Articles | Volume 15, issue 8
https://doi.org/10.5194/essd-15-3641-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3641-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A monthly 1° resolution dataset of daytime cloud fraction over the Arctic during 2000–2020 based on multiple satellite products
Xinyan Liu
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
now at: Aerospace Information Research Institute, Henan Academy of Sciences, Henan 450046, China
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Shunlin Liang
Department of Geography, The University of Hong Kong, Hong Kong 999077, China
Ruibo Li
State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Xiongxin Xiao
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern 3012, Switzerland
Rui Ma
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Yichuan Ma
Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Related authors
No articles found.
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025, https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Short summary
This study addresses the challenge of how clouds affect the Earth's energy balance, which is vital for understanding climate change. We developed a new method to create long-term cloud radiative kernels to improve the accuracy of measurements of sunlight reaching the surface, which significantly reduces errors. Findings suggest that prior estimates of cloud cooling effects may have been overstated, emphasizing the need for better strategies to manage climate change impacts in the Arctic.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Sinan Li, Li Zhang, Jingfeng Xiao, Rui Ma, Xiangjun Tian, and Min Yan
Hydrol. Earth Syst. Sci., 26, 6311–6337, https://doi.org/10.5194/hess-26-6311-2022, https://doi.org/10.5194/hess-26-6311-2022, 2022
Short summary
Short summary
Accurate estimation for global GPP and ET is important in climate change studies. In this study, the GLASS LAI, SMOS, and SMAP datasets were assimilated jointly and separately in a coupled model. The results show that the performance of joint assimilation for GPP and ET is better than that of separate assimilation. The joint assimilation in water-limited regions performed better than in humid regions, and the global assimilation results had higher accuracy than other products.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and
McGill, M.: Cloud detection with MODIS. Part II: Validation, J.
Atmos. Ocean. Tech., 25, 1073–1086, https://doi.org/10.1175/2007jtecha1053.1,
2008.
Beckerman, B. S., Jerrett, M., Serre, M., Martin, R. V., Lee, S.-J., van
Donkelaar, A., Ross, Z., Su, J., and Burnett, R. T.: A Hybrid Approach to
Estimating National Scale Spatiotemporal Variability of PM2.5 in the
Contiguous United States, Environ. Sci. Technol., 47,
7233–7241, https://doi.org/10.1021/es400039u, 2013.
Bogaert, P., Christakos, G., Jerrett, M., and Yu, H. L.: Spatiotemporal
modelling of ozone distribution in the State of California, Atmos.
Environ., 43, 2471–2480, https://doi.org/10.1016/j.atmosenv.2009.01.049, 2009.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The concept of essential climate variables in support of climate
research, applications, and policy, B. Am. Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/bams-d-13-00047.1, 2014.
Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner,
W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P.,
Latron, J., Martin, C., and Bittelli, M.: Soil moisture estimation through
ASCAT and AMSR-E sensors: An intercomparison and validation study across
Europe, Remote Sens. Environ., 115, 3390–3408, https://doi.org/10.1016/j.rse.2011.08.003, 2011.
Chatterjee, A., Michalak, A. M., Kahn, R. A., Paradise, S. R., Braverman, A.
J., and Miller, C. E.: A geostatistical data fusion technique for merging
remote sensing and ground-based observations of aerosol optical thickness,
J. Geophys. Res.-Atmos., 115, D20207, https://doi.org/10.1029/2009jd013765,
2010.
Christakos, G.: Modern Spatiotemporal Geostatistics, New York, NY: Oxford University Press, 2000.
Christakos, G.: Integrative problem-solving in a time of decadence, Springer
Science & Business Media, https://doi.org/10.1007/978-90-481-9890-0, 2010.
Christakos, G. and Serre, M. L.: BME analysis of spatiotemporal particulate matter
distributions in North Carolina, Atmos. Environ., 34, 3393–3406, 2000.
Christakos, G., Kolovos, A., Serre, M. L., and Vukovich, F.: Total ozone
mapping by integrating databases from remote sensing instruments and
empirical models, IEEE T. Geosci. Remote, 42,
991–1008, https://doi.org/10.1109/Tgrs.2003.822751, 2004.
