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Abstract. The low accuracy of satellite cloud fraction (CF) data over the Arctic seriously restricts the accurate
assessment of the regional and global radiative energy balance under a changing climate. Previous studies have
reported that no individual satellite CF product could satisfy the needs of accuracy and spatiotemporal coverage
simultaneously for long-term applications over the Arctic. Merging multiple CF products with complementary
properties can provide an effective way to produce a spatiotemporally complete CF data record with higher ac-
curacy. This study proposed a spatiotemporal statistical data fusion framework based on cumulative distribution
function (CDF) matching and the Bayesian maximum entropy (BME) method to produce a synthetic 1◦× 1◦

CF dataset in the Arctic during 2000–2020. The CDF matching was employed to remove the systematic biases
among multiple passive sensor datasets through the constraint of using CF from an active sensor. The BME
method was employed to combine adjusted satellite CF products to produce a spatiotemporally complete and
accurate CF product. The advantages of the presented fusing framework are that it not only uses the spatiotem-
poral autocorrelations but also explicitly incorporates the uncertainties of passive sensor products benchmarked
with reference data, i.e., active sensor product and ground-based observations. The inconsistencies of Arctic CF
between passive sensor products and the reference data were reduced by about 10 %–20 % after fusing, with
particularly noticeable improvements in the vicinity of Greenland. Compared with ground-based observations,
R2 increased by about 0.20–0.48, and the root mean square error (RMSE) and bias reductions averaged about
6.09 % and 4.04 % for land regions, respectively; these metrics for ocean regions were about 0.05–0.31, 2.85 %,
and 3.15 %, respectively. Compared with active sensor data, R2 increased by nearly 0.16, and RMSE and bias
declined by about 3.77 % and 4.31 %, respectively, in land; meanwhile, improvements in ocean regions were
about 0.3 for R2, 4.46 % for RMSE, and 3.92 % for bias. The results of the comparison with ERA5 and the
Meteorological Research Institute – Atmospheric General Circulation model version 3.2S (MRI-AGCM3-2-S)
climate model suggest an obvious improvement in the consistency between the satellite-observed CF and the
reanalysis and model data after fusion. This serves as a promising indication that the fused CF results hold the
potential to deliver reliable satellite observations for modeling and reanalysis data. Moreover, the fused prod-
uct effectively supplements the temporal gaps of Advanced Very High Resolution Radiometer (AVHRR)-based
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products caused by satellite faults and the data missing from MODIS-based products prior to the launch of Aqua,
and it extends the temporal range better than the active product; it addresses the spatial insufficiency of the active
sensor data and the AVHRR-based products acquired at latitudes greater than 82.5◦ N. A continuous monthly
1◦ CF product covering the entire Arctic during 2000–2020 was generated and is freely available to the pub-
lic at https://doi.org/10.5281/zenodo.7624605 (Liu and He, 2022). This is of great importance for reducing the
uncertainty in the estimation of surface radiation parameters and thus helps researchers to better understand the
Earth’s energy imbalance.

1 Introduction

Clouds substantially affect Earth’s energy budget by reflect-
ing solar radiation back to space and by restricting emissions
of thermal radiation into space (Ramanathan et al., 1989; Van
Tricht et al., 2016; Danso et al., 2020). Clouds are also an
essential variable in the climate system, because they are di-
rectly associated with precipitation and aerosol loading (Toll
et al., 2019; Poulsen et al., 2016). The cloud fraction (CF),
which represents the amount of sky estimated to be covered
by a specified cloud type or level (partial CF) or by all cloud
types and levels (total CF), has long been recognized as a ma-
jor source of uncertainty when estimating radiation flux and
future climate change (Xie et al., 2010; Y. Liu et al., 2011;
Qian et al., 2012; Danso et al., 2020). An accurate represen-
tation of CF is essential for the evaluation of regional and
global energy budgets as well as for predicting future cli-
matic conditions. However, variances in CF definitions and
system differences commonly exist among different sources
of data. As a solution, the fused product provides a higher
level of definition consistency and accuracy in comparison
to alternative datasets.

By making spatially continuous observations, satellites
provided us with an unprecedented advantage in assessing
regional and global cloud effects. In the last few decades,
increased effort has been made to develop, analyze, and
validate global or regional cloud property datasets that are
based on long-term satellite observations (Heidinger et al.,
2014; Hollmann et al., 2013; Karlsson and Devasthale, 2018;
Marchant et al., 2016; Rossow and Schiffer, 1999; Stuben-
rauch et al., 2013; Enriquez-Alonso et al., 2016; Sun et al.,
2015; Tzallas et al., 2019; Wu et al., 2014). Studies have also
shown that although different cloud datasets were derived
from different observation instruments and algorithms, most
of them provide quite consistent CF observations in middle-
and lower-latitude regions (Karlsson and Devasthale, 2018;
Stengel et al., 2017; Claudia et al., 2012). However, sys-
tematic errors and artifacts exist in CF data, so some incon-
sistencies inevitably occur among different datasets (Sun et
al., 2015; Tzallas et al., 2019; Wu et al., 2014), especially
in the polar regions (Liu et al., 2022). Perennial snow/ice
coverage coupled with frequent moisture inversions in the
Arctic has limited the cloud detection capabilities of passive
sensor datasets, where the differences between these various

datasets tend to be about 2-fold in magnitude when compared
with datasets acquired at other latitudes (Karlsson and Dev-
asthale, 2018; Liu et al., 2022; Stubenrauch et al., 2013). The
uncertainties of the annual global surface downward long-
wave (LW) and shortwave (SW) fluxes caused by satellite-
derived cloud properties were calculated at about 2 % (7 and
4 W m−2, respectively), and those for global surface upward
LW and SW fluxes were about 0.8 % (about 3 W m−2) and
13 % (also 3 W m−2), respectively (Kato et al., 2011, 2012;
Kim and Ramanathan, 2008). It should be noted that the dif-
ferences in CF may have a more obvious impact on the sur-
face radiation budget in high-latitude polar regions. Kennedy
et al. (2012) found that the CF bias might cause monthly
biases in Arctic surface SW and LW fluxes over 90 and
60 W m−2 for some reanalyses, respectively (Kennedy et al.,
2012). Walsh et al. (2009) proposed that the bias of summer
low-level CF would create deviations of about 160 W m−2

in estimated SW radiation (Walsh et al., 2009). Some other
related studies have also found that the variances of annual
Arctic surface radiation estimation caused by CF uncertainty
were higher than 10 W m−2 (Hakuba et al., 2017; Kato et al.,
2018b; Huang et al., 2017). Therefore, relying on a single
CF dataset may introduce large uncertainty when analyzing
the cloud dynamics over the Arctic, further affecting the es-
timated energy budget and related climate applications.

Each cloud dataset has its own advantages and disad-
vantages in Arctic CF detection. The Advanced Very High
Resolution Radiometer (AVHRR) offers the longest contin-
uous satellite observation records extending from 1978 to
the present and provides daily global coverage based on
data from several AVHRR instruments. With the success-
ful operation of new generations of satellites, the frequency
of the global view has increased to more than eight each
day, which provides richer angular information for CF ob-
servations (Heidinger et al., 2014; Karlsson et al., 2017).
Many cloud products exist that are based on AVHRR sen-
sors. The International Satellite Cloud Climatology Project
(ISCCP) H-series product relies on newer passive imagers
with higher spectral, spatial, radiometric, and temporal res-
olutions; it provides revised daytime cloud detection over
snow and ice in polar regions (Young et al., 2018). Moreover,
the ISCCP is largely unaffected by the AVHRR orbital drifts
(Loyola R et al., 2010; Liu et al., 2022). The CM SAF cLoud,
Albedo, and RAdiation datasets (CLARA-A1/A2) system-
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atically use CALIPSO-CALIOP (Cloud-Aerosol LIdar with
Orthogonal Polarization) cloud information for development
and validation purposes, and it optimizes the detection con-
ditions during the polar day over snow- and ice-covered sur-
faces (Karlsson et al., 2017; Karlsson and Håkansson, 2018).
The AVHRR Pathfinder Atmospheres–Extended (PATMOS-
x) product is the first multi-parameter dataset that is mak-
ing use of all AVHRR channels. This product has a relatively
finer spatial resolution than other AVHRR-based records, and
it also improves cloud detection based on active sensor data
(Heidinger et al., 2012, 2014). However, the AVHRR-based
products are often reported to underestimate Arctic CF be-
cause of the limitations in radiation correction and spatial
bands (Stengel et al., 2017; Kotarba, 2015). In addition, the
United States National Oceanic and Atmospheric Adminis-
tration’s (NOAA’s) archiving of data has its own problems
with intermittent occurrences of gaps, duplications, and cor-
rupt data as well as the orbit drifts of satellites (Karlsson et
al., 2017). Beginning in 2000, the higher resolution, higher
calibration accuracy, and larger number of spectral bands
used in the Moderate Resolution Imaging Spectroradiometer
(MODIS) cloud products resulted in more robust but shorter-
length products than AVHRR (Kennedy et al., 2012; Claudia
et al., 2012; Stengel et al., 2017), including MOD08/MYD08
(Marchant et al., 2016) and the Clouds and the Earth’s Radi-
ant Energy System (CERES) (Kato et al., 2018b; Minnis et
al., 2011). Meanwhile, the MODIS-based products are usu-
ally reported to overestimate the CF in the Arctic (Trepte
et al., 2019; Liu et al., 2022). Although passive sensor data
provide a long time-series of continuous CF data covering
the entire Arctic region, the limitations of visible and ther-
mal channels in distinguishing clouds from snow and ice
cause the cloud results of passive sensor data in the high-
latitude bright cold polar regions to have questionable accu-
racy (Eastman and Warren, 2010; Liu et al., 2010; Y. Liu et
al., 2012; Philipp et al., 2020). Active instruments, such as
CALIOP, do not rely on thermal or visible contrasts in de-
tecting clouds, so they are regarded as an excellent reference
for passive data collection in transient and zonular scenarios
(Stubenrauch et al., 2013; Stengel et al., 2017). However, the
number of CALIPSO spatial samplings is too low to overlap
large areas repeatedly in a short time, and the CALIPSO im-
agers only cover the regions within 82.5◦ N latitudes, which
greatly reduced spatial and temporal coverages when com-
pared with passive sensors (Liu et al., 2022; Claudia et al.,
2012; Stubenrauch et al., 2013). Moreover, differences in in-
strumentation impose these different cloud definitions, which
further increase the biases between the passive sensor data
and the active sensor data. Therefore, an effective method for
blending the advantages of multiple satellite products should
yield more accurate Arctic CF products based on a variety of
observations and algorithms.

