.S. thesis, UNAM, Mexico, 78 pp., https://hdl.handle.net/20.500.14330/TES01000209589, 1994.
Saraò, A., Sugan, M., Bressan, G., Renner, G., and Restivo, A.: A focal mechanism catalogue of earthquakes that occurred in the southeastern Alps and surrounding areas from 1928–2019, Earth Syst. Sci. Data, 13, 2245–2258, https://doi.org/10.5194/essd-13-2245-2021, 2021.
Singh, S. K. and Pardo, M.: Geometry of Benioff zone and state of stress in the overriding plate in Central Mexico, Geophys. Res. Lett., 20, 1483–1486, https://doi.org/10.1029/93GL01310, 1993.
Singh, S. K., Suárez, G., and Domínguez, T.: The Oaxaca, Mexico, earthquake of 1931: lithospheric normal faulting in the subducted Cocos plate, Nature, 317, 56–58, https://doi.org/10.1038/317056a0, 1985.
Singh, S. K., Ordaz, M., Pacheco, J. F., Quaas, R., Alcántara, L., Alcocer, S., Gutiérrez, C., Meli, R., and Ovando, E.: A preliminary report on the Tehuacán, Mexico earthquake of June 15, 1999 (Mw=7.0), Seismol. Res. Lett., 70, 489–504, https://doi.org/10.1785/gssrl.70.5.489, 1999.
Singh, S. K., Ordaz, M., Pacheco, J. F., and Courboulex, F.: A simple source inversion scheme for displacement seismograms recorded at short distances, J. Seismol., 4, 267–284, https://doi.org/10.1023/A:1009849819475, 2000a.
Singh, S. K., Ordaz, M., Alcántara, L., Shapiro, N., Kostoglodov, V., Pacheco, J. F., Alcocer, S., Gutiérrez, C., Quaas, R., Mikumo, T., and Ovando, E.: The Oaxaca earthquake of the 30 September 1999 (Mw= 7.5): a normal-faulting event in the subducted Cocos plate, Seismol. Res. Lett., 71, 67–78, https://doi.org/10.1785/gssrl.71.1.67, 2000b.
Singh, S. K., Pacheco, J. F., Alcántara, L., Reyes, G., Ordaz, M., Iglesias, A., Alcocer, S. M., Gutierrez, C., Valdés, C., Kostoglodov, V., Reyes, C., Mikumo, T., Quaas, R., and Anderson, J. G.: A preliminary report on the Tecomán, Mexico earthquake of 22 January 2003 (Mw 7.4) and its effects, Seismol. Res. Lett., 74, 279–289, https://doi.org/10.1785/gssrl.74.3.279, 2003.
Singh, S. K., Pérez-Campos, X., Espíndola, V. H., Cruz-Antieza, V. M., and Iglesias, A.: A report on the Atoyac, Mexico, earthquake of 13 April 2007 (Mw 5.9), Seismol. Res. Lett., 78, 635–648, https://doi.org/10.1785/gssrl.78.6.635, 2007a.
Singh, S. K., Iglesias, A., García, D., Pacheco, J. F., and Ordaz, M.: Q of Lg waves in the Central Mexican Volcaic Belt, B. Seismol. Soc. Am., 97, 1259–1266, https://doi.org/10.1785/0120060171, 2007b.
Singh, S. K., Iglesias, A., Garduño, V. H., Quintanar, L., and Ordaz, M.: A source study of the October, 2007 earthquake sequence of Morelia, Mexico and ground-motion estimation from larger earthquakes in the region, Geofis. Int., 51, 73–86, https://doi.org/10.22201/igeof.00167169p.2012.51.1.147, 2012.
Singh, S. K., Pacheco, J. F., Pérez-Campos, X., Ordaz, M., and Reinoso, E.: The 6 September 1997 (Mw 4.5) Coatzacoalcos-Minatitlan, Veracruz, Mexico earthquake: implications for tectonic and seismic hazard of the region, Geofis. Int., 54, 191–199, https://doi.org/10.1016/j.gi.2015.08.001, 2015.
Singh, S. K., Arroyo, D., Pérez-Campos, X., Iglesias, A., Espíndola, V. H., and Ramírez, L.: Guadalajara, Mexico, earthquake sequence of December 2015 and May 2016: source, Q, and ground motions, Geofis. Int., 56, 173–186, https://doi.org/10.22201/igeof.00167169p.2017.56.2.1764, 2017.
Singh, S. K., Quintanar-Robles, L., Arroyo, D., Cruz-Atienza, V. M., Espíndola, V. H., Bello-Segura, D. I., and Ordaz, M.: Lessons from a small local earthquake (MW 3.2) that produced the highest acceleration ever recorded in Mexico City, Seismol. Res. Lett., 91, 3391–3406, https://doi.org/10.1785/0220200123, 2020a.