Claudia, S., William, R., and Stefan, K.: Assessment of Global Cloud Data Sets
from Satellites A Project of the World Climate Research Programme Global
Energy and Water Cycle Experiment (GEWEX) Radiation Panel, World Climate
Research Program Proport, http://climate.org/documents/GEWEX_Cloud_Assessment_2012.pdf (last access: 2019), 2012.
Cressie, N.: Statistics for spatial data, John Wiley & Sons, https://doi.org/10.1002/9781119115151, 2015.
Danso, D. K., Anquetin, S., Diedhiou, A., Kouadio, K., and Kobea, A. T.: Daytime low-level clouds in West Africa – occurrence, associated drivers, and shortwave radiation attenuation, Earth Syst. Dynam., 11, 1133–1152, https://doi.org/10.5194/esd-11-1133-2020, 2020.
Doelling, D. R., Sun, M., Nguyen, L. T., Nordeen, M. L., Haney, C. O.,
Keyes, D. F., and Mlynczak, P. E.: Advances in Geostationary-Derived
Longwave Fluxes for the CERES Synoptic (SYN1deg) Product, J.
Atmos. Ocean. Tech., 33, 503–521, https://doi.org/10.1175/Jtech-D-15-0147.1,
2016.
Drusch, M.: Observation operators for the direct assimilation of TRMM
microwave imager retrieved soil moisture, Geophys. Res. Lett., 32, L15403, https://doi.org/10.1029/2005gl023623, 2005.
Eastman, R. and Warren, S. G.: Arctic Cloud Changes from Surface and
Satellite Observations, J. Climate, 23, 4233–4242, https://doi.org/10.1175/2010jcli3544.1, 2010.
English, J. M., Kay, J. E., Gettelman, A., Liu, X. H., Wang, Y., Zhang, Y. Y., and Chepfer, H.: Contributions of clouds, surface albedos, and mixed phase ice nucleation schemes to Arctic radiation biases in CAM5, J. Climate, 27, 5174–5197, https://doi.org/10.1175/JCLI-D-13-00608.1, 2014.
Enriquez-Alonso, A., Sanchez-Lorenzo, A., Calbo, J., Gonzalez, J. A., and
Norris, J. R.: Cloud cover climatologies in the Mediterranean obtained from
satellites, surface observations, reanalyses, and CMIP5 simulations:
validation and future scenarios, Clim. Dynam., 47, 249–269, https://doi.org/10.1007/s00382-015-2834-4, 2016.
Forbes, R. M. and Ahlgrimm, M.: On the Representation of High-Latitude
Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model, Mon.
Weather Rev., 142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1,
2014.
Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C.,
Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W.,
Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G., and Smith, S. R.:
ICOADS Release 3.0: a major update to the historical marine climate record,
Int. J. Climatol., 37, 2211–2232, https://doi.org/10.1002/joc.4775, 2017.
Fuentes, M. and Raftery, A. E.: Model evaluation and spatial interpolation
by Bayesian combination of observations with outputs from numerical models,
Biometrics, 61, 36–45, https://doi.org/10.1111/j.0006-341X.2005.030821.x, 2005.
Gao, F., Masek, J., Schwaller, M., and Hall, F.:
On the blending of the Landsat and MODIS surface reflectance: Predicting
daily Landsat surface reflectance, IEEE T. Geosci. Remote, 44, 2207–2218, 2006.
Griffith, D. A.: Statistics for spatial data – CRESSIE, N, Geogr.
Anal., 25, 271–275, 1993.
Hakuba, M. Z., Folini, D., Wild, M., Long, C. N., Schaepman-Strub, G., and
Stephens, G. L.: Cloud effects on atmospheric solar absorption in light of
most recent surface and satellite measurements, in: Radiation Processes in the Atmosphere and Ocean (IRS2016), Proceedings of the International Radiation Symposium (IRC/IAMAS), International Radiation Symposium (IRC/IAMAS), IRS 2016, Auckland, New Zealand, 16–22 April 2016, American Institute of Physics, https://doi.org/10.1063/1.4975543, 2017.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
He, J. and Kolovos, A.: Bayesian maximum entropy approach and its
applications: a review, Stoch. Env. Re. Risk
A., 32, 859–877, https://doi.org/10.1007/s00477-017-1419-7, 2017.
Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther, A.: A Naive
Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within
PATMOS-x, J. Appl. Meteorol. Climatol., 51, 1129–1144, https://doi.org/10.1175/Jamc-D-11-02.1, 2012.
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X. P.: The
Pathfinder Atmospheres-Extended Avhrr Climate Dataset, B.
Am. Meteorol. Soc., 95, 909–922, https://doi.org/10.1175/Bams-D-12-00246.1,
2014.
Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J.
G., Gao, F., and White, J. C.: A new data fusion model for high spatial- and
temporal-resolution mapping of forest disturbance based on Landsat and
MODIS, Remote Sens. Environ., 113, 1613–1627, https://doi.org/10.1016/j.rse.2009.03.007, 2009.
Hollmann, R.: ESA Cloud_cci Product Validation and
Intercomparison Report (PVIR), https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002, 2018.
Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz, M.,
Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R.,
Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van Roozendael,
M., and Wagner, W.: The ESA Climate Change Initiative Satellite Data Records
for Essential Climate Variables, B. Am. Meteorol. Soc., 94, 1541–1552, https://doi.org/10.1175/bams-d-11-00254.1, 2013.
Hu, M. and Xue, M.: Implementation and evaluation of cloud
analysis with WSR-88D reflectivity data for GSI and WRF-ARW, Geophys. Res. Lett., 34, L07808, https://doi.org/10.1029/2006GL028847, 2007.
Huang, Y. Y., Dong, X. Q., Xi, B. K., Dolinar, E. K., Stanfield, R. E., and
Qiu, S. Y.: Quantifying the Uncertainties of Reanalyzed Arctic Cloud and
Radiation Properties Using Satellite Surface Observations, J.
Climate, 30, 8007–8029, https://doi.org/10.1175/Jcli-D-16-0722.1, 2017.
Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L.,
and Weimer, C.: CALIPSO Lidar Description and Performance Assessment,
J. Atmos. Ocean. Tech., 26, 1214–1228, https://doi.org/10.1175/2009jtecha1223.1, 2009.
Jaynes, E. T.: Information theory and statistical mechanics, Phys. Rev., 106, 620, https://doi.org/10.1103/PhysRev.106.620,
1957.
Jin, W., Fu, R.-D., Ye, M., and Li, J.-X.: Meteorological Cloud Image Fusion
Using Contourlet Transform and Compressed Sensing, International Conference
on Ecological Protection of Lakes-Wetlands-Watershed and Application of 3S
Technology (EPLWW3S 2011), Nanchang, Peoples R China,
25–26 June 2011, WOS:000391516000097, 413–416, 2011.
Karlsson, K.-G. and Devasthale, A.: Inter-Comparison and Evaluation of the
Four Longest Satellite-Derived Cloud Climate Data Records: CLARA-A2, ESA
Cloud CCI V3, ISCCP-HGM, and PATMOS-x, Remote Sens.-Basel, 10, 1567, https://doi.org/10.3390/rs10101567, 2018.
Karlsson, K.-G. and Dybbroe, A.: Evaluation of Arctic cloud products from the EUMETSAT Climate Monitoring Satellite Application Facility based on CALIPSO-CALIOP observations, Atmos. Chem. Phys., 10, 1789–1807, https://doi.org/10.5194/acp-10-1789-2010, 2010.
Karlsson, K.-G. and Håkansson, N.: Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record, Atmos. Meas. Tech., 11, 633–649, https://doi.org/10.5194/amt-11-633-2018, 2018.
Karlsson, K.-G., Riihelä, A., Müller, R., Meirink, J. F., Sedlar, J., Stengel, M., Lockhoff, M., Trentmann, J., Kaspar, F., Hollmann, R., and Wolters, E.: CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data, Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, 2013.
