Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-3163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global physics-based database of injection-induced seismicity
Iman R. Kivi
CORRESPONDING AUTHOR
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain
Institute of Environmental Assessment and Water Research, Spanish
National Research Council (IDAEA-CSIC), Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Auregan Boyet
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain
Institute of Environmental Assessment and Water Research, Spanish
National Research Council (IDAEA-CSIC), Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Haiqing Wu
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Department of Civil and Environmental Engineering (DECA), Universitat
Politécnica de Catalunya (UPC), Barcelona, Spain
Linus Walter
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain
Institute of Environmental Assessment and Water Research, Spanish
National Research Council (IDAEA-CSIC), Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Sara Hanson-Hedgecock
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain
Institute of Environmental Assessment and Water Research, Spanish
National Research Council (IDAEA-CSIC), Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Francesco Parisio
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain
Institute of Environmental Assessment and Water Research, Spanish
National Research Council (IDAEA-CSIC), Barcelona, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Victor Vilarrasa
Global Change Research Group (GCRG), IMEDEA, CSIC-UIB, Esporles, Spain
Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain
Related authors
No articles found.
Tian Guo, Dmitry Alexandrov, Leo Eisner, Zuzana Jechumtalova, Sherilyn Coretta Williams-Stroud, Umair Bin Waheed, and Víctor Vilarrasa
EGUsphere, https://doi.org/10.5194/egusphere-2025-1384, https://doi.org/10.5194/egusphere-2025-1384, 2025
Short summary
Short summary
We have studied the stress conditions at the Decatur CO2 storage site that would induce the observed microseismicity. Initial estimates suggested that faults required higher pressure to slip than the injection pressure, but refining pressure and friction assumptions led to more realistic scenarios. Our study highlights the importance of accurate stress state measurements and high-quality data to better predict reservoir response to injection and improve the safety and reliability of CO2 storage.
Haris Raza, George Sand França, Eveline Sayão, and Victor Vilarrasa
Solid Earth, 15, 1407–1417, https://doi.org/10.5194/se-15-1407-2024, https://doi.org/10.5194/se-15-1407-2024, 2024
Short summary
Short summary
Hydropower dams associated with a large reservoir, a key renewable, face challenges like reservoir-triggered seismicity (RTS). Here, rock samples show 6.3 %–14.7 % porosity and a maximum permeability of 0.0098 mD. A 136 m reservoir rise causes a 0.61 MPa pore pressure increase. Vertical stress rises by 0.75 MPa, and horizontal stress falls by 0.48 MPa, which leads to fault destabilization, causing RTS. These facts urge the adoption of sustainable energy strategies and future dam development.
Estanislao Pujades, Laura Scheiber, Marc Teixidó, Rotman Criollo, Olha Nikolenko, Victor Vilarrasa, Enric Vázquez-Suñé, and Anna Jurado
Adv. Geosci., 59, 9–15, https://doi.org/10.5194/adgeo-59-9-2022, https://doi.org/10.5194/adgeo-59-9-2022, 2022
Short summary
Short summary
This paper explores the impact of low enthalpy geothermal energy (LEGE) on the behaviour of organic contaminants of emerging concern (CECs). Specifically, we investigate the impact of LEGE on phenazone that is an analgesic drug commonly reported in urban aquifers. CECs pose a risk for the environment and human health, and thus, they must be eliminated to increase the available fresh-water resources in urban areas, where water scarcity is a matter of concern due to the population growth.
Cited articles
Alghannam, M. and Juanes, R.: Understanding rate effects in
injection-induced earthquakes, Nat. Commun., 11, 3053,
https://doi.org/10.1038/s41467-020-16860-y, 2020.
Atkinson, G. M., Eaton, D. W., and Igonin, N.: Developments in understanding
seismicity triggered by hydraulic fracturing, Nat. Rev. Earth Environ., 1,
264–277, https://doi.org/10.1038/s43017-020-0049-7, 2020.