Several studies have been dedicated to correcting passive
sensor data based on active sensor data with the goal of im-
proving the accuracy of CF products. Philipp et al. (2020)

corrected passive sensor CF data by constructing a function
of the sea ice concentration in different seasons and the CF
bias in data acquired from active and passive sensors, which
showed reliable results for low-level cloud cover identifi-
cation where the sea ice concentration was known (Philipp
et al., 2020). Kotarba (2020) matched the CALIPSO pro-
file data and the MODIS instantaneous field of view to cor-
rect passive sensor data (Kotarba, 2020). This method can be
used as an important reference for short-term research that
focused on a small area, while the efficiency of the algo-
rithm is also important for the correction of long time-series
and large-scale data. Given that passive sensor CFs exhibit
seasonal fluctuations similar to those of active sensor data
(peaking in September and minimizing in April in the Arc-
tic), an approach based on cumulative distribution function
(CDF) matching using time series data may be able to im-
prove both the accuracy and efficiency of CF detection. Us-
ing CDF matching can reduce the systematic bias and root
mean square errors (RMSEs) between target and reference
datasets while maintaining the relative relationship, which
has been successfully applied in the study of soil moisture,
surface emissivity spectra, precipitation, and land surface
temperature (Drusch, 2005; Brocca et al., 2011; Y. Y. Liu et
al., 2011; Zhang et al., 2018; Nie et al., 2016; Xu and Cheng,
2021).

In the field of meteorology, to obtain more accurate cloud
coverage information, multi-source data fusion is usually
performed based on spectral bands and scale geometry infor-
mation of instantaneous satellite images. Examples include
various transforms including the contourlet (Miao and Wang,
2006; Jin et al., 2011), curvelet (Li and Yang, 2008; Liu et
al., 2015), NonSubsampled Contourlet Transform (NSCT)
(Wang et al., 2012), and tetrolet transforms (Zhang et al.,
2014). Alternatively, based on the field of view of different
observation instruments used to acquire satellite images and
of ground-based stations, methods such as the stepwise re-
vision method (Kenyon et al., 2016) and data assimilation
technology (Hu and Xue, 2007) have been used. However,
in the climate domain, the estimation of a radiative energy
budget on a large scale over a long time-series usually re-
quires monthly climate model grid data (Kato et al., 2018a;
Sledd and L’Ecuyer, 2021). Using fused instantaneous data
to extrapolate climate-scale data may result in a large accu-
mulation of errors. In recent decades, the fusion of multi-
sensor thematic products in climate-scale studies has been
widely used and developed. Two main types of methods ex-
ist for merging multiple satellite thematic products based on
the principle of calculation. One type of fusing approach
provides spatiotemporal data fusion by spectral correlation,
which is more suitable for the regions where the spatial in-
formation of objects has no obvious change, such as the
Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) and the improved STARFM (Gao et al., 2006;
Hilker et al., 2009; Zhu et al., 2010; Zhang et al., 2014).
The other type of spatiotemporal data fusing method is data-

https://doi.org/10.5194/essd-15-3641-2023 Earth Syst. Sci. Data, 15, 3641–3671, 2023



3644 X. Liu et al.: A monthly 1◦ resolution dataset

driven, which involves developing geostatistical models to
solve the problem created when the same parameter is in-
consistent among different satellite products. This method
includes the Kriging family of techniques (Chatterjee et al.,
2010; Li et al., 2014; Savelyeva et al., 2010), the spatiotem-
poral interpolation method (Yang and Hu, 2018), and the
Bayesian melding framework (Fuentes and Raftery, 2005;
Christakos, 2010). However, these methods rely on Gaus-
sian assumptions and linear models, which limits their es-
timation accuracy (Nazelle et al., 2010; He and Kolovos,
2017). A nonlinear spatiotemporal geostatistical method,
Bayesian maximum entropy (BME), has been proposed to
fuse the parameters that have apparent spatiotemporal vari-
ations (Nazelle et al., 2010). The BME method can inte-
grate information from different sources and then consider
the data uncertainties in achieving improved prediction ac-
curacy. The most important advantage of BME is that it
does not restrict the complex stochastic relationship between
predictions/observations and “true” values to the Gaussian
linearized model; this is an obvious breakthrough over ap-
proaches restricted to using normal distributions (Nazelle et
al., 2010; Li et al., 2013; Xu et al., 2019). The BME method
has broad application in the assessment of many different at-
mosphere parameters, such as ozone concentration (Nazelle
et al., 2010; Bogaert et al., 2009; Christakos et al., 2004),
PM2.5, PM10 (Yu and Wang, 2010; Beckerman et al., 2013),
and aerosol optical depth (Xia et al., 2022; Tang et al., 2016).
These parameters have similar spatiotemporal properties to
CF; that is, they vary rapidly in both time and space. There-
fore, BME has the potential for use in merging multiple satel-
lite CF products to produce spatiotemporally complete, accu-
rate, and coherent Arctic CF products.

In this paper, we present a spatiotemporal data fusion
framework based on a CDF matching approach and the BME
methodology to generate a fused monthly daytime CF prod-
uct with 1◦× 1◦ resolution in the Arctic region from 2000 to
2020. The CDF matching approach is used to correct the bias
of passive sensor data based on active sensor data, thereby
improving the quality of the passive data. The BME method
is used to produce spatiotemporally complete monthly CF
data from corrected multiple-satellite CF products. The un-
certainties of passive sensor CF products benchmarked with
active sensor data and ground-based data are all considered
in the fusing process. The study area was in the Arctic region
above 60◦ N, including land and marine areas. The structure
of this paper is as follows. Section 2 describes the data, while
Sect. 3 introduces the data preprocessing and methods. The
Results and Discussion are presented in Sects. 4 and 5, re-
spectively. Finally, the Conclusions are provided in Sect. 6.

2 Data

2.1 Satellite data

In view of the complementarity among the AVHRR-based,
MODIS-based, and active sensor products, this study in-
volved 10 passive-satellite-derived products from MODIS
and AVHRR, with the time period spanning from 2000 to
2020 along with an active-satellite-derived product from
CALIPSO, with the time period spanning from 2006 to 2016.
The experimental period only included the sunlit months
from April to September because of the darkness of the Arc-
tic winter. All the data are briefly described in Table 1. Our
study aimed to provide accurate and reliable measurements
of cloud fraction during the daytime in the Arctic region. To
achieve this objective, we utilized cloud fraction data labeled
as “daytime” from multiple satellite datasets.