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., and Hollmann, R.: CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, 2017.
Kato, S., Loeb, N. G., Rutan, D. A., Rose, F. G., Sun-Mack, S., Miller, W.
F., and Chen, Y.: Uncertainty Estimate of Surface Irradiances Computed with
MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties, Surv.
Geophys., 33, 395-412, https://doi.org/10.1007/s10712-012-9179-x, 2012.
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface Irradiances
of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) Data Product, J. Climate, 31, 4501–4527, https://doi.org/10.1175/jcli-d-17-0523.1, 2018a.
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X. L., Smith, W. L., Su, W. Y., and Ham, S. H.: Surface
Irradiances of Edition 4.0 Clouds and the Earth's Radiant Energy System
(CERES) Energy Balanced and Filled (EBAF) Data Product, J. Climate,
31, 4501–4527, https://doi.org/10.1175/Jcli-D-17-0523.1, 2018b.
Kato, S., Rose, F. G., Sun-Mack, S., Miller, W. F., Chen, Y., Rutan, D. A.,
Stephens, G. L., Loeb, N. G., Minnis, P., Wielicki, B. A., Winker, D. M.,
Charlock, T. P., Stackhouse, P. W., Xu, K.-M., and Collins, W. D.:
Improvements of top-of-atmosphere and surface irradiance computations with
CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties, J.
Geophys. Res., 116, D19209, https://doi.org/10.1029/2011jd016050, 2011.
Kennedy, A., Xi, B., Dong, X., and Zib, B. J.: Evaluation and
Intercomparison of Cloud Fraction and Radiative Fluxes in Recent Reanalyses
over the Arctic Using BSRN Surface Observations, J. Climate, 25, 2291–2305, https://doi.org/10.1175/jcli-d-11-00147.1, 2012.
Kenyon, J. S., Moninger, W. R., Smith, T. L., Peckham, S. E., Lin, H.,
Grell, G. A., Dowell, D. C., James, E. P., Olson, J. B., Smirnova, T. G.,
Alexander, C. R., Hu, M., Brown, J. M., Weygandt, S. S., Benjamin, S. G.,
and Manikin, G. S.: A North American Hourly Assimilation and Model Forecast
Cycle: The Rapid Refresh, Mon. Weather Rev., 144, 1669–1694, https://doi.org/10.1175/mwr-d-15-0242.1, 2016.
Kim, D. and Ramanathan, V.: Solar radiation budget and radiative forcing due
to aerosols and clouds, J. Geophys. Res., 113, D02203, https://doi.org/10.1029/2007jd008434, 2008.
Kotarba, A. Z.: Evaluation of ISCCP cloud amount with MODIS observations,
Atmos. Res., 153, 310–317, https://doi.org/10.1016/j.atmosres.2014.09.006, 2015.
Kotarba, A. Z.: Calibration of global MODIS cloud amount using CALIOP cloud profiles, Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020, 2020.
Li, A., Bo, Y., Zhu, Y., Guo, P., Bi, J., and He, Y.: Blending
multi-resolution satellite sea surface temperature (SST) products using
Bayesian maximum entropy method, Remote Sens. Environ., 135, 52–63, https://doi.org/10.1016/j.rse.2013.03.021, 2013.
Li, L., Shi, R., Zhang, L., Zhang, J., and Gao, W.: The data fusion of
aerosol optical thickness using universal kriging and stepwise regression in
East China, Conference on Remote Sensing and Modeling of Ecosystems for
Sustainability XI, San Diego, CA,
18–20 August 2014, WOS:000344548600027, https://doi.org/10.1117/12.2061764, 2014.
Li, S. and Yang, B.: Multifocus image fusion by combining curvelet and
wavelet transform, Pattern Recogn. Lett., 29, 1295–1301, https://doi.org/10.1016/j.patrec.2008.02.002, 2008.
Liu, X., He, T., Sun, L., Xiao, X., Liang, S., and Li, S.: Analysis of
Daytime Cloud Fraction Spatiotemporal Variation over the Arctic from 2000 to
2019 from Multiple Satellite Products, J. Climate, 35, 3995–4023, https://doi.org/10.1175/jcli-d-22-0007.1, 2022.