Bachmann, C. E., Wiemer, S., Woessner, J., and Hainzl, S.: Statistical
analysis of the induced Basel 2006 earthquake sequence: introducing a
probability-based monitoring approach for Enhanced Geothermal Systems,
Geophys. J. Int., 186, 793–807,
https://doi.org/10.1111/j.1365-246X.2011.05068.x, 2011.
Bao, X. and Eaton, D. W.: Fault activation by hydraulic fracturing in
Western Canada, Science, 354, 1406–1409, https://doi.org/10.1126/science.aag2583, 2016.
Bär, K., Reinsch, T., and Bott, J.: The PetroPhysical Property Database (P3) – a global compilation of lab-measured rock properties, Earth Syst. Sci. Data, 12, 2485–2515, https://doi.org/10.5194/essd-12-2485-2020, 2020.
Berre, I., Doster, F., and Keilegavlen, E.: Flow in fractured porous media:
A review of conceptual models and discretization approaches, Transp. Porous
Media, 130, 215–236, https://doi.org/10.1007/s11242-018-1171-6, 2019.
Brace, W. F.: Permeability of crystalline and argillaceous rocks, Int. J.
Rock Mech. Min. Sci. Geomech. Abstract, 17, 241–251,
https://doi.org/10.1016/0148-9062(80)90807-4, 1980.
Buijze, L., van Bijsterveldt, L., Cremer, H., Paap, B., Veldkamp, H.,
Wassing, B. B. T., van Wees, J. D., van Yperen, G. C. N., and ter Heege, J.
H.: Review of induced seismicity in geothermal systems worldwide and
implications for geothermal systems in the Netherlands, Neth. J. Geosci.,
98, e13, https://doi.org/10.1017/njg.2019.6, 2019.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028,
https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2, 1996.
Cappa, F. and Rutqvist, J.: Modeling of coupled deformation and
permeability evolution during fault reactivation induced by deep underground
injection of CO2, Int. J. Greenhouse Gas Control, 5, 336–346,
https://doi.org/10.1016/j.ijggc.2010.08.005, 2011.
Caruso, G. D.: The legacy of natural disasters: The intergenerational impact
of 100 years of disasters in Latin America, J. Dev. Econ., 127, 209–233,
https://doi.org/10.1016/j.jdeveco.2017.03.007, 2017.
Cesca, S., Grigoli, F., Heimann, S., González, A., Buforn, E.,
Maghsoudi, S., Blancg, E., and Dahm, T.: The 2013 September–October seismic
sequence offshore Spain: a case of seismicity triggered by gas injection?,
Geophys. J. Int., 198, 941–953, https://doi.org/10.1093/gji/ggu172, 2014.
Cheng, A. H.-D.: Poroelasticity, edited by: Hassanizadeh, S. M., Springer, Berlin,
https://doi.org/10.1007/978-3-319-25202-5, 2016.
De Simone, S., Carrera, J., and Vilarrasa, V.: Superposition approach to
understand triggering mechanisms of post-injection induced seismicity,
Geothermics, 70, 85–97, https://doi.org/10.1016/j.geothermics.2017.05.011,
2017.
Diehl, T., Kraft, T., Kissling, E., and Wiemer, S.: The induced earthquake
sequence related to the St. Gallen deep geothermal project (Switzerland):
Fault reactivation and fluid interactions imaged by microseismicity, J. Geophys. Res.-Sol. Ea., 122, 7272–7290,
https://doi.org/10.1002/2017JB014473, 2017.
Ellsworth, W. F.: Injection-induced earthquakes, Science, 341, 1225942,
https://doi.org/10.1126/science.1225942, 2013.
Ellsworth, W. L., Giardini, D., Townend, J., Ge, S., and Shimamoto, T.:
Triggering of the Pohang, Korea, earthquake (Mw 5.5) by enhanced
geothermal system stimulation, Seismol. Res. Lett., 90, 1844–1858,
https://doi.org/10.1785/0220190102, 2019.