The AVHRR sensors are aboard sun-synchronous or-
bit satellites collecting data in the morning or afternoon
(NOAA, Metop-A/B). The morning (afternoon) orbits cross
the Equator on their descending (ascending) node at ap-
proximately 07:30 LT (13:30 LT) (local time). Starting with
NOAA-17 and all Metop satellites, AVHRR data are avail-
able from a midmorning orbit with the Equator crossing time
at approximately 09:30 LT. However, complications arose
from changes in the equatorial crossing times of individual
AVHRR sensors due to satellite drift (Heidinger et al., 2014;
Karlsson et al., 2013). The AVHRR has a nominal spatial
resolution of 1.1 km at the nadir point, facilitating full global
coverage twice daily (daytime and nighttime), but the prod-
ucts this study employed provide global area coverage data
with a nadir footprint size of 1.1 km× 4.4 km (Stengel et
al., 2017). Cloud detection algorithms of these latest satel-
lite data have improved greatly in polar regions. However,
some data gaps exist as a result of AVHRR scan motor errors
(e.g., the NOAA-15 orbits were excluded in 2000 and 2001)
and limitations of observation conditions (e.g., CLARA-A2
could not cover the central Arctic Sea in September).

The MODIS sensor is aboard both the morning satellite
Terra and the afternoon satellite Aqua, with overpass times
at the Equator of approximately 10:30 and 13:30 LT, respec-
tively. MODIS produces complete near-global coverage in
less than 2 d. The 36 channels from the visible to the ther-
mal infrared part of the spectrum provide abundant spectral
information for cloud parameter retrieval. The new version
datasets have improved the cloud detection algorithms in po-
lar regions, whereas some researchers found overestimated
CF in snow/ice surface in the new datasets when compared
with active sensor data (Marchant et al., 2020, 2016; Paul,
2017; Trepte et al., 2019). Although some differences exist
between Terra and Aqua, the consistency between these two
satellites cannot be ignored (Trepte et al., 2019).

The CALIPSO satellite combines an active light detection
and ranging (lidar) instrument (Cloud-Aerosol LIdar with
Orthogonal Polarization – CALIOP lidar) with passive in-
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frared (Imaging Infrared Radiometer) and visible imagers
(Wide Field Camera) to probe the vertical structure and prop-
erties of thin clouds and aerosols worldwide (Winker et al.,
2007; Vaughan et al., 2004; Hunt et al., 2009; Vaughan et
al., 2009; Winker et al., 2009). As the most accurate cur-
rently active spaceborne instrument for detecting clouds,
CALIPSO has a 16 d repeat cycle with equatorial overpass
time at 13:30 LT. CAL_LID_L3_GEWEX_Cloud-Standard-
V1-00 is a widely used gridded cloud product with a spatial
resolution of an equal angle grid of 1◦× 1◦ (Claudia et al.,
2012).

2.2 Ground observation data

2.2.1 Climatic Research Unit gridded Time Series

The Climatic Research Unit gridded Time Series (CRU TS)
is a widely used climate dataset covering all land surfaces
except Antarctica, which uses angular distance weighting to
interpolate monthly climate anomalies from extensive net-
works of weather station observations onto a 0.5◦ grid (Harris
et al., 2020, 2014). This dataset was first published in 2000,
and the latest version, CRU TS4.05, contains 10 variables in-
cluding cloud cover for the period 1901–2020 (Harris et al.,
2020). The percentage of cloud cover was derived from ob-
servations of sunlit hours, and CRU TS4.05 output files are
actual values not anomalies.

2.2.2 International Comprehensive Ocean-Atmosphere
Data Set

The International Comprehensive Ocean-Atmosphere Data
Set (ICOADS) is the most extensive freely available archive
of global surface marine data, which has been assimilated
into all major atmospheric, oceanic, and coupled reanalyses
(Freeman et al., 2017). The ICOADS report is derived from
synthetic observations by ships, buoys, coastal platforms,
or oceanographic instruments. This dataset offers a gridded
monthly summary for 2◦ latitude× 2◦ longitude boxes dating
back to 1800 (and 1◦× 1◦ boxes since 1960) (Woodruff et al.,
2005). The available climatic variables include cloud cover
and other atmospheric parameters (Bojinski et al., 2014). In
this study, we used the 1◦× 1◦ cloud cover data in sunlit
months (April to September) spanning 2000 to 2020. In par-
ticular, we obtained the “fraction of observations in daylight”
data from the ICOADS dataset, which allowed us to select
only the data points corresponding to daytime observations.
During our analysis, we imposed a threshold of 0.8 for the
fraction of observations in daylight, ensuring that we only
included the data with high confidence in our study.

2.3 Reanalysis data and model data

In recent decades, atmospheric reanalysis datasets have
emerged as a valuable resource for studying climate pro-
cesses and predictability, offering a long-term, gridded depic-

tion of atmospheric conditions. These datasets rely on state-
of-the-art data assimilation systems, which integrate obser-
vational data and underlying models to create a continuous
record of historical weather patterns. Through the use of var-
ious atmospheric variables, they provide insight into past
weather phenomena. The utilization of these datasets could
prove imperative in conducting research within areas that are
limited in data availability, such as the Arctic. Several stud-
ies have investigated the performance of reanalyses over the
Arctic for a variety of fields including CF (Yeo et al., 2022;
Kennedy et al., 2012; Huang et al., 2017). However, the sys-
tematic errors of climatological reanalysis CF are substan-
tial for Arctic clouds because of the complexity of cloud mi-
crophysical processes and lack of good observation. In-depth
comparisons, as conducted by Walsh et al. (2009), have iden-
tified difficulties in adequately depicting persistent low-level
CF in summer via reanalysis models (Walsh et al., 2009).

ERA5 is an advanced atmospheric reanalysis product de-
veloped by the European Centre for Medium-Range Weather
Forecasts (ECMWF). It provides information on cloud prop-
erties, including cloud fraction, cloud ice, cloud liquid, rain,
and snow water content, which are estimated using the prog-
nostic equations developed by Tiedtke in 1993 (Tiedtke,
1993). This method accounts for physical processes that act
as sources or sinks of clouds, such as convection and con-
densation. In addition, the outdated diagnostic temperature-
dependent approach for phase partitioning in mixed-phase
clouds has been replaced with a more sophisticated, prog-
nostic method developed by Forbes and Ahlgrimm in 2014
(Forbes and Ahlgrimm, 2014). The updated radiation scheme
in ERA5 employs the Monte Carlo independent column ap-
proximation with generalized overlap for sub-grid cloud rep-
resentation, enhancing the accuracy of the product.

This study uses the CF of “ERA5 hourly data on single
levels from 1959 to present”, and the CF parameter has been
regridded to a regular lat–long grid of 0.25◦ and calculated by
making assumptions about the degree of overlap/randomness
between clouds at different heights.

The climate model is also a valuable tool for climate study-
ing. However, comparisons of climate models with Arctic
observations over the past 3 decades have revealed persis-
tent challenges for simulating the Arctic climate, which is
partially attributed to imprecise cloud fraction data (English
et al., 2014). The sixth phase of the Coupled Model Inter-
comparison Project (CMIP6) has been used in many research
papers about climate. Among them, the simulation data of
the Meteorological Research Institute – Atmospheric Gen-
eral Circulation model version 3.2S (MRI-AGCM3-2-S) cli-
mate model provide a basis for climate research designed to
answer fundamental scientific questions and serve as a re-
source for authors of the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC-AR6).
The model employed in this study is derived from the op-
erational weather prediction model of the Japan Meteoro-
logical Agency (JMA). It integrates quasi-conservative semi-
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Table 1. Satellite cloud fraction products used in this research.

Products Cloud detect Satellite Sensor Overpass Time Temporal Spatial
method time range resolution resolution

MOD08-M3
Terra

MOD 35 Terra MODIS 10:30 LT Feb 2000–Dec 2020 daily 1◦× 1◦

MYD08-M3
Aqua

MYD 35 Aqua MODIS 13:30 LT Jul 2002–Dec 2020 daily 1◦× 1◦

CERES-SSF
Terra

CERES Edition 4 Terra MODIS 10:30 LT Mar 2000–Dec 2020 daily 1◦× 1◦

CERES-SSF
Aqua

CERES Edition 4 Aqua MODIS 13:30 LT Jul 2002–Dec 2020 daily 1◦× 1◦

CLARA-A2 AM
European Me-
teorological
Satellite (EU-
METSAT)
Support to Now-
casting and Very
Short Range
Forecasting
(NWC SAF) pro-
cessing package
for polar orbiting