Singh, S. K., Pérez-Campos, X., Espindola, V. H., Iglesias, A., and Quintanar, L.: An intraslab earthquake at a depth of 100 km in the subducting Cocos plate beneath Nevado de Toluca volcano, Geofis. Int., 59, 5–12, https://doi.org/10.22201/igeof.00167169p.2020.59.1.2072, 2020b.
Soto-Peredo, J.: Sismicidad en el Estado de Hidalgo durante 1997–2010, B.S. thesis, UNAM, Mexico, 67 pp., https://hdl.handle.net/20.500.14330/TES01000679557, 2012.
Stella-Ramírez, L. M.: La actividad sismica en el area de Huetamo Michoacan de Agosto de 2006 y sus implicaciones en el peligro sismico de la region, B.S. thesis, UNAM, Mexico, 53 pp., https://hdl.handle.net/20.500.14330/TES01000666818, 2011.
Suárez, G. and López, A.: Seismicity in the southwestern Gulf of Mexico: evidence of active back arc deformation, Rev. Mex. Cien. Geol., 32, 77–83, 2015.
Suárez, G. and Ponce, L.: Intraplate seismicity and crustal deformation in Central Mexico (abs): EOS Transactions of the American Geophysical Union, 67, 1114, https://doi.org/10.1029/EO067i044p00867, 1986.
Suárez, G., Sánchez-Alvaro, E., Lomas-Delgado, E., and Arvizu-Lara, G.: The 2013 seismic swarm in Chihuahua, Mexico: evidence of active extensional deformation in the Southern Basin and Range, B. Seismol. Soc. Am., 106, 2686–2694, https://doi.org/10.1785/0120160179, 2016.
Suárez-Vidal, F., Munguía-Orozco, L., González-Escobar, M., González-García, J., and Glowacka, E.: Surface rupture of the Morelia fault near the Cerro Prieto geothermal field, Mexicali, Baja California, Mexico, during the MW 5.4 earthquake of 24 May 2006, Seismol. Res. Lett., 78, 394–399, https://doi.org/10.1785/gssrl.78.3.394, 2007.
Sumy, D. F., Gaherty, J. B., Kim, W. Y., Diehl, T., and Collins, J. A.: The mechanisms of earthquakes and faulting in the Southern Gulf of California, B. Seismol. Soc. Am., 103, 487–506, https://doi.org/10.1785/0120120080, 2013.
Terán-Mendieta, L. F.: Estudio del proceso de ruptura del sismo del 10 de Diciembre de 1994 usando un método de inversión, B.S. thesis, UNAM, Mexico, 47 pp., https://hdl.handle.net/20.500.14330/TES01000271591, 1999.
Thatcher, W. and Brune, J. N.: Seismic study of an Oceanic Ridge earthquake swarm in the Gulf of California, Geophys. J. Int., 22, 473–489, https://doi.org/10.1111/j.1365-246X.1971.tb03615.x, 1971.
UNAM and CENAPRED Seismology group: The Milpa Alta earthquake of January 21, 1995, Geofis. Int., 34, 355–362, 1995.
UNAM Seismology Group: Ometepec-Pinotepa Nacional, Mexico earthquake of 20 March 2012 (Mw 7.5): a preliminary report, Geofis. Int., 52, 173–196, https://doi.org/10.1016/S0016-7169(13)71471-5, 2013.
UNAM Seismology Group: Papanoa, Mexico earthquake of 18 April 2014 (Mw 7.3), Geofis. Int., 54, 363–386, https://doi.org/10.22201/igeof.00167169p.2017.56.1.1731, 2015.
Vallée, M. and Douet, V.: A new database of source time functions (STFs) extracted from the SCARDEC method, Phys. Earth Planet. Int., 257, 149–157, https://doi.org/10.1016/j.pepi.2016.05.012, 2016.
Vidal, A., Munguía, L., and González-García, J. J.: Faulting parameters of earthquakes (4.1 ≤ ML ≤ 5.3) in the Peninsular ranges of Baja California, Mexico, Seismol. Res. Lett., 81, 44–52, https://doi.org/10.1785/gssrl.81.1.44, 2010.
Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F.: Generic mapping tools: Improved version released, Eos Trans. AGU, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Whidden, K. M. and Pankow, K. L.: A catalog of regional moment tensors in Utah from 1998 to 2011, Seismol. Res. Lett., 83, 775–783, https://doi.org/10.1785/0220120046, 2012.