Evans, K. F., Zappone, A., Kraft, T., Deichmann, N., and Moia, F.: A survey
of the induced seismic responses to fluid injection in geothermal and
CO2 reservoirs in Europe, Geothermics, 41, 30–54,
https://doi.org/10.1016/j.geothermics.2011.08.002, 2012.
Eyre, T. S., Eaton, D. W., Garagash, D. I., Zecevic, M., Venieri, M., Weir,
R., and Lawton, D. C.: The role of aseismic slip in hydraulic
fracturing–induced seismicity, Sci. Adv., 5, eaav7172,
https://doi.org/10.1126/sciadv.aav7172, 2019.
Fan, Z., Eichhubl, P., and Newell, P.: Basement fault reactivation by fluid
injection into sedimentary reservoirs: Poroelastic effects, J. Geophys. Res.-Sol. Ea., 124, 7354–7369, https://doi.org/10.1029/2018JB017062,
2019.
Flóvenz, Ó. G., Ágústsson, K., Guðnason, E. A., and
KristjÁnsdóttir, S.: Reinjection and induced seismicity in
geothermal fields in Iceland, Proceedings World Geothermal Congress 2015, 19–25 April 2015,
Melbourne, Australia, 2015.
Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., and Davies, R.
J.: Global review of human-induced earthquakes, Earth Sci. Rev., 178,
438–514, https://doi.org/10.1016/j.earscirev.2017.07.008, 2018.
Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
Gaucher, E., Schoenball, M., Heidbach, O., Zang, A., Fokker, P. A., van
Wees, J. D., and Kohl, T.: Induced seismicity in geothermal reservoirs: A
review of forecasting approaches, Renew. Sustain. Energ. Rev., 52,
1473–1490, https://doi.org/10.1016/j.rser.2015.08.026, 2015.
Ge, S. and Saar, M. O.: Review: Induced seismicity during geoenergy
development – A hydromechanical perspective, J. Geophys. Res.-Sol. Ea., 127,
e2021JB023141, https://doi.org/10.1029/2021JB023141, 2022.
Ghassemi, A. and Zhou, X.: A three-dimensional thermo-poroelastic model for
fracture response to injection/extraction in enhanced geothermal systems,
Geothermics, 40, 39–49,
https://doi.org/10.1016/j.geothermics.2010.12.001, 2011.
Glowacka, E. and Nava, F. A.: Major earthquakes in Mexicali Valley, Mexico,
and fluid extraction at Cerro Prieto Geothermal Field, B. Seismol. Soc.
Am., 86, 93–105, https://doi.org/10.1785/BSSA08601A0093, 1996.
Goebel, T. H. W., Weingarten, M., Chen, X., Haffener, J., and Brodsky, E.
E.: The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range
poroelastic triggering at >40 km from fluid disposal wells,
Earth Planet. Sc. Lett., 472, 50–61,
https://doi.org/10.1016/j.epsl.2017.05.011, 2017.
Goertz-Allmann, B. P. and Wiemer, S.: Geomechanical modeling of induced
seismicity source parameters and implications for seismic hazard assessment,
Geophysics, 78, KS25–KS39, https://doi.org/10.1190/geo2012-0102.1, 2013.
Goodfellow, S. D., Nasseri, M. H. B., Maxwell, S. C., and Young, R. P.:
Hydraulic fracture energy budget: Insights from the laboratory, Geophys.
Res. Lett., 42, 3179–3187, https://doi.org/10.1002/2015GL063093, 2015.
Grigoli, F., Cesca, S., Priolo, E., Rinaldi, A. P., Clinton, J. F., Stabile,
T. A., Dost, B., Garcia Fernandez, M., Wiemer, S., and Dahm, T.: Current
challenges in monitoring, discrimination, and management of induced
seismicity related to underground industrial activities: A European
perspective, Rev. Geophys., 55, 310–340,
https://doi.org/10.1002/2016RG000542, 2017.