NOAA-15 AVHRR3 07:30 LT Jan 2000–Jul 2000
Mar 2001–Jul 2002 daily 0.25◦× 0.25◦

meteorological NOAA-17 AVHRR3 09:30 LT Aug 2002–Jun 2007

satellites (PPS) Metop-A AVHRR3 09:30 LT Jul 2007–Jun 2019

CLARA-A2 PM
EUMETSAT
NWC SAF PPS

NOAA-14 AVHRR2 13:30 LT Jan 2000–Dec 2000

daily 0.25◦× 0.25◦NOAA-16 AVHRR3 14:00 LT Jan 2001–May 2003

Jun 2003–Jul 2005

NOAA-18 AVHRR3 13:30 LT Aug 2005–May 2009

NOAA-19 AVHRR3 13:30 LT Jun 2009–Jun 2019

PATMOS-x AM Naive Bayesian
NOAA-15 AVHRR3 07:30 LT Jan 2000–Jul 2000

Mar 2001–Aug 2002 daily 0.1◦× 0.1◦

NOAA-17 AVHRR3 09:30 LT Sep 2002–Jun 2007

Metop-A AVHRR3 09:30 LT Jul 2007–Dec 2020

PATMOS-x PM Naive Bayesian

NOAA-14 AVHRR2 13:30 LT Jan 2000–Mar 2001

daily 0.1◦× 0.1◦NOAA-16 AVHRR3 14:00 LT Apr 2001–May 2003

Jun 2003–Jul 2005

NOAA-18 AVHRR3 13:30 LT Aug 2005–May 2009

NOAA-19 AVHRR3 13:30 LT Jun 2009–Dec 2020

ISCCP-H AM IR and VIS
threshold

NOAA-14;
NOAA-19;
Metop-A

AVHRR2;
AVHRR3

09:00 LT Jan 2000–Jun 2017
daily 1◦× 1◦

ISCCP-H PM 15:00 LT

CALIPSO-
GEWEX

5 km merged
layer product
level 2

CALIPSO CALIOP 13:30 LT Jun 2006–Dec 2016 monthly 1◦× 1◦

Lagrangian dynamics, a radiation scheme, and a land surface
scheme that was initially designed for a climate model. Uti-
lizing observed sea surface temperature (SST) as well as SST
alterations forecasted by atmosphere–ocean coupled mod-
els, we carried out simulations of both present-day and fu-
ture climate conditions. This model was released in 2017

and provided CF parameters at native nominal resolutions
of 25 km. This resolution employed in the model is as fine
as those employed by regional climate models (RCMs) in
recent studies. Small-scale phenomena are realistically sim-
ulated in the high-resolution model while keeping the same
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quality of global-scale climate representation as the lower-
resolution models.

The study involved a comparison of pre- and post-fusion
CF data with reanalysis and model data. The aim was to un-
derscore the significant role of fused data in improving the
consistency of CF between satellite observations, reanalysis
data, and model data.

3 Data preprocessing and methodology

In this study, we propose a fusion algorithm framework that
combines data from multiple satellites to provide CF datasets
with high spatiotemporal coverage and improved accuracy.
Figure 1 shows a flowchart of the general process, which in-
cludes four parts. First, the original data were preprocessed
before data fusion, a process that included data quality con-
trol and data resampling. Second, bias correction of passive
sensor data was conducted using active data with the CDF
matching method. Third, to comply with BME’s stationarity
prerequisite that assumes constancy of mean and variance,
we removed the spatiotemporal trend of the original satellite
CF data over the study area using the spatiotemporal moving-
window filter method. Fourth, the spatiotemporal covariance
function was modeled based on the isotropic residual data,
and then the entropy was maximized with covariance con-
straint. All the satellite-based CF data were treated as soft
data, so that the associated uncertainties were incorporated
into the fusing process.

3.1 Data preprocessing

Over the Arctic, the cloud detection capabilities of passive
sensors are always limited by spectral channels, while active
sensors are not susceptible to these effects (Liu et al., 2010;
Y. H. Liu et al., 2012b; Kotarba, 2020; Shupe et al., 2013).
To obtain more accurate fused CF results, it is necessary to
correct these passive sensor products using active sensor data
before merging.

For satellite datasets, statistics always have the Scien-
tific Data Set (SDS) name suffix “_Standard_Deviation” and
which are computed by calculating an unweighted standard
deviation of all pixels or samples within a given 1◦ grid cell.
The large CF standard deviations (SDs) of satellite datasets
represent the large uncertainties of CF detection (Ackerman
et al., 2008; Stengel et al., 2017). In this study, we calcu-
lated the relationship between differences in SDs and CFs
of passive/active sensor datasets and found that the larger
the standard deviation, the more serious the underestimation
of passive sensors. For the products with standard deviation
flags, including MOD08 Terra/Aqua, CLARA-A2 AM/PM,
and the PATMOS-x AM/PM, we used the 90th percentile of
the daily standard deviation as scene-based dynamic thresh-
olds to screen CF data.

However, no standard deviation information was avail-
able for CERES-SSF Terra/Aqua and the ISCCP-H AM/PM

datasets. Based on research that shows ignoring optically
very thin clouds could increase the agreement between pas-
sive sensor data and the CALIPSO data, the 0.15 cloud op-
tical thickness (COT) dataset was selected as the quality
threshold in this study.

3.2 CDF matching

A widely used scaling strategy known as CDF matching can
be used to adjust the distribution of the target dataset to the
range of reference data under the constant relative relation-
ship. Several studies have proved that the process of adjust-
ing this distribution does not change the variation of original
satellite-based products but rather aligns the value range with
that of the reference data (Y. Y. Liu et al., 2011; Brocca et
al., 2011; Xu and Cheng, 2021). Based on similar seasonal
fluctuations of the passive sensor CFs and active sensor data,
the time series of passive sensor data from each grid box in
the Arctic region were adjusted to the values of the paired
CALIPSO-GEWEX latitude and longitude grid. However,
the CALIPSO-GEWEX data could not cover regions with
a latitude greater than 82.5◦ N, and the temporal range only
covers 2006–2016. To correct the CF bias over the entire Arc-
tic region, two strategies were considered.

First, for the regions with enough reference data, the
CF data of all passive sensors were directly adjusted by
CDF matching. The matching approach includes three steps:
(1) constructing the cumulative distribution function, (2) de-
riving regression parameters, and (3) adjusting the origi-
nal data with regression parameters. In our study, we use
a 3-month moving mean to eliminate the uncertainties in
CALIPSO-GEWEX data caused by the limitation of sam-
pling quantities and frequencies. The filtered daily passive
sensor datasets were resampled as monthly mean data, and
then the CDFs were constructed for every dataset based on
the same method used for the active data. A least-square
fit was used to derive the relationship between the refer-
ence and the target datasets. Based on the analysis of Liu
et al. (2022), the seasonal variation of CF for multiple satel-
lites was greater than the interannual changes in CF (Liu et
al., 2022). We propose an additional assumption that the CDF
ratio between active and passive sensor data remains constant
over the years in a 1◦× 1◦ grid cell.

Second, it was difficult to implement the CDF match-
ing strategy for areas beyond the coverage of active sensor
data. Considering the relationship among the CF bias before
and after CDF correction, the cumulative percentage of CF
(CPCF, the average CF over an interval of SIC), and the sea
ice concentration (SIC), a fitting function is proposed to cor-
rect the CF data.

After executing the abovementioned steps, we obtained the
corrected multiple satellite data.
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Figure 1. Flowchart for merging the multiple satellite cloud fraction products based on cumulative distribution function matching and the
Bayesian maximum entropy method.

3.3 Spatiotemporal trend analysis and removal

The BME theory was constructed based on the hypothesis of
spatiotemporal random field (S/TRF) (Nazelle et al., 2010;
Christakos, 2000; He and Kolovos, 2017), which means that
all the variables used for this process are homogeneous and
isotropous. However, a natural process that evolves in space–
time, such as the distribution of CF, can be divided into a
heterogenetic global spatiotemporal trend and a spatiotem-
porally isotropous residual, following Eq. (1):

CF(s,t) = CF(s,t)+CFres(s,t), (1)

where (s, t) represents space and time, CF(s,t) represents
the global spatiotemporal trend, and CFres(s,t) represents the
stochastic anomalies of the variable. To meet the second-
order stationarity assumption (constant mean and variance),
it is necessary to remove the global spatiotemporal trend be-
fore estimating the spatiotemporally autocorrelated structure
of the data (Spadavecchia and Williams, 2009; Tang et al.,
2016). In this study, the global spatiotemporal trend was cal-

culated using a spatiotemporal filter window with a size of
5◦ (longitude)× 5◦ (latitude)× 3 (months).

Figure 2 shows a histogram of the original combined satel-
lite CF data, the global spatiotemporal trend, and the residual
spatiotemporally isotropous component. From these distri-
butions of the histogram, the residual is approximately nor-
mally distributed, which meets the requirement for modeling
the structure of the spatiotemporal autocovariance.