Liu, Y., Ackerman, S. A., Maddux, B. C., Key, J. R., and Frey, R. A.: Errors
in Cloud Detection over the Arctic Using a Satellite Imager and Implications
for Observing Feedback Mechanisms, J. Climate, 23, 1894–1907, https://doi.org/10.1175/2009jcli3386.1, 2010.
Liu, Y., Wu, W., Jensen, M. P., and Toto, T.: Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo, Atmos. Chem. Phys., 11, 7155–7170, https://doi.org/10.5194/acp-11-7155-2011, 2011.
Liu, Y., Key, J. R., Liu, Z., Wang, X., and Vavrus, S. J.: A cloudier Arctic
expected with diminishing sea ice, Geophys. Res. Lett., 39,
https://doi.org/10.1029/2012gl051251, 2012.
Liu, Y., Liu, S., and Wang, Z.: A general framework for image fusion based
on multi-scale transform and sparse representation, Inform. Fusion, 24,
147–164, https://doi.org/10.1016/j.inffus.2014.09.004, 2015.
Liu, Y. H., Key, J. R., Ackerman, S. A., Mace, G. G., and Zhang, Q. Q.:
Arctic cloud macrophysical characteristics from CloudSat and CALIPSO, Remote
Sens. Environ., 124, 159–173, https://doi.org/10.1016/j.rse.2012.05.006, 2012.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Loyola R, D. G., Thomas, W., Spurr, R., and Mayer, B.: Global patterns in
daytime cloud properties derived from GOME backscatter UV-VIS measurements,
Int. J. Remote Sens., 31, 4295–4318, https://doi.org/10.1080/01431160903246741, 2010.
Marchant, B., Platnick, S., Meyer, K., Arnold, G. T., and Riedi, J.: MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP, Atmos. Meas. Tech., 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016, 2016.
Marchant, B., Platnick, S., Meyer, K., and Wind, G.: Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products, Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020, 2020.
Miao, Q. and Wang, B.: A Novel Image Fusion Method Using Contourlet
Transform, International Conference on Communications, Communications, Circuits and Systems, Guilin, China, 548–552, https://doi.org/10.1109/ICCCAS.2006.284696, 2006.
Minnis, P., Sun-Mack, S., Young, D. F., Heck, P. W., Garber, D. P., Chen,
Y., Spangenberg, D. A., Arduini, R. F., Trepte, Q. Z., Smith, W. L., Ayers,
J. K., Gibson, S. C., Miller, W. F., Hong, G., Chakrapani, V., Takano, Y.,
Liou, K. N., Xie, Y., and Yang, P.: CERES Edition-2 Cloud Property
Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data-Part I: Algorithms,
IEEE T. Geosci. Remote, 49, 4374–4400, https://doi.org/10.1109/tgrs.2011.2144601, 2011.
Nazelle, A. D., Arunachalam, S., and Serre, M. L.: Bayesian maximum entropy
integration of ozone observations and model predictions: an application for
attainment demonstration in North Carolina, Environ. Sci. Technol., 44,
5707–5713, https://doi.org/10.1021/es100228w, 2010.
Nie, S., Wu, T., Luo, Y., Deng, X., Shi, X., Wang, Z., Liu, X., and Huang,
J.: A strategy for merging objective estimates of global daily precipitation
from gauge observations, satellite estimates, and numerical predictions,
Adv. Atmos. Sci., 33, 889–904, https://doi.org/10.1007/s00376-016-5223-y,
2016.
Paul, A. H.: Collection 6.1 Change Summary Document MODIS Atmosphere Level-3
Algorithm and Global Products, https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/L3_C61_Changes_v2.pdf (last access: 2021), 2017.
Philipp, D., Stengel, M., and Ahrens, B.: Analyzing the Arctic Feedback
Mechanism between Sea Ice and Low-Level Clouds Using 34 Years of Satellite
Observations, J. Climate, 33, 7479–7501, https://doi.org/10.1175/jcli-d-19-0895.1,
2020.