Gutenberg, B. and Richter, C. F.: Earthquake magnitude intensity, energy,
and acceleration, B. Seism. Soc. Am., 32, 163–191,
https://doi.org/10.1785/BSSA0320030163, 1942.
Haas, R., Panzer, C., Resch, G., Ragwitz, M., Reece, G., and Held, A.: A
historical review of promotion strategies for electricity from renewable
energy sources in EU countries, Renew. Sustain. Energ. Rev., 15,
1003–1034, https://doi.org/10.1016/j.rser.2010.11.015, 2011.
Haimson, B. C. and Cornet, F. H.: ISRM suggested methods for rock stress
estimation – Part 3: hydraulic fracturing (HF) and/or hydraulic testing of
pre-existing fractures(HTPF), Int. J. Rock Mech. Min. Sci., 40, 1011–1020,
https://doi.org/10.1016/j.ijrmms.2003.08.002, 2003.
Häring, M. O., Schanz, U., Ladner, F., and Dyer, B. C.: Characterisation
of the Basel 1 enhanced geothermal system, Geothermics, 37, 469–495,
https://doi.org/10.1016/j.geothermics.2008.06.002, 2008.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J.,
Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L.,
and Zoback, M.: The world stress map database release 2016: Crustal stress
pattern across scales, Tectonophysics, 744, 484–449,
https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J., Kallmeyer, J.,
Ostertag-Henning, C., Hassanpouryouzband, A., Thaysen, E. M., Strobel, G.
J., Schmidt-Hattenberger, C., and Edlmann, K.: Enabling large-scale hydrogen
storage in porous media–the scientific challenges, Energy Environ. Sci.,
14, 853-864, https://doi.org/10.1039/d0ee03536j, 2021.
Hincks, T., Aspinall, W., Cooke, R., and Gernon, T.: Oklahoma's induced
seismicity strongly linked to wastewater injection depth, Science, 359,
1251–1255, https://doi.org/10.1126/science.aap7911, 2018.
Horton, S.: Disposal of hydrofracking waste fluid by injection into
subsurface aquifers triggers earthquake swarm in central Arkansas with
potential for damaging earthquake, Seismol. Res. Lett., 83, 250–260,
https://doi.org/10.1785/gssrl.83.2.250, 2012.
IPCC: Special report on Global warming of 1.5 ∘C, Incheon, 93–175,
South Korea, IPCC, 2018.
Jaeger, J. C., Cook, N. G., and Zimmerman, R.: Fundamentals of rock
mechanics, John Wiley & Sons, ISBN 978-1-444-30891-4, 2009.
Johann, L., Dinske, C., and Shapiro, S. A.: Scaling of seismicity induced by
nonlinear fluid-rock interaction after an injection stop, J. Geophys. Res.,
121, 8154–8174, https://doi.org/10.1002/2016JB012949, 2016.
Kanamori, H. and Brodsky, E.: The physics of earthquakes, Rep. Prog. Phys.,
67, 1429–1496, https://doi.org/10.1088/0034-4885/67/8/R03, 2004.
Keranen, K. M. and Weingarten, M.: Induced seismicity. Annu. Rev. Earth
Planet. Sc., 46, 149–174,
https://doi.org/10.1146/annurev-earth-082517-010054, 2018.
Kivi, I. R., Boyet, A., Wu, H., Walter, L., Hanson-Hedgecock, S., Parisio,
F., and Vilarrasa, V.: Global physics-based database of
injection-induced seismicity, CSIC [data set], https://doi.org/10.20350/digitalCSIC/14813,
2022a.
Kivi, I. R., Pujades, E., Rutqvist, J., and Vilarrasa, V.: Cooling-induced
reactivation of distant faults during long-term geothermal energy production
in hot sedimentary aquifers, Sci. Rep., 12, 2065,
https://doi.org/10.1038/s41598-022-06067-0, 2022b.
Küperkoch, L., Olbert, K., and Meier, T.: Long-term monitoring of
induced seismicity at the Insheim geothermal site, Germany, B. Seismol.