3.4 BME fusion

3.4.1 Spatiotemporal covariance modeling

In spatiotemporal geostatistics, a covariance function indi-
cates the spatial and temporal dependency of the data, which
decreases as distance/time increases (Griffith, 1993). The
spatiotemporal variation of the CF also can be expressed by a
spatiotemporal covariance function. In the BME method, the
experimental covariance can be calculated from point pairs at
specific distances and then modeled by the commonly used
covariance model (Cressie, 2015). This study uses a nested
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Figure 2. Histograms of (a) original combined satellite cloud fraction, (b) global spatiotemporal trend, and (c) spatiotemporally isotropous
component, for the entire Arctic area (example using 2010 data).

covariance model with two spatiotemporal exponential mod-
els to model the spatiotemporal covariance of the detrended
combined CF data, following Eq. (2):

cov(d,τ )= c1 exp
(
−

3d
as1

)
exp

(
−

3τ
at1

)
+ c2 exp

(
−

3d
as2

)
exp

(
−

3τ
at2

)
, (2)

where d is the spatial lag, and τ is the temporal lag between
point pairs at coordinates p(s, t) and coordinates p′(s′, t ′); c1
and c2 are the partial sill variances of the two exponential
models; as1 and as2 are the spatial ranges of the two expo-
nential models; and at1 and at2 are the temporal ranges of
the two exponential models. When the S/TRF is character-
ized by spatial and temporal stationarity, it is only the rela-
tive distance between any couple of locations that affects the
covariance function. Specifically then, the covariance func-
tion has the same value cx(p,p′)= cx(r, t) for any loca-
tion pair (p,p′) separated by the same spatial distance vector
r = s′− s and same temporal distance lag τ = t ′− t (Chris-
takos and Serre, 2000). In this study, the parameters for spa-
tiotemporal covariance are modeled separately for each year.
The modeled results show that the model has a spatial range
of 2◦, a temporal range of 3 months, and a partial sill vari-
ance of 0.85 for local-scale CF (the first nested covariance
model). And for the large range CF, the model has a spatial
range of 30◦, a temporal range of 6 months, and a partial sill
variance of 0.15 (the second nested covariance model).

3.4.2 Construction of soft data

BME treated the informative content with uncertainty from
different sources as soft data (He and Kolovos, 2017). For
example, the observed data were accompanied by obvious
sources of uncertainty such as inaccuracy in measuring de-
vices, modeling uncertainties, and human error. In this study,
the CF data of passive sensor products are viewed as soft
data. For the BME method, a key conceptual aspect is that
the framework does not impose any restrictive assumptions

about the PDFs of soft data. Hence, a parameterized statis-
tical distribution of different sources of information can be
used to replace the real PDFs (Nazelle et al., 2010). Soft
data could be probabilistic or interval soft data (Christakos,
2000). In this study, the differences between satellite data and
ground observations followed normal distributions approx-
imately. Therefore, the passive sensor data used for fusion
were all treated as soft data with a Gaussian distribution, fol-
lowing Eq. (3):

CFsate,x = CFground,x + εx, (3)

where CFsate,x and CFground,x are the satellite CF data and
the corresponding ground observations, respectively, and εx
is an independent random error, following Eq. (4):

ε ∼N
(
µε,σ

2
ε

)
, (4)

where µε represents the mean of random error, and σ 2
ε rep-

resents the variance (Tang et al., 2016).
Because the uncertainties in each satellite CF data vary at

different spatial and temporal scales, using the average un-
certainty of the entire dataset to construct soft data over the
entire study area will undoubtedly neglect the spatiotempo-
ral variation of uncertainties. In this study, six regions were
randomly selected to analyze the probability density func-
tions (PDFs) of random errors (Fig. 3). Large inconsistencies
were observed for the PDFs in land and ocean regions, and
the temporal variation was also an important factor in incon-
sistencies. We constructed the soft data for CF data over land
and ocean regions in every month separately. Considering the
large errors in the Greenland Ice Sheet (GrIS), we calculated
the PDF of random error separately for that region.

For each grid box, the CFs of different satellite data were
converted into a Gaussian distribution probability soft data,
individually (Tang et al., 2016). The soft data were expressed
as

CFsoft,sate ∼N
(

CFsate+µε,σ
2
ε

)
, (5)

where CFsate is the detrended CF value of multiple satellite
datasets; the mean and variance of the Gaussian distribution
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Figure 3. Gaussian probability density functions of the random errors between each type of satellite data and ground observations at six
randomly selected regions of interest from April to September.

probability soft data were expressed by CFsate+µε and σ 2
ε ,

respectively.

3.4.3 Using the BME method for multiple CF data fusion

The BME method can be used to merge continuous variables
of satellite data for some atmospheric parameters. To sim-
plify the heterogeneity and anisotropic variability, the resid-
uals were considered only in the fusion process. Assuming
that various adjacent observations from satellites were avail-
able with irregular spatial and temporal gaps, the nonlinear
mean estimation xk of CF at the location (sx , sy) at time t
was estimated as

xk =

∫
xkf

(
xk|xsoft,1,xsoft,2. . .xsoft,n

)
dxk, (6)

where f (xk|xsoft,1,xsoft,2. . .xsoft,n) is a posterior PDF
over the spatiotemporal adjacent grid observations, and
xsoft,1,xsoft,2. . .xsoft,n are the probabilistic Gaussian soft data
derived from multiple satellite data. The posterior PDF at the
estimation point updates from the prior PDF in the Bayesian
rule when soft data are involved, so the relationship can be
expressed as

f
(
xk|xsoft,1,xsoft,2. . .xsoft,n

)
=
f
(
xsoft,1,xsoft,2. . .xsoft,n,xk

)
f
(
xsoft,1,xsoft,2. . .xsoft,n

) , (7)
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where f (xsoft,1,xsoft,2. . .xsoft,n) represents the prior PDF of
the spatiotemporally isotropous CF at the adjacent grid, and
f (xsoft,1,xsoft,2. . .xsoft,n,xk) is the joint PDF without spe-
cific information. Generally, the joint PDF is represented by
fg(xmap), which can be calculated by maximizing the entropy
under the constraint of the general knowledge g (Jaynes,
1957). When predicting the probability distribution of a ran-
dom event, the larger the information entropy, the larger the
amount of information obtained, and the result is closer to
the actual situation under a most uniform probability distri-
bution. In this study, general knowledge is the spatiotemporal
covariance model, and to maximize the entropy, we introduce
a Lagrange multiplier λ (Xia et al., 2022).

fg
(
xmap

)
=

exp
(

n∑
α=1

λαgα
(
xmap

))
∫

exp
(

n∑
α=1

λαgα
(
xmap

))
dxmap

(8)

Finally, the expectation of spatiotemporally isotropous CF
component can be calculated by solving these equations.
Then the anisotropic spatiotemporal trend component of each
grid was added to the expectation at the corresponding point
to obtain the merged CF product.

4 Results

4.1 Result of CDF matching

Figure 4 shows the scatter plots of the CF distribution be-
fore and after CDF matching from multiple passive and ac-
tive sensors at the valid grid boxes with a latitude of less than
82.5◦ N. Based on the assumption that the correction coeffi-
cient does not vary with time, the training datasets (T) were
processed from 2008 to 2014, and the validation datasets (V)
were processed in 2006, 2007, 2015, and 2016. In Fig. 4,
“Original CF (T)” and “Original CF (V)” indicate the com-
parison of CALIPSO-GEWEX CF and that of the original
passive sensor data, so that the “CDF CF (T)” and “CDF CF
(V)” represent the comparison between CALIPSO-GEWEX
CF and the corrected CF. In general, for all the passive sensor
datasets, the CFs after CDF matching were closer to the 1 : 1
line than before CDF matching. R2 increased by about 0.07–
0.15, while that for the ISCCP-H products was over 0.45.
The RMSEs decreased to one-third to one-half of what they
were, and the biases decreased to approximately zero, which
means that the CDF matching obviously corrected outliers
and eliminated the average differences between the passive
and active sensor CFs. From these scatter plots, we also un-
derstand that CDF matching plays an important role in low
CFs (less than 60 %), which was always seen in April or on
the GrIS (Liu et al., 2022).

In the sea ice regions, the relationships between CF bias of
passive sensor data after and before CDF matching, CPCF,
and SIC are shown in Fig. 5. The results indicated that the

mean of the bias increased with the SIC. Moreover, the CPCF
appeared to decrease with increasing SIC, and a negative cor-
relation between CPCF and bias was also evident.

By virtue of this association, SIC and CPCF are modeled
as dependent variables of the bias. Due to the predominant
presence of sea ice over the domain located above 82.5◦ N,
we employ this functional association to remediate CF inac-
curacies in the region, called “C-SIC Corrected” CF. The ini-
tial two columns of Fig. 6 depict a comparison between the
CF of active data and passive data before and after correction
by C-SIC in sea ice regions below 82.5◦ N. The results indi-
cate that R2 of the corrected scatter plots increased slightly,
but the RMSEs and bias were greatly reduced. In particular,
the CF underestimated by passive sensors was similar to that
of active sensors after correction. In our previous study, we
have proven that this type of underestimation is very common
(Liu et al., 2022). The third column of Fig. 6 shows the com-
parison of C-SIC Corrected CF and the CDF matching CF in
sea ice regions with latitudes less than 82.5◦ N. The results
also showed that the C-SIC Corrected CFs have a high degree
of consistency with the CFs corrected by the CDF match-
ing, with R2 over 0.75, RMSE less than 3.6, and bias less
than 0.5. However, although the correction has improved the
ISCCP-H CFs, they also showed large inconsistencies with
the passive sensor data and the CDF matching data. There-
fore, the ISCCP-H CFs in regions north of 82.5◦ N were not
included in the following fusion process.