Poulsen, C. J., Tabor, C., and White, J.: Response to Comment on “Long-term
climate forcing by atmospheric oxygen concentrations”, Science, 353, 132, https://doi.org/10.1126/science.aad8550, 2016.
Qian, Y., Long, C. N., Wang, H., Comstock, J. M., McFarlane, S. A., and Xie, S.: Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations, Atmos. Chem. Phys., 12, 1785–1810, https://doi.org/10.5194/acp-12-1785-2012, 2012.
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R.,
Ahmad, E., and Hartmann, D.: Cloud-Radiative Forcing and Climate – Results
from the Earth Radiation Budget Experiment, Science, 243, 57–63, https://doi.org/10.1126/science.243.4887.57, 1989.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteorol. Soc., 80, 2261–2287, https://doi.org/10.1175/1520-0477(1999)080<2261:Aiucfi>2.0.Co;2, 1999.
Savelyeva, E., Utkin, S., Kazakov, S., and Demyanov, V.: Modeling Spatial
Uncertainty for Locally Uncertain Data, 7th International Conference on
Geostatistics for Environmental Applications, Southampton, England, WOS:000288481100026, https://doi.org/10.1007/978-90-481-2322-3_26, 2010.
Shupe, M. D., Turner, D. D., Walden, V. P., Bennartz, R., Cadeddu, M. P.,
Castellani, B. B., Cox, C. J., Hudak, D. R., Kulie, M. S., Miller, N. B.,
Neely, R. R., Neff, W. D., and Rowe, P. M.: HIGH AND DRY New Observations of
Tropospheric and Cloud Properties above the Greenland Ice Sheet, B. Am.
Meteorol. Soc., 94, 169–186, https://doi.org/10.1175/Bams-D-11-00249.1, 2013.
Sledd, A. and L'Ecuyer, T. S.: Emerging Trends in Arctic Solar Absorption,
Geophys. Res. Lett., 48, e2021GL095813, https://doi.org/10.1029/2021gl095813, 2021.
Spadavecchia, L. and Williams, M.: Can spatio-temporal geostatistical
methods improve high resolution regionalisation of meteorological
variables?, Agr. Forest Meteorol., 149, 1105–1117, https://doi.org/10.1016/j.agrformet.2009.01.008, 2009.
Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., Devasthale, A., Willén, U., Karlsson, K.-G., McGarragh, G. R., Proud, S., Povey, A. C., Grainger, R. G., Meirink, J. F., Feofilov, A., Bennartz, R., Bojanowski, J. S., and Hollmann, R.: Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project, Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, 2017.
Stubenrauch, C. J., Rossow, W. B., Kinne, S., Ackerman, S., Cesana, G.,
Chepfer, H., Di Girolamo, L., Getzewich, B., Guignard, A., Heidinger, A.,
Maddux, B. C., Menzel, W. P., Minnis, P., Pearl, C., Platnick, S., Poulsen,
C., Riedi, J., Sun-Mack, S., Walther, A., Winker, D., Zeng, S., and Zhao,
G.: Assessment of Global Cloud Datasets from Satellites: Project and
Database Initiated by the GEWEX Radiation Panel, B. Am.
Meteorol. Soc., 94, 1031–1049, https://doi.org/10.1175/bams-d-12-00117.1, 2013.
Sun, B. M., Free, M., Yoo, H. L., Foster, M. J., Heidinger, A., and
Karlsson, K. G.: Variability and Trends in U.S. Cloud Cover: ISCCP,
PATMOS-x, and CLARA-A1 Compared to Homogeneity-Adjusted Weather
Observations, J. Climate, 28, 4373–4389, https://doi.org/10.1175/jcli-d-14-00805.1,
2015.
Tang, Q., Bo, Y., and Zhu, Y.: Spatiotemporal fusion of multiple-satellite
aerosol optical depth (AOD) products using Bayesian maximum entropy method,
J. Geophys. Res.-Atmos., 121, 4034–4048, https://doi.org/10.1002/2015jd024571, 2016.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather
Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:Rocils>2.0.Co;2, 1993.