Soc. Am., 108, 3668–3683, https://doi.org/10.1785/0120170365, 2018.
Langenbruch, C. and Zoback, M. D.: How will induced seismicity in Oklahoma
respond to decreased saltwater injection rates?, Sci. Adv., 2, e1601542,
https://doi.org/10.1126/sciadv.1601542, 2016.
Lee, K.-K., Ellsworth, W. L., Giardini, D., Townend, J., Ge, S., Shimamoto,
T., Yeo, I.-W., Kang, T.-S., Rhie, J., and Sheen, D.-H.: Managing
injection-induced seismic risks, Science, 364, 730–732,
https://doi.org/10.1126/science.aax1878, 2019.
Lei, X., Wang, Z., and Su, J.: The December 2018 ML 5.7 and January 2019 ML
5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic
fracturing, Seismol. Res. Lett., 90, 1099–1110,
https://doi.org/10.1785/0220190029, 2019.
Li, Z., Elsworth, D., and Wang, C.: Constraining maximum event magnitude
during injection-triggered seismicity, Nat. Commun., 12, 1528,
https://doi.org/10.1038/s41467-020-20700-4, 2021.
Luu, K., Schoenball, M., Oldenburg, C. O., and Rutqvist, J.: Coupled
hydromechanical modeling of induced seismicity from CO2 injection in
the Illinois Basin, J. Geophys. Res.-Sol. Ea., 127, e2021JB023496,
https://doi.org/10.1029/2021JB023496, 2022.
McGarr, A.: Maximum magnitude earthquakes induced by fluid injection, J.
Geophys. Res., 119, 1008–1019, https://doi.org/10.1002/2013jb010597, 2014.
McGarr, A., Simpson, D., and Seeber, L.: Case histories of induced and
triggered seismicity, in: International handbook of earthquake and engineering
seismology, edited by: Lee, W., Kanamori, H., Jennings, P., and
Kisslinger, C., Elsevier, Chap. 40, v81A, 647–661, 2002.
Megies, T. and Wassermann, J.: Microseismicity observed at a
non-pressure-stimulated geothermal power plant, Geothermics, 52, 36–49,
https://doi.org/10.1016/j.geothermics.2014.01.002, 2014.
National Research Council: Induced seismicity potential in energy
technologies, Natl. Acad. Press, Washington, D.C., 225 pp., 2013.
Neuzil, C. E.: Permeability of clays and shales, Annu. Rev. Earth Planet.
Sci., 47, 247–273, https://doi.org/10.1146/annurev-earth-053018-060437,
2019.
Ogata, Y.: Statistical-models for earthquake occurrences and residual
analysis for point-processes, J. Am. Stat. Assoc., 83, 9–27,
https://doi.org/10.1080/01621459.1988.10478560 (1988).
Pan, L. and Oldenburg, C. M.: T2Well – an integrated wellbore-reservoir
simulator, Comput. Geosci., 65, 46–55,
https://doi.org/10.1016/j.cageo.2013.06.005, 2014.
Parisio, F., Vilarrasa, V., Wang, W., Kolditz, O., and Nagel, T.: The risks
of long-term re-injection in supercritical geothermal systems, Nat. Commun.,
10, 4391, https://doi.org/10.1038/s41467-019-12146-0, 2019.
Rice, J. R. and Cleary, M. P.: Some basic stress diffusion solutions for
fluid-saturated elastic porous media with compressible constituents, Rev.
Geophys., 14, 227–241, https://doi.org/10.1029/RG014i002p00227, 1976.
Rinaldi, A. P., Jeanne, P., Rutqvist, J., Cappa, F., and Guglielmi, Y.: Effects
of fault-zone architecture on earthquake magnitude and gas leakage related
to CO2 injection in a multi-layered sedimentary system, Greenhouse
Gases Sci. Technol., 4, 99–120, https://doi.org/10.1002/ghg.1403, 2014.