Accompanying the decreases in the CF differences of the
active and passive sensor data, the accuracy of individual pas-
sive sensor datasets for the entire Arctic during the exper-
imental period was also generally improved. Moreover, the
consistency of multiple satellite data has improved greatly.
Figure 7 displays the standard deviation between 1◦× 1◦

passive sensor CF data before and after the application of cu-
mulative distribution function matching (latitude≤ 82.5◦ N)
and C-SIC correction (latitude> 82.5◦ N). The results ob-
tained from different regions indicate an obvious decrease
in the inconsistency between multiple passive sensor data af-
ter the correction with the aforementioned methods. In the
Holarctic region, multiple passive sensor CFs saw a decrease
in mean SD from 9.18 % to 5.75 %, with more than 50 %
of the corrected data displaying a standard deviation within
5 %. The sea ice region saw the largest reduction rate of the
mean SD, approximately 4.5 %. This reduction was mainly
derived from an SD value range of 10 %–15 %, due to the
limited detection capacity of passive sensor data in sea ice ar-
eas. Regions with latitudes less than 82.5◦ N saw a decrease
in mean SD of only 3.02 %. In contrast to the sea ice region,
these land regions saw a smaller standard deviation between
multiple satellite data. The distribution of SD frequency in
regions over 82.5◦ N and the entire sea ice area appeared sim-
ilar, indicating that the C-SIC correction method was highly
effective in the 82.5◦ N regions. Although the relative values
showed improvement, the absolute change appeared incon-
spicuous.
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Figure 4.
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Figure 4. The scatter plots of the cloud fraction comparison between the passive and active sensor datasets at regions with latitudes less than
82.5◦ N before and after cumulative distribution function matching: “(T)” means training data with time range from 2008 to 2014, and “(V)”
means validation data from 2006, 2007, 2015, and 2016.
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Figure 5. The relationship between cloud fraction bias of passive sensor data after and before cumulative distribution function matching, the
cumulative percentage of cloud fraction, and the sea ice concentration in sea ice regions with latitudes less than 82.5◦ N.
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Figure 6.
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Figure 6. The scatter plots of the cloud fraction (CF) comparison between the passive sensor datasets and the active sensor datasets before
(the first column) and after (the second column) using the method of CF corrected by the cumulative percentage of CF and SIC (C-SIC). And
the scatter plots of the results comparison between C-SIC and cumulative distribution function matching (the third column).
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Figure 7. Standard deviation between 1◦× 1◦ passive sensor cloud fraction before and after cumulative distribution function matching
(latitude< 82.5◦ N) and C-SIC Corrected (latitude> 82.5◦ N).

4.2 Result of BME fusing

4.2.1 Spatial and temporal distribution of the fused CF

Figure 8 shows the spatial distribution of Arctic CF from the
fused product, multiple satellite data, and ground observa-
tions. The results indicate that although most satellite-based
products agreed relatively well with the ground-based obser-
vations in both the geographical distribution and the zonal
average of Arctic CF at first glance, large disparities also
appeared in some specific regions, whereas the fused prod-
uct we proposed reduced these disparities apparently. For in-
stance, nearly all the passive and active sensor products show
the CFs over the GrIS were less than 60 %. However, CFs
of ground-based observations over this region were reported
as nearly 70 %, which is closer to that of the fused product.
The sea regions of the central Arctic, which are covered by
perennial sea ice/snow, are other areas where the passive sen-
sor products always underestimate CF. From these figures,
some passive sensor products, especially for the AVHRR-
based datasets, have CFs that are about 10 %–20 % lower
than those of active sensor data and ground-based observa-
tions. However, the fused CF has a similar magnitude to these
two referred datasets.

By contrast, the ground-based CF products have a large
data gap, because ground weather stations are sparsely dis-

tributed in the Arctic, so the limitation of sampling quantities
and frequencies had the effect of limiting the spatial and tem-
poral ranges of active sensor data. Moreover, the AVHRR-
based products often suffer from missing data as a result
of satellite failures or band switching (Hollmann, 2018); in
addition, some passive sensor products such as CLARA-
A2 have some spatial gaps over the Arctic Sea during au-
tumn (Karlsson et al., 2017). Although we have eliminated
a large number of low-precision daily data in preprocessing,
the completeness of the merged multiple-satellite CF prod-
ucts is obviously higher than those of the original satellite-
based data and ground-based observations in both spatiality
and temporality, especially in regions of the Arctic Ocean.
The spatial completeness (the ratio of available data to the CF
grids of the entire Arctic) of the fused CF product was nearly
100 %, which is much larger than 54.09 % of ground-based
products and 73.15 % of the active sensor product. There-
fore, the fusion algorithm proposed by this study can not
only obviously reduce the inconsistencies of Arctic CF be-
tween multiple satellite products and reference datasets but
also effectively compensate for the data gaps caused by the
lack of reference data.

It is well known that the CF in the Arctic regions fluc-
tuates apparently with the change in seasons. To show the
temporal accuracy of the fusion products, we analyzed the
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Figure 8. Distribution of the average cloud fraction of different datasets over the Arctic from 2000 to 2020. The time ranges for ISCCP-H
and CALIPSO-GEWEX were from 2000 to 2017 and from 2006 to 2016, respectively.

long time-series area-weighted mean of the CF. Figure 9 de-
picts the fluctuation of the mean value on a monthly ba-
sis for all data during sunshine periods (April to Septem-
ber) before and after fusion, as demonstrated by the time se-
ries. It is clear that the CF peaks in September and reaches
a minimum in April. However, only the fused product al-
ways maintains a high level of consistency with the refer-
ence data, with the monthly mean CF varying from 62 %
to 79 %. The overall area-weighted means of the differ-
ences between fused CF and CALIPSO-GEWEX CF and
between fused CF and ground-based CF were about 0.91 %
and 0.40 %, respectively, which are about one-third of the
differences for MODIS-based products and reference prod-
ucts and about one-fifth to one-twentieth of the differences
for AVHRR-based products and reference products. In land
and ocean areas, the fusion algorithm clearly corrects the out-
liers with large deviations, such as the CF from CLARA-
A2, PATMOS-x products, and the CERES-SSF products.
The first two datasets are well-known for underestimating the
Arctic CF dramatically (Karlsson et al., 2017; Karlsson and
Dybbroe, 2010). In this study, the underestimation mainly

occurred in April, with approximately 8 % and 3 % for those
two datasets, respectively. The latter has often been reported
to overestimate CF (Doelling et al., 2016; Trepte et al., 2019),
and in this study the CERES-SSF products nearly overmea-
sure CF all year long from April to September. However, the
fusion framework proposed by this study scales these under-
estimated values or overestimated values to a range similar
to that of active sensor data by CDF matching; meanwhile,
it takes into account the deviation from ground observations
in the BME fusion process. The fused CFs can not only re-
duce the overestimation of CF by MODIS-based products but
also decrease the underestimation of CF for AVHRR-based
products, which obviously improves the consistency of CF
between the active sensor, passive sensor, and ground-based
observation dataset compared with the original data.

4.2.2 Quantitative assessment of fused CF

To validate the fused CF and compare the accuracy of the
fused results to that of several original satellite CFs, all the
passive sensor CF products and the merged CF product were
spatiotemporally compared with the CRU TS4.05 in land re-
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Figure 9. The area-weighted means of cloud fraction over (a) Holarctic, (b) land, and (c) sea regions for different products in the Arctic
from April to September during 2000 to 2020. The time ranges for ISCCP-H and CALIPSO-GEWEX were from 2000 to 2017 and from
2006 to 2016, respectively.

gions and ICOADS measurements in sea regions. The cor-
relation coefficient (R2), root-mean-square error (RMSE),
and mean bias (bias) were used to quantitatively evaluate
the accuracies of the original and merged CF products. As
Fig. 10 indicates, the scatter points of the fused CF prod-
uct and ground-based observations were closer to the 1 : 1
line than that of the original satellite data. In this case, the
fused data had the largest R2 (0.51), lowest RMSE (6.95 %),
and the lowest bias (0.35 %) for land regions. In addition,
the fused data had the largest R2 (0.42), the lowest RMSE
(5.62 %), and the lowest bias (0.55 %) for sea regions.

For land, it can also be seen that the fusion results have a
strong ability to correct the satellite CF that is less than 30 %.
These values were mainly found on the GrIS, in the Canadian
islands, and on the central Eurasian continent. In addition, the
RMSE of CF after fusion was only one-half of the original
satellite data, which means that the overall distribution of the
fused CF is better fitted to the reference data, and most of the
CFs with differences over 30 % were corrected well.