Toll, V., Christensen, M., Quaas, J., and Bellouin, N.: Weak average
liquid-cloud-water response to anthropogenic aerosols, Nature, 572, 51–55, https://doi.org/10.1038/s41586-019-1423-9, 2019.
Trepte, Q. Z., Bedka, K. M., Chee, T. L., Minnis, P., Sun-Mack, S., Yost, C.
R., Chen, Y., Jin, Z., Hong, G., Chang, F.-L., and Smith, W. L.: Global
Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data, IEEE
T. Geosci. Remote, 57, 9410–9449, https://doi.org/10.1109/tgrs.2019.2926620, 2019.
Tzallas, V., Hatzianastassiou, N., Benas, N., Meirink, J. F., Matsoukas, C.,
Stackhouse, P., and Vardavas, I.: Evaluation of CLARA-A2 and ISCCP-H Cloud
Cover Climate Data Records over Europe with ECA&D Ground-Based
Measurements, Remote Sens.-Basel, 11, 212, https://doi.org/10.3390/rs11020212, 2019.
Van Tricht, K., Lhermitte, S., Lenaerts, J. T. M., Gorodetskaya, I. V.,
L'Ecuyer, T. S., Noel, B., van den Broeke, M. R., Turner, D. D., and van
Lipzig, N. P. M.: Clouds enhance Greenland ice sheet meltwater runoff,
Nat. Commun., 7, 10266,
https://doi.org/10.1038/ncomms10266, 2016.
Vaughan, M., Young, S., Winker, D., Powell, K., Omar, A., Liu, Z. Y., Hu, Y.
X., and Hostetler, C.: Fully automated analysis of space-based lidar data:
an overview of the CALIPSO retrieval algorithms and data products, Proc. SPIE,
5575, 16–30, https://doi.org/10.1117/12.572024, 2004.
Vaughan, M. A., Powell, K. A., Kuehn, R. E., Young, S. A., Winker, D. M.,
Hostetler, C. A., Hunt, W. H., Liu, Z. Y., McGill, M. J., and Getzewich, B.
J.: Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO
Lidar Measurements, J. Atmos. Ocean. Tech., 26,
2034–2050, https://doi.org/10.1175/2009jtecha1228.1, 2009.
Vignesh, P. P., Jiang, J. H., Kishore, P., Su, H., Smay, T., Brighton, N.,
and Velicogna, I.: Assessment of CMIP6 Cloud Fraction and Comparison with
Satellite Observations, Earth Space Sci., 7, e2019EA000975, https://doi.org/10.1029/2019ea000975,
2020.
Walsh, J. E., Chapman, W. L., and Portis, D. H.: Arctic Cloud Fraction and
Radiative Fluxes in Atmospheric Reanalyses, J. Climate, 22,
2316–2334, https://doi.org/10.1175/2008jcli2213.1, 2009.
Wang, D., Bi, S., Wang, B., and Yan, J.: Satellite cloud image fusion based
on regional feature with nonsubsampled contourlet transform, J.
Comput. Appl., 32, 2585–2587, 2012.
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance
assessment of CALIOP, Geophys. Res. Lett., 34, L19803,
https://doi.org/10.1029/2007gl030135, 2007.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y. X., Powell, K. A., Liu, Z.
Y., Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and
CALIOP Data Processing Algorithms, J. Atmos. Ocean.
Tech., 26, 2310–2323, https://doi.org/10.1175/2009jtecha1281.1, 2009.
Woodruff, S. D., Diaz, H. F., Worley, S. J., Reynolds, R. W., and Lubker, S.
J.: Early ship observational data and ICOADS, Climatic Change, 73, 169–194, https://doi.org/10.1007/s10584-005-3456-3, 2005.
