Articles | Volume 15, issue 4
https://doi.org/10.5194/essd-15-1501-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1501-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data
Chunling Sun
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing 100049, China
Hong Zhang
CORRESPONDING AUTHOR
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing 100049, China
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Ji Ge
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing 100049, China
Jingling Jiang
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing 100049, China
Lijun Zuo
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
Chao Wang
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development
Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of
Sciences, Beijing 100049, China
Related authors
No articles found.
Hong Zhang, Mingyang Song, Yinhaibin Ding, Yazhe Xie, Huadong Guo, Lu Xu, Ji Ge, Yafei Zhu, Shenghan Wang, Zihuan Guo, Zhe Wang, Haoxuan Duan, Lijun Zuo, and Wenjiang Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2026-24, https://doi.org/10.5194/essd-2026-24, 2026
Preprint under review for ESSD
Short summary
Short summary
Accurate rice farming data is vital for global food security. We created GlobalRice20, a global map of paddy rice at 20-meter resolution for 2015 and 2024. By utilizing satellite imagery and advanced processing to overcome cloud issues, this dataset fills a critical gap in agricultural monitoring. It provides a reliable baseline for analyzing food production trends and helps policymakers track progress toward the Sustainable Development Goal of Zero Hunger.
Jingling Jiang, Hong Zhang, Ji Ge, Lijun Zuo, Lu Xu, Mingyang Song, Yinhaibin Ding, Yazhe Xie, and Wenjiang Huang
Earth Syst. Sci. Data, 17, 1781–1805, https://doi.org/10.5194/essd-17-1781-2025, https://doi.org/10.5194/essd-17-1781-2025, 2025
Short summary
Short summary
This study uses temporal synthetic aperture radar (SAR) data and optical imagery to conduct rice-mapping experiments in 34 African countries with rice-planting areas exceeding 5000 ha in 2022, achieving a 20 m resolution spatial distribution mapping for 2023. The average classification accuracy based on the validation set exceeded 85 %, and the R2; values for linear fitting with existing statistical data all surpassed 0.9, demonstrating the effectiveness of the proposed mapping method.
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025, https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary
Short summary
We created a 10 m resolution rice distribution map for East Asia in 2023 (EARice10), achieving an overall accuracy (OA) of 90.48 % on validation samples. EARice10 shows strong consistency with statistical data (coefficient of determination, R2: 0.94–0.98) and existing datasets (R2: 0.79–0.98). It is the most up-to-date map, covering the four major rice-producing countries in East Asia at 10 m resolution.
Cited articles
Bridhikitti, A. and Overcamp, T. J.: Estimation of Southeast Asian rice
paddy areas with different ecosystems from moderate-resolution satellite
imagery, Agr. Ecosyst. Environ., 146, 113–120,
https://doi.org/10.1016/j.agee.2011.10.016, 2012.
Chang, L., Chen, Y.-T., Chan, Y.-L., and Wu, M.-C.: A Novel Feature for
Detection of Rice Field Distribution Using Time Series SAR Data, IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, 26 September–2 October 2020, Waikoloa, HI, USA, 4866–4869,
https://doi.org/10.1109/igarss39084.2020.9323278, 2020.
Chen, C. F., Son, N. T., and Chang, L. Y.: Monitoring of rice cropping
intensity in the upper Mekong Delta, Vietnam using time-series MODIS data,
Adv. Space Res., 49, 292–301, https://doi.org/10.1016/j.asr.2011.09.011, 2012.
Chen, C. F., Son, N. T., Chen, C. R., Chang, L. Y., and Chiang, S. H.: Rice
Crop Mapping Using Sentinel-1a Phenological Metrics, Int.
Arch. Photogramm., XLI-B8, 863–865, https://doi.org/10.5194/isprsarchives-XLI-B8-863-2016, 2016.
Clauss, K., Yan, H., and Kuenzer, C.: Mapping Paddy Rice in China in 2002,
2005, 2010 and 2014 with MODIS Time Series, Remote Sens.-Basel, 8, 434,
https://doi.org/10.3390/rs8050434, 2016.
Clauss, K., Ottinger, M., Leinenkugel, P., and Kuenzer, C.: Estimating rice
production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1
SAR data,
Int. J. Appl. Earth Obs., 73, 574–585, https://doi.org/10.1016/j.jag.2018.07.022, 2018.
Congalton, R. G.: A review of assessing the accuracy of classifications of
remotely sensed data, Remote Sens. Environ., 37, 35–46,
https://doi.org/10.1016/0034-4257(91)90048-B, 1991.
Crisóstomo de Castro Filho, H., Abílio de Carvalho Júnior, O.,
Ferreira de Carvalho, O. L., Pozzobon de Bem, P., dos Santos de Moura, R.,
Olino de Albuquerque, A., Rosa Silva, C., Guimarães Ferreira, P. H.,
Fontes Guimarães, R., and Trancoso Gomes, R. A.: Rice Crop Detection
Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time
Series, Remote Sens.-Basel, 12, 2655, https://doi.org/10.3390/rs12162655, 2020.
Cué La Rosa, L. E., Queiroz Feitosa, R., Nigri Happ, P., Del'Arco
Sanches, I., and Ostwald Pedro da Costa, G. A.: Combining Deep Learning and
Prior Knowledge for Crop Mapping in Tropical Regions from Multitemporal SAR
Image Sequences, Remote Sens.-Basel, 11, 2029, https://doi.org/10.3390/rs11172029, 2019.