The observations of ICOADS come from multiple ob-
servation platforms, and most of these platforms operate in
open waters. The open-water regions varied mostly with the
growth and decline of the SIC, which brings great spatiotem-
poral heterogeneity for the sampling of ICOADS. Therefore,
in the verification process, the first step was to spatiotem-
porally collocate the satellite data with the ocean site. Fig-
ure 10b shows that R2 of the fused CF only improved by
about 0.05–0.08 when compared with most satellite data.
However, the fusion algorithm reduces the RMSEs and bias
obviously. The RMSEs of the fusion CF were about one-
fourth to one-third of the original MODIS-based products
and one-third to three-fifths of the original AVHRR-based

products. The reductions of bias were about 4 %–5 % for
MODIS-based products and about 2 %–5.4 % for AVHRR-
based products.

As the accepted reference for passive sensor products,
CALIPSO-based products are considered to provide excel-
lent data and are always used to validate the accuracy of
cloud datasets. In Fig. 11, we compare the CFs of passive
sensor products before and after fusion with those of the
CALIPSO-GEWEX product. The results show that when
compared with the original satellite data, the consistencies
between the fused product and the active sensor product were
further improved in both land and sea regions. The RMSEs
were reduced to about one-third to one-half of the original
values or approximately 5.69 % and 4.58 % for land and sea
regions, respectively. Actually, the consistency of CFs be-
tween passive and active sensor datasets was higher than that
between satellite data and ground observations. Except for
the ISCCP-H products, the R2 of original satellite data was
over 0.63; that of fused CF only improved obviously in sea
regions (about 0.12–0.21), while it improved slightly but in
inconspicuously in land regions (about −0.01–0.1). This can
be explained by the fact that the fusion algorithm greatly im-
proves the low-value CFs in the land areas (especially on the
GrIS) to levels similar to that of ground-based observations,
while the CF of the active sensor data was no more than
60 %. Therefore, some overestimations for the fused CF ex-
isted when compared with the CALIPSO-GEWEX CF data.
From the bias of Fig. 11a, we also see that the fusion al-
gorithm can obviously improve the CF underestimated by
the original satellite data. However, in the sea regions, the
MODIS-based datasets seem to over-identify CF, especially
when the CF was over 80 %. Meanwhile, the AVHRR-based
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Figure 10. Validation of the fused cloud fraction and the original passive sensor datasets against the (a) CRU TS4.05 and (b) ICOADS
datasets.

datasets show underestimation when CF was less than 80 %.
Obviously, the fused product corrected these CFs to a more
suitable range.

Reanalysis data and the climate model data are commonly
used to provide a consistent and continuous dataset for long-
term climate trends and variability studies. These datasets
can provide insights into the behavior of the climate sys-
tem that would be difficult to obtain from direct observations
alone. To further show the advantages of the fusion results,
we analyzed the difference in CFs between different satellite
data, ERA5 reanalysis datasets, and the MRI-AGCM3-2-S
climate model. As can be seen from Fig. 12, the fusion prod-
uct greatly reduced the deviation in CF between the satel-
lite data and the reanalysis dataset and the model data. When

compared with the ERA5 CF dataset, the scatter points of
fused CFs were more concentrated around the 1 : 1 line than
those of the original satellite data. R2 of the fusion product
was about 1.5 times higher (improved about 0.18) than that
of the original data, and the RMSEs and bias decreased to
one-third of their original values (decreases of about 3.08 %–
8.68 % and 1.45 %–15.88 %, respectively). This means that
the distributions of the CFs over the entire Arctic of the fu-
sion product were more consistent with those of the reanal-
ysis CF dataset than the original satellite. However, the low
absolute values also indicated that there were inescapable in-
consistencies in some grids. The ERA5 dataset has usually
been reported to overestimate CF in some regions of the Arc-
tic, especially in the ocean regions (Yeo et al., 2022). In these
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Figure 11. Validation of the fused cloud fraction and the original passive sensor datasets against the CALIPSO-GEWEX dataset over (a) land
and (b) sea regions, with a temporal range from 2006 to 2016.

regions the fused CF has slightly higher values than that of
the ERA5 data.

The comparison results with the MRI-AGCM3-2-S CF
show that, when compared with the original satellite data,
the fusion method reduced the CF underestimation partly;
these underestimations were often seen in April or over the
central and western GrIS. In addition, R2 was improved by
about 0.14, and the RMSEs were reduced to one-fourth of
their values of original satellite data (about 2.60 %–8.20 %
reduction). However, although the fusion data relieve some
CF overestimations that occurred in original passive sensor
datasets, the scatter plot in Fig. 12 shows that the fusion CFs
in some grids were significantly higher than the CF of model
data (with bias by 4.26 %). These grids are usually found

in the open-water areas of the Arctic Ocean, central Alaska,
central Eurasia, and along the eastern margin of Greenland.
Several studies have shown that the climate models underes-
timate the CF over these regions (Vignesh et al., 2020).

5 Discussion

5.1 The efficacy of CDF matching in CF fusion

The CDF matching approach was operated based on a time
series CF considering the time-varying process of CF prod-
ucts at a specific longitude–latitude grid box. Compared with
the metrics for the traditional approach, the CF of multiple
passive sensor products was scaled to a level similar to the
active sensor CF after CDF matching, so that the inconsis-
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Figure 12. Validation of the fused cloud fraction (CF) and the original passive sensor datasets against (a) ERA5 CF dataset and (b) CMIP6
CF dataset over the Holarctic.

tencies among multiple passive sensor CF datasets were re-
duced. To further evaluate the efficacy of CDF matching in
the CF fusion process, we quantitatively evaluated the devi-
ation between satellite data before and after CDF correction
with ground-based observation data.

By comparing Figs. 10 and 13, we can infer that CDF
matching can obviously improve the low value of CFs typ-
ical of satellite data, making such data more similar to those
observed by ground-based sites. These improvements were
more obvious for CFs over land regions. Among them, the
largest bias correction was seen for the ISCCP-H products
(about 7.9 % improvement) and the CLARA-A2 products
(about 6.5 % improvement); the former always underesti-
mated CF in the Arctic (Kotarba, 2015; Liu et al., 2022),

and the latter have often been reported to under-identify CF
over northern Canada, northern Russia, and across the entire
GrIS in land regions and over the entire Arctic Ocean in April
(Karlsson and Dybbroe, 2010). Note that the bias of CERES-
SSF changes from 0.4 % to −0.72 % after CDF matching,
because CERES-SSF products are usually reported to over-
estimate CF, and these overestimations were corrected rea-
sonably. For the ocean regions, the ground references used in
this paper were derived from multiple platform observations,
which have great spatiotemporal heterogeneity. Therefore,
a large CF discrepancy existed between satellite data and
ocean observations. Almost all the passive sensor data have
RMSEs and bias that would decrease after CDF correction
by about 0.8 %–1.7 % and 0.68 %–5.26 %, respectively. The
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CDF matching mainly improves the CF in the high-value grid
boxes of MODIS-based data and PATMOS-x data as well as
in the CF in low-value grid boxes of ISCCP-H and CLARA-
A2. Satellite observation covering open-sea areas typically
presents a higher CF compared to station observation. Con-
sequently, partial overestimation may persist despite correc-
tion by the CDF matching approach. In the subsequent fusion
process, the difference between satellite CF and ground CF
was taken into account, which can play a certain role in over-
fitting correction.

In addition, in the land area, CDF matching was directly
carried out grid by grid. However, the short temporal range
(2006–2016) of the reference data limits the production of
long-time-series CF products. In this study, we proposed a
hypothesis that the matching parameter in a specific grid box
does not change with time. To prove the validity of this hy-
pothesis, we conducted a sensitivity analysis on the matching
parameters from the 5th to the 11th year at 1-year intervals.
The findings indicate that any deviations in matching param-
eters were under 0.05 % when the time horizon exceeded
8 years. This demonstrates a level of stability in the correc-
tion coefficient when utilizing data for a period exceeding
11 years (Fig. A1). Figure 14 displays the variation in differ-
ences between satellite data and ground observations before
and after conducting CDF matching throughout the duration
of the study. These differences are calculated by subtracting
the deviation between satellite data and ground observations
subsequent to CDF matching from that prior to CDF match-
ing. Clearly, the differences remained steady with time, and
the maximum average annual difference was no more than
1.56 %, while part of it was derived from the orbit drift of
satellite and variations in the spectral channel.

