Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3641-2023
https://doi.org/10.5194/essd-15-3641-2023
Data description paper
 | 
15 Aug 2023
Data description paper |  | 15 Aug 2023

A monthly 1° resolution dataset of daytime cloud fraction over the Arctic during 2000–2020 based on multiple satellite products

Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma

Related authors

Estimation of Long-term Gridded Cloud Radiative Kernel and Radiative Effects Based on Cloud Fraction
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-458,https://doi.org/10.5194/essd-2024-458, 2024
Preprint under review for ESSD
Short summary
Generation of global 1 km all-weather instantaneous and daily mean land surface temperatures from MODIS data
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024,https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023,https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023,https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Simulating carbon and water fluxes using a coupled process-based terrestrial biosphere model and joint assimilation of leaf area index and surface soil moisture
Sinan Li, Li Zhang, Jingfeng Xiao, Rui Ma, Xiangjun Tian, and Min Yan
Hydrol. Earth Syst. Sci., 26, 6311–6337, https://doi.org/10.5194/hess-26-6311-2022,https://doi.org/10.5194/hess-26-6311-2022, 2022
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
CREST: a Climate Data Record of Stratospheric Aerosols
Viktoria F. Sofieva, Alexei Rozanov, Monika Szelag, John P. Burrows, Christian Retscher, Robert Damadeo, Doug Degenstein, Landon A. Rieger, and Adam Bourassa
Earth Syst. Sci. Data, 16, 5227–5241, https://doi.org/10.5194/essd-16-5227-2024,https://doi.org/10.5194/essd-16-5227-2024, 2024
Short summary
Multiyear high-temporal-resolution measurements of submicron aerosols at 13 French urban sites: data processing and chemical composition
Hasna Chebaicheb, Joel F. de Brito, Tanguy Amodeo, Florian Couvidat, Jean-Eudes Petit, Emmanuel Tison, Gregory Abbou, Alexia Baudic, Mélodie Chatain, Benjamin Chazeau, Nicolas Marchand, Raphaële Falhun, Florie Francony, Cyril Ratier, Didier Grenier, Romain Vidaud, Shouwen Zhang, Gregory Gille, Laurent Meunier, Caroline Marchand, Véronique Riffault, and Olivier Favez
Earth Syst. Sci. Data, 16, 5089–5109, https://doi.org/10.5194/essd-16-5089-2024,https://doi.org/10.5194/essd-16-5089-2024, 2024
Short summary
Large synthesis of in situ field measurements of the size distribution of mineral dust aerosols across their life cycles
Paola Formenti and Claudia Di Biagio
Earth Syst. Sci. Data, 16, 4995–5007, https://doi.org/10.5194/essd-16-4995-2024,https://doi.org/10.5194/essd-16-4995-2024, 2024
Short summary
A 10 km daily-level ultraviolet-radiation-predicting dataset based on machine learning models in China from 2005 to 2020
Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, and Xia Meng
Earth Syst. Sci. Data, 16, 4655–4672, https://doi.org/10.5194/essd-16-4655-2024,https://doi.org/10.5194/essd-16-4655-2024, 2024
Short summary
GHOST: a globally harmonised dataset of surface atmospheric composition measurements
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024,https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary

Cited articles

Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud detection with MODIS. Part II: Validation, J. Atmos. Ocean. Tech., 25, 1073–1086, https://doi.org/10.1175/2007jtecha1053.1, 2008. 
Beckerman, B. S., Jerrett, M., Serre, M., Martin, R. V., Lee, S.-J., van Donkelaar, A., Ross, Z., Su, J., and Burnett, R. T.: A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States, Environ. Sci. Technol., 47, 7233–7241, https://doi.org/10.1021/es400039u, 2013. 
Bogaert, P., Christakos, G., Jerrett, M., and Yu, H. L.: Spatiotemporal modelling of ozone distribution in the State of California, Atmos. Environ., 43, 2471–2480, https://doi.org/10.1016/j.atmosenv.2009.01.049, 2009. 
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and Zemp, M.: The concept of essential climate variables in support of climate research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/bams-d-13-00047.1, 2014. 
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M.: Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe, Remote Sens. Environ., 115, 3390–3408, https://doi.org/10.1016/j.rse.2011.08.003, 2011. 
Download
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Altmetrics
Final-revised paper
Preprint