Wolfe, C. J., Bergman, E. A., and Solomon, S. C.: Oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the adjacent lithosphere, J. Geophys. Res., 98, 16187–16211, https://doi.org/10.1029/93JB00887, 1993.
Wong, V., Frez, J., and Suárez, F.: The Victoria, Mexico, earthquake of June 9, 1980, Geofis. Int., 36, 1–14, https://doi.org/10.22201/igeof.00167169p.1997.36.3.628, 1997.
Yamamoto, J.: Rupture processes of some complex earthquakes in southern Mexico, PhD dissertation, St. Louis University. St. Louis, MO, 203 pp., 1978.
Yamamoto, J.: Evidences of the existence of an abnormal seismic signal attenuation in Southern Mexico, Geofis. Int., 25, 521–536, https://doi.org/10.22201/igeof.00167169p.1986.25.4.776, 1986.
Yamamoto, J. and Jiménez, Z.: A 2006 Colima rift earthquakes series and its relationship to the Rivera-Cocos plate boundary, Earth Sci., 4, 21–30, https://doi.org/10.11648/j.earth.20150401.12, 2015.
Yamamoto, J. and Mitchell, B. J.: Rupture mechanics of complex earthquakes in southern Mexico, Tectonophysics, 154, 25–40, https://doi.org/10.1016/0040-1951(88)90226-0, 1988.
Yamamoto, J. and Mota R.: La secuencia de temblores del Valle de Toluca, Mexico de Agosto 1980, Geofis. Int., 27, 279–298, https://doi.org/10.22201/igeof.00167169p.1988.27.2.787, 1988.
Yamamoto, J., Jimenez, Z., and Mota, R.: El temblor de Huajuapan de Leon, Oaxaca, Mexico del 24 de Octubre de 1980, Geofis. Int., 23, 83–110, https://doi.org/10.22201/igeof.00167169p.1984.23.1.798, 1984.
Yamamoto, J., Quintanar, L., Rebollar, C. J., and Jiménez, Z.: Source characteristics and propagation effects of the Puebla, Mexico, earthquake of 15 June 1999, B. Seismol. Soc. Am., 92, 2126–2138, https://doi.org/10.1785/0120010117, 2002.
Yamamoto, J., González-Moran, T., Quintanar, L., Zavaleta, A. B., Zamora, A., and Espindola, V. H.: Seismic patterns of the Guerrero-Oaxaca, Mexico region, and its relationship to the continental margin structure, Geophys. J. Int., 192, 375–389, https://doi.org/10.1093/gji/ggs025, 2013.
Yang, W., Hauksson, E., and Shearer, P. M.: Computing a large refined catalog of focal mechanisms for Southern California (1981–2010): temporal stability of the style of faulting, B. Seismol. Soc. Am., 102, 1179–1194, https://doi.org/10.1785/0120110311, 2012.
Yela-Portilla, J. D.: Análisis paramétrico del tensor de momento sísmico regional en México, M.S. thesis, UNAM, Mexico, 119 pp., 2018.
Zúñiga, F. R. and Valdés-González, C. M.: Analisis de las replicas del temblor de Petatlan del 14 de Marzo de 1979, B.Eng. thesis, UNAM, Mexico, 92 pp., 1980.
Zúñiga, F. R., Gutiérrez, C., Nava, E., Lermo, J., Rodríguez, M., and Coyoli, R.: Aftershocks of the San Marcos earthquake of April 25, 1989 (Ms=6.9) and some implications for the Acapulco-San Marcos, Mexico, seismic potential, Pure Appl. Geophys., 140, 287–300, https://doi.org/10.1007/BF00879408, 1993.
Zúñiga, F. R., Pacheco, F. J., Guzmán-Speziale, M., Aguirre-Díaz, G. J., Espíndola, V. H., and Nava, E.: The Sanfandila earthquake sequence of 1998, Queretaro, Mexico: activation of an undocumented fault in the northern edge of central Trans-Mexican Volcanic Belt, Tectonophysics, 361, 229-238, https://doi.org/10.1016/S0040-1951(02)00606-6, 2003.
Short summary
We present a comprehensive catalog of focal mechanisms for earthquakes in Mexico and neighboring areas spanning February 1928 to July 2022. The catalog comprises a wide range of earthquake magnitudes and depths and includes data from diverse geological environments. We collected and revised focal mechanism data from various sources and methods. The catalog is a valuable resource for future studies on earthquake source mechanisms, tectonics, and seismic hazard in the region.
We present a comprehensive catalog of focal mechanisms for earthquakes in Mexico and neighboring...
Altmetrics
Final-revised paper
Preprint