5.2 The uncertainties of the original satellite data

CF products from different sensors have different degrees
of uncertainty. As a knowledge-centered approach, the
Bayesian maximum entropy approach could integrate infor-
mative content with uncertainty from different sources based
on a rigorous theoretical support of considerable generality
to achieve improved prediction accuracy. For example, the
observed data that were accompanied by obvious sources of
uncertainty such as inaccuracy in measuring devices, model-
ing uncertainties, and human error were treated as soft data
in the BME strategy. For the CF datasets of multiple satel-
lite, the uncertainties come from calibration error, orbit drift,
signal degradation, and the errors of cloud detection algo-
rithms (Liu et al., 2022). To achieve optimum estimation of
CFs by combining data from multiple sensors, it is imper-
ative to explicitly consider the uncertainties associated with
the CF data that are being merged. In our study, the CF data
of passive sensor products are viewed as soft data, and the
uncertainty associated with different error sources can be ex-
pressed explicitly by probability distributions.

Specifically, the soft data of multiple satellite CF datasets
were constructed by comparing the spatiotemporally collo-
cated satellite CFs and the ground-based records from CRU
TS4.05 over land and from ICOADS over sea. Tradition-
ally, the deviations between each satellite dataset and ground
site observations at different times and different regions have
been averaged to the entire datasets and then used to calcu-
late the average uncertainty of these data. In this way, the
spatial variation of uncertainty in each satellite dataset was
ignored. Because the conditions that cause uncertainty are
variable in time and space, the uncertainties in each satellite
dataset were definitely not the same everywhere (Tang et al.,
2016). This is especially true for the ICOADS data, which
come from different platforms and introduce large inconsis-
tencies in results. In this study, we constructed soft data for
CF over land, ocean, and GrIS regions every month sepa-
rately by analyzing the PDF differences for different regions
and different months, which realized more consistent results
with the ground observations. However, despite concerted ef-
forts, determining the uncertainty for each grid remains chal-
lenging in light of the substantial temporal and spatial gaps
of the reference data, particularly that which pertains to the
marine domain.

5.3 The uncertainties of the fusion CF

To assess the fusion algorithm’s reliability, we used the stan-
dard deviation of error within each grid value in the fusion
process to quantify the uncertainties. Specifically, we de-
termined the standard deviation of the predicted posterior
probability density function on each grid point. Our findings
demonstrate that, with the exception of the northern region
of Greenland and part of the margin error, the standard de-
viation of error in other areas was within 3 % (Fig. 15). We
attribute these discrepancies primarily to the underestimation
of satellite observations, particularly the ISCCP-H data, by
around 10 %–30 % in the central zone of Greenland. More-
over, the CF of ISCCP-H was significantly overestimated be-
yond the Greenland margin. Such significant inconsistencies
can adversely affect the fusion results. In addition, because
the CF of satellite data, particularly satellite data based on
AVHRR, was significantly lower than that of ground-based
observation data and active sensor data in April and because
a significant difference existed between different datasets, the
standard deviation of error after fusion marginally increased
in April, with some areas at approximately 4 %. It should
be noted that our fused data show an overestimation in the
Greenland region. This is mainly because the fusion process
prioritizes consistency between the fused data and ground
observations. In specific applications, users can make cor-
responding adjustments based on active sensor data for cali-
bration purposes.
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Figure 13. Validation of the corrected cloud fraction of passive sensor datasets after cumulative distribution function matching against (a) the
CRU TS4.05 dataset over land regions and against (b) the ICOADS dataset over sea regions.

Figure 14. The difference in results between satellite data and ground observations before and after cumulative distribution function matching
over the Arctic from 2000 to 2020.
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Figure 15. The mean error standard deviation of the fusion results.

6 Data availability

The fused CF product is available on the Zenodo reposi-
tory at https://doi.org/10.5281/zenodo.7624605 (Liu and He,
2022). The gridded CF data are provided both in *.mat for-
mat (Fused_CF_ Arctic_ MAT, with a file size 9.91 MB)
and in netCDF format (Fused_CF_Arctic_netCDF, with a file
size 10.7 MB) at 1◦ spatial resolution and monthly temporal
resolution during 2000–2020 in percentages. The results in
these two folders are exactly the same; users can download
either format as needed.

7 Conclusions

The spatiotemporal inconsistency in existing satellite CF
products would inhibit their application in climatological and
energy budget studies. Over the Arctic region, the special cli-
matic conditions and underlying surface characteristics limit
the cloud detection abilities of passive/optical satellite sen-
sors. The complementary features of the CF products derived
from multiple satellite sensors in spatial completeness and
accuracy make it possible to produce an improved CF prod-
uct by merging data from multi-sensor satellite CF products.

In this paper, we propose a data fusion strategy for pro-
ducing high-quality monthly CF data over the entire Arctic
with a latitude higher than 60◦ N during sunlit months from
2000 to 2020. Four key steps were involved in the proposed
strategy: (1) data quality control, (2) correcting the bias of
passive sensor data using CDF matching; (3) obtaining the
spatiotemporally isotropous component by removing the spa-
tiotemporal trends, and (4) producing very accurate CF data
by fusing multiple satellite products and considering the un-
certainty between satellite data and ground observations with
the BME approach.

The fusion algorithm proposed by this study apparently
reduced inconsistencies in the Arctic CF data acquired by
multiple satellite products and the reference products spa-
tiotemporally, resulting in 10 %–20 % reductions in CF dif-
ferences between fused satellite products and the reference
data, and an obvious improvement was seen across the GrIS
and in the central Arctic Ocean. The results from 21-year
datasets in the study areas demonstrate that the monthly
mean CF of the fusion product varied from 62 % (April) to
79 % (September) during the study period, which is simi-
lar to that of the two reference datasets. After CDF match-
ing, the inconsistencies of multiple satellite CF products
were reduced by about 3.43 % for the entire Arctic, with a
larger reduction (4.46 %) for sea ice regions. The overesti-
mation of MODIS-based products and the underestimation
of AVHRR-based products have been effectively corrected,
with the CERES-SSF bias changing from 0.4 % to −0.72 %
and the bias of ISCCP-H and CLARA-A2 decreasing by
about 7.9 % and 6.5 %, respectively. After BME fusing, com-
parisons with the ground-based observations (CRU TS4.05 in
land and ICOADS in marine areas) and the active sensor data
CALIPSO-GEWEX show that R2 improved by about 0.05–
0.48 for different products; meanwhile, the overall RMSEs
and bias of the fusion product were reduced by about 2.08 %–
7.75 % and 1.6 %–12.54 %, with reductions of nearly 50 %
and 67 % when compared with that of the original passive
sensor data, respectively. When compared with the reanalysis
CF dataset ERA5 and the model dataset MRI-AGCM3-2-S,
R2 increased by about 0.18 and 0.14, and RMSE and bias for
reanalysis data decreased by about one-third of that for the
original data, with reductions of about 3.08 %–8.68 % and
1.45 %–15.88 % for different data, respectively. The RMSEs
for model data dropped to one-fourth of their original val-
ues (about a 2.60 %–8.20 % reduction). These metrics mean
that the proposed fusion algorithm effectively removed CF
data with differences greater than 30 % and made the fused
Arctic CF estimation more robust than those data from a
single satellite. Nevertheless, the fused product could com-
pletely cover the entire Arctic, especially the ocean regions,
where the active sensor data and the ground-based data have
large data gaps. Temporally, the fused data can complement
the missing data caused by the faults of satellites carrying
AVHRR sensors and the absence of Aqua data before 2002
as well as the temporal limitation of passive sensors.

In general, the proposed fusion algorithm combines the
complementary features of multiple satellite CF datasets; it
not only takes full advantage of the spatiotemporal autocor-
relation among neighboring grids but also incorporates un-
certainty estimates of multi-sensor CFs, such as the uncer-
tainties of each passive sensor dataset, the uncertainties be-
tween passive and active sensor datasets, and the uncertain-
ties between satellite data and ground-based observations.
Through temporal and spatial expansion schemes, this fusion
framework makes up for the disadvantages in spatiotemporal
ranges of reference data. Finally, the fusion algorithm can
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generate a monthly 1◦× 1◦ CF product covering the entire
Arctic region during 2000 to 2020, which has positive signif-
icance for reducing the uncertainties of assessment of surface
radiation flux and improving the accuracy of research related
to climate change and energy budgets both regionally and
globally. However, some overestimations were observed, es-
pecially in ocean regions. This may be attributed to the fact
that the ocean stations are too sparse to play a certain role
in correcting the overfitting of CDF. Although ICOADS is a
widely used ocean validation dataset, it has great spatiotem-
poral heterogeneity as it comes from a variety of different
observation platforms, and the sampling is affected by the
extent of sea ice. Better reference data should be explored to
further improve the uncertainty involved in the assessment of
the fused product.

Appendix A

Figure A1. The sensitivity analysis on the CDF matching parameters from the 5th (2011) to the 11th year (2017) of CALIPSO time at 1-year
intervals. The coefficients a, b, and c are calculated by the least-square fit method. And the time period only contains sunlit months from
April to September.
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