Ringrose, P. S., Furre, A.-K., Gilfillan, S. M. V., Krevor, S., Landrø,
M., Leslie, R., Meckel, T., Nazarian, B., and Zahid, A.: Storage of carbon
dioxide in saline aquifers: physicochemical processes, key constraints, and
scale-up potential, Annu. Rev. Chem. Biomol. Eng., 12, 471–494,
https://doi.org/10.1146/annurev-chembioeng-093020-091447, 2021.
Roth, M. P., Verdecchia, A., Harrington, R. M., and Liu, Y.: High-resolution
imaging of hydraulic-fracturing-induced earthquake clusters in the
Dawson-Septimus area, Northeast British Columbia, Canada, Seismol. Res.
Lett., 91, 2744–2756, https://doi.org/10.1785/0220200086, 2020.
Ruiz-Barajas, S., Sharma, N., Convertito, V., Zollo, A., and Benito, B.:
Temporal evolution of a seismic sequence induced by a gas injection in the
Eastern coast of Spain, Sci. Rep., 7, 1–15,
https://doi.org/10.1038/s41598-017-02773-2, 2017.
Scibek, J.: Multidisciplinary database of permeability of fault zones and
surrounding protolith rocks at world-wide sites, Sci. Data, 7, 95,
https://doi.org/10.1038/s41597-020-0435-5, 2020.
Segall, P. and Lu, S.: Injection-induced seismicity: Poroelastic and
earthquake nucleation effects, J. Geophys. Res., 120, 5082–5103,
https://doi.org/10.1002/2015JB012060, 2015.
Shapiro, S. A., Huenges, E., and Borm, G.: Estimating the crust permeability
from fluid-injection-induced seismic emission at the KTB site, Geophys. J.
Int., 131, F15–F18, https://doi.org/10.1111/j.1365-246X.1997.tb01215.x,
1997.
Shapiro, S. A., Krüger, O. S., Dinske, C., and Langenbruch, C.:
Magnitudes of induced earthquakes and geometric scales of fluid-stimulated
rock volumes, Geophysics, 76, WC55–WC63,
https://doi.org/10.1190/geo2010-0349.1, 2011.
Shapiro, S. A., Kim, K. H., and Ree, J. H.: Magnitude and nucleation time of
the 2017 Pohang Earthquake point to its predictable artificial triggering,
Nat. Commun., 12, 1–9, https://doi.org/10.1038/s41467-021-26679-w, 2021.
Shen, L. W., Schmitt, D. R., and Haug, K.: Quantitative constraints to the
complete state of stress from the combined borehole and focal mechanism
inversions: Fox Creek, Alberta, Tectonophysics, 764, 110–123,
https://doi.org/10.1016/j.tecto.2019.04.023, 2019.
Shi, Y. and Bolt, B. A.: The standard error of the magnitude-frequency b
value, B. Seismol. Soc. Am., 72, 1677–1687,
https://doi.org/10.1785/BSSA0720051677, 1982.
Shirzaei, M., Ellsworth, W. L., Tiampo, K. F., González, P. J., and
Manga, M.: Surface uplift and time-dependent seismic hazard due to fluid
injection in eastern Texas, Science, 353, 1416–1419,
https://doi.org/10.1126/science.aag0262, 2016.
Skoumal, R. J., Brudzinski, M. R., and Currie, B. S.: Proximity of
Precambrian basement affects the likelihood of induced seismicity in the
Appalachian, Illinois, and Williston Basins, central and eastern United
States, Geosphere, 14, 1365–1379, https://doi.org/10.1130/GES01542.1,
2018a.
Skoumal, R. J., Ries, R., Brudzinski, M. R., Barbour, A. J., and Currie, B.
S.: Earthquakes induced by hydraulic fracturing are pervasive in Oklahoma,
J. Geophys. Res.-Sol. Ea., 123, 10918–10935,
https://doi.org/10.1029/2018JB016790, 2018b.
Suckale, J.: Induced seismicity in hydrocarbon fields, Adv. Geophys., 51,
55–106, https://doi.org/10.1016/S0065-2687(09)05107-3, 2009.