Wu, W., Liu, Y. G., Jensen, M. P., Toto, T., Foster, M. J., and Long, C. N.:
A comparison of multiscale variations of decade-long cloud fractions from
six different platforms over the Southern Great Plains in the United States,
J. Geophys. Res.-Atmos., 119, 3438–3459, https://doi.org/10.1002/2013jd019813, 2014.
Xia, X., Zhao, B., Zhang, T., Wang, L., Gu, Y., Liou, K.-N., Mao, F., Liu,
B., Bo, Y., Huang, Y., Dong, J., Gong, W., and Zhu, Z.: Satellite-Derived
Aerosol Optical Depth Fusion Combining Active and Passive Remote Sensing
Based on Bayesian Maximum Entropy, IEEE T. Geosci.
Remote, 60, 1–13, https://doi.org/10.1109/tgrs.2021.3051799, 2022.
Xie, S. C., McCoy, R. B., Klein, S. A., Cederwall, R. T., Wiscombe, W. J.,
Clothiaux, E. E., Gaustad, K. L., Golaz, J. C., Hall, S. D., Jensen, M. P.,
Johnson, K. L., Lin, Y. L., Long, C. N., Mather, J. H., McCord, R. A.,
McFarlane, S. A., Palanisamy, G., Shi, Y., and Turner, D. D. D.: ARM CLIMATE
MODELING BEST ESTIMATE DATA A New Data Product for Climate Studies, B.
Am. Meteorol. Soc., 91, 13–20, https://doi.org/10.1175/2009bams2891.1,
2010.
Xu, S. and Cheng, J.: A new land surface temperature fusion strategy based
on cumulative distribution function matching and multiresolution Kalman
filtering, Remote Sens. Environ., 254, 112256, https://doi.org/10.1016/j.rse.2020.112256,
2021.
Xu, S., Cheng, J., and Zhang, Q.: Reconstructing All-Weather Land Surface
Temperature Using the Bayesian Maximum Entropy Method Over the Tibetan
Plateau and Heihe River Basin, IEEE J. Sel. Top. Appl., 12, 3307–3316, https://doi.org/10.1109/jstars.2019.2921924, 2019.
Yang, J. and Hu, M.: Filling the missing data gaps of daily MODIS AOD using
spatiotemporal interpolation, Sci. Total Environ., 633,
677–683, https://doi.org/10.1016/j.scitotenv.2018.03.202, 2018.
Yeo, H., Kim, M.-H., Son, S.-W., Jeong, J.-H., Yoon, J.-H., Kim, B.-M., and
Kim, S.-W.: Arctic cloud properties and associated radiative effects in the
three newer reanalysis datasets (ERA5, MERRA-2, JRA-55): Discrepancies and
possible causes, Atmos. Res., 270, 106080, https://doi.org/10.1016/j.atmosres.2022.106080,
2022.
Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., and Rossow, W. B.: The International Satellite Cloud Climatology Project H-Series climate data record product, Earth Syst. Sci. Data, 10, 583–593, https://doi.org/10.5194/essd-10-583-2018, 2018.
Yu, H.-L. and Wang, C.-H.: Retrospective prediction of intraurban
spatiotemporal distribution of PM2.5 in Taipei, Atmos. Environ., 44,
3053–3065, https://doi.org/10.1016/j.atmosenv.2010.04.030, 2010.
Zhang, C.-J., Chen, Y., Duanmu, C., and Feng, H.-J.: Multi-channel satellite
cloud image fusion in the tetrolet transform domain, Int. J. Remote Sens., 35,
8138–8168, https://doi.org/10.1080/01431161.2014.980918, 2014.
Zhang, Q., Cheng, J., and Liang, S.: Deriving high-quality surface
emissivity spectra from atmospheric infrared sounder data using cumulative
distribution function matching and principal component analysis regression,
Remote Sens. Environ., 211, 388–399, https://doi.org/10.1016/j.rse.2018.04.033,
2018.
Zhu, X., Chen, J., Gao, F., Chen, X., and Masek, J. G.: An enhanced spatial
and temporal adaptive reflectance fusion model for complex heterogeneous
regions, Remote Sens. Environ., 114, 2610–2623, https://doi.org/10.1016/j.rse.2010.05.032, 2010.
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
We proposed a data fusion strategy that combines the complementary features of...
Altmetrics
Final-revised paper
Preprint