Talwani, P., Chen, L., and Gahalaut, K.: Seismogenic permeability, ks, J.
Geophys. Res., 112, B07309, https://doi.org/10.1029/2006JB004665, 2007.
The Human-Induced Earthquake Database (HiQuake):
https://inducedearthquakes.org/, last access: 3 June 2022.
Townend, J. and Zoback, M. D.: How faulting keeps the crust strong,
Geology, 28, 399–402, https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2, 2000.
Utsu, T.: A statistical study on the occurrence of aftershocks, Geophys.
Mag., 30, 521–605, 1961.
Vafaie, A. and Rahimzadeh Kivi, I.: An investigation on the effect of
thermal maturity and rock composition on the mechanical behavior of
carbonaceous shale formations, Mar. Pet. Geol., 116, 104315,
https://doi.org/10.1016/j.marpetgeo.2020.104315, 2020.
Valley, B. and Evans, K. F.: Stress magnitudes in the Basel enhanced
geothermal system, Int. J. Rock Mech. Min. Sci., 118, 1–20,
https://doi.org/10.1016/j.ijrmms.2019.03.008, 2019.
van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W., and
Hosseini, S. M.: Induced earthquake magnitudes are as large as
(statistically) expected, J. Geophys. Res., 121, 4575–4590,
https://doi.org/10.1002/2016JB012818, 2016.
Verberne, B. A., van den Ende, M. P. A., Chen, J., Niemeijer, A. R., and Spiers, C. J.: The physics of fault friction: insights from experiments on simulated gouges at low shearing velocities, Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, 2020.
Verdon, J. P.: Significance for secure CO2 storage of earthquakes
induced by fluid injection, Environ. Res. Lett., 9, 064022,
https://doi.org/10.1088/1748-9326/9/6/064022, 2014.
Verdon, J. P. and Bommer, J.: Green, yellow, red, or out of the blue? An
assessment of traffic light schemes to mitigate the impact of hydraulic
fracturing-induced seismicity, J. Seismolog., 24, 301–326,
https://doi.org/10.1007/s10950-020-09966-9, 2021.
Vilarrasa, V.: The role of the stress regime on microseismicity induced by
overpressure and cooling in geologic carbon storage, Geofluids, 16,
941–953, https://doi.org/10.1111/gfl.12197, 2016.
Vilarrasa, V. and Carrera, J.: Geologic carbon storage is unlikely to
trigger large earthquakes and reactivate faults through which CO2 could
leak, P. Natl. Acad. Sci. USA, 112, 5938–5943,
https://doi.org/10.1073/pnas.1413284112, 2015.
Vilarrasa, V. and Rutqvist, J.: Thermal effects on geologic carbon storage,
Earth-Sci. Rev., 165, 245–256,
https://doi.org/10.1016/j.earscirev.2016.12.011, 2017.
Vilarrasa, V., Carrera, J., and Olivella, S.: Hydromechanical
characterization of CO2 injection sites, Int. J. Greenhouse Gas
Control, 19, 665–677, https://doi.org/10.1016/j.ijggc.2012.11.014, 2013.
Vilarrasa, V., Makhnenko, R., and Gheibi, S.: Geomechanical analysis of the
influence of CO2 injection location on fault stability, J. Rock Mech.
Geotech. Eng., 8, 805–818, https://doi.org/10.1016/j.jrmge.2016.06.006,
2016.
Vilarrasa, V., Carrera, J., Olivella, S., Rutqvist, J., and Laloui, L.: Induced seismicity in geologic carbon storage, Solid Earth, 10, 871–892, https://doi.org/10.5194/se-10-871-2019, 2019.
Vilarrasa, V., De Simone, S., Carrera, J., and Villaseñor, A.:
Unraveling the causes of the seismicity induced by underground gas storage
at Castor, Spain, Geophys. Res. Lett., 48, e2020GL092038,
https://doi.org/10.1029/2020GL092038, 2021.
Wang, J., Li, T., Gu, Y. J., Schultz, R., Yusifbayov, J., and Zhang, M.:
Sequential fault reactivation and secondary triggering in the March 2019 Red
Deer induced earthquake swarm, Geophys. Res. Lett., 47, e2020GL090219,
https://doi.org/10.1029/2020GL090219, 2020.
Weingarten, M. B., Ge, S., Godt, J. W., Bekins, B. A., and Rubinstein, J.
L.: High-rate injection is associated with the increase in U.S.
mid-continent seismicity, Science, 348, 1336–1340,
https://doi.org/10.1126/science.aab1345, 2015.
Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton,M., Baak,
A., Blomber, N., Boiten, J.-W., da silca Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J.
G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A.,
Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R.,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
The FAIR guiding principles for scientific data management and stewardship,
Sci Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Williams-Stroud, S., Bauer, R., Leetaru, H., Oye, V., Stanek, F., Greenberg,
S., and Langet, N.: Analysis of microseismicity and reactivated fault Size
to assess the potential for felt events by CO2 injection in the
Illinois Basin, B. Seismol. Soc. Am., 110, 2188–2204,
https://doi.org/10.1785/0120200112, 2020.
Wilson, M. P., Foulger, G. R., Gluyas, J. G., Davies, R. J., and Julian, B.
R.: HiQuake: The human-induced earthquake database, Seismol. Res. Lett.,
88, 1560–1565, https://doi.org/10.1785/0220170112, 2017.
Wu, H., Vilarrasa, V., De Simone, S., Saaltink, M., and Parisio, F.:
Analytical solution to assess the induced seismicity potential of faults in
pressurized and depleted reservoirs, J. Geophys. Res.-Sol. Ea., 126,
e2020JB020436, https://doi.org/10.1029/2020JB020436, 2021.
Yeck, W., Hayes, G., McNamara, D., Rubinstein, J., Barnhart, W., Earle, P.,
and Benz, H.: Oklahoma experiences largest earthquake during ongoing
regional wastewater injection hazard mitigation efforts, Geophys. Res.
Lett., 44, 711–717, https://doi.org/10.1002/2016GL071685, 2017.
Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A.,
Majer, E., and Bruhn, D.: Analysis of induced seismicity in geothermal
reservoirs – An overview, Geothermics, 52, 6–21,
https://doi.org/10.1016/j.geothermics.2014.06.005, 2014.
Zareidarmiyan, A., Salarirad, H., Vilarrasa, V., Kim, K.-I., Lee, J., and
Min, K.-B.: Comparison of numerical codes for coupled
thermo-hydro-mechanical simulations of fractured media, J. Rock Mech.
Geotech. Eng., 12, 850–865, https://doi.org/10.1016/j.jrmge.2019.12.016,
2020.
Zhai, G., Shirzaei, M., and Manga, M.: Widespread deep seismicity in the
Delaware Basin, Texas, is mainly driven by shallow wastewater injection,
P. Natl. Acad. Sci. USA, 118, e2102338118,
https://doi.org/10.1073/pnas.2102338118, 2021.
Zoback, M. D. and Gorelick, S. M.: Earthquake triggering and large-scale
geologic storage of carbon dioxide, P. Natl. Acad. Sci. USA, 109,
10164–10168, https://doi.org/10.1073/pnas.1202473109, 2012.
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T.,
Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., and Wiprut, D. J.:
Determination of stress orientation and magnitude in deep wells, Int. J.
Rock Mech. Min. Sci., 40, 1049–1076,
https://doi.org/10.1016/j.ijrmms.2003.07.001, 2003.
Short summary
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects. Through a review of published documents, we present a worldwide, multi-physical database of injection-induced seismicity. The database contains information about in situ rock, tectonic and geologic characteristics, operational parameters, and seismicity for various subsurface energy-related activities. The data allow for an improved understanding and management of injection-induced seismicity.
Induced seismicity has posed significant challenges to secure deployment of geo-energy projects....
Altmetrics
Final-revised paper
Preprint