Desa, U.: Transforming our world: The 2030 agenda for sustainable
development, https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (last access: 29 March 2023),
2016.
Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y.,
Wang, J., Biradar, C., Liu, J., and Moore, B.: Tracking the dynamics of
paddy rice planting area in 1986–2010 through time series Landsat images
and phenology-based algorithms, Remote Sens. Environ., 160, 99–113,
https://doi.org/10.1016/j.rse.2015.01.004, 2015.
Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., Biradar,
C., and Moore III, B.: Mapping paddy rice planting area in northeastern
Asia with Landsat 8 images, phenology-based algorithm and Google Earth
Engine, Remote Sens. Environ., 185, 142–154, https://doi.org/10.1016/j.rse.2016.02.016, 2016a.
Dong, J., Xiao, X., Zhang, G., Menarguez, M., Choi, C., Qin, Y., Luo, P.,
Zhang, Y., and Moore, B.: Northward expansion of paddy rice in northeastern
Asia during 2000–2014, Geophys. Res. Lett., 43, 3754–3761,
https://doi.org/10.1002/2016GL068191, 2016b.
Draper, N. R. and Smith, H.: Applied regression analysis, John Wiley &
Sons, https://doi.org/10.1002/bimj.19690110613, 1998.
FAO: World rice production (Crops > Items > Rice,
paddy): https://www.fao.org/faostat/en/#data/QCL (last
access: 7 November 2022), 2020.
FAOSTAT: Statistical Database of the Food and Agricultural Organization of
the United Nations, https://www.fao.org/statistics/en/ (last access: 29 March 2023), 2010.
Filipponi, F.: Sentinel-1 GRD Preprocessing Workflow, Proceedings, 18, 11, https://doi.org/10.3390/ECRS-3-06201, 2019.
Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D.,
Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., and Toulmin, C.: Food
security: the challenge of feeding 9 billion people, Science, 327, 812–818,
https://doi.org/10.1126/science.1185383, 2010.
Guan, X., Huang, C., Liu, G., Meng, X., and Liu, Q.: Mapping rice cropping
systems in Vietnam using an NDVI-based time-series similarity measurement
based on DTW distance, Remote Sens.-Basel, 8, 19, https://doi.org/10.3390/rs8010019, 2016.
Gumma, M. K., Nelson, A., Thenkabail, P. S., and Singh, A. N.: Mapping rice
areas of South Asia using MODIS multitemporal data,
J. Appl. Remote Sens., 5, 053547, https://doi.org/10.1117/1.3619838, 2011a.
Gumma, M. K., Gauchan, D., Nelson, A., Pandey, S., and Rala, A.: Temporal
changes in rice-growing area and their impact on livelihood over a decade: A
case study of Nepal, Agr. Ecosyst. Environ., 142, 382–392,
https://doi.org/10.1016/j.agee.2011.06.010, 2011b.
Gumma, M. K., Thenkabail, P. S., Maunahan, A., Islam, S., and Nelson, A.:
Mapping seasonal rice cropland extent and area in the high cropping
intensity environment of Bangladesh using MODIS 500 m data for the year
2010, ISPRS J. Photogramm., 91, 98–113,
https://doi.org/10.1016/j.isprsjprs.2014.02.007, 2014.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Cheng, F., Zhuang, H., Zhang, J., and Tao, F.: NESEA-Rice10: high-resolution annual paddy rice maps for Northeast and Southeast Asia from 2017 to 2019, Earth Syst. Sci. Data, 13, 5969–5986, https://doi.org/10.5194/essd-13-5969-2021, 2021.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F.,
Zhang, J., and Tao, F.: Annual paddy rice planting area and cropping
intensity datasets and their dynamics in the Asian monsoon region from 2000
to 2020, Agr. Syst., 200, 103437, https://doi.org/10.1016/j.agsy.2022.103437, 2022.
Hoang-Phi, P., Nguyen-Kim, T., Nguyen-Van-Anh, V., Lam-Dao, N., Le-Van, T.,
and Pham-Duy, T.: Rice yield estimation in An Giang province, the Vietnamese
Mekong Delta using Sentinel-1 radar remote sensing data, IOP C.
Ser. Earth Env., 652, 012001,
https://doi.org/10.1088/1755-1315/652/1/012001, 2021.
Huang, X., Wang, J., Shang, J., Liao, C., and Liu, J.: Application of
polarization signature to land cover scattering mechanism analysis and
classification using multi-temporal C-band polarimetric RADARSAT-2 imagery,
Remote Sens. Environ., 193, 11–28, https://doi.org/10.1016/j.rse.2017.02.014, 2017.
Inoue, S., Ito, A., and Yonezawa, C.: Mapping Paddy fields in Japan by using
a Sentinel-1 SAR time series supplemented by Sentinel-2 images on Google
Earth Engine, Remote Sens.-Basel, 12, 1622, https://doi.org/10.3390/rs12101622, 2020.
Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, ArXiv [preprint], abs/1502.03167,
https://doi.org/10.48550/arXiv.1502.03167, 2015.
Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., and Wang, J.: A
review of data assimilation of remote sensing and crop models,
Eur. J. Agron., 92, 141–152, https://doi.org/10.1016/j.eja.2017.11.002, 2018.
Johnson, D. M. and Mueller, R.: The 2009 cropland data layer, Photogramm.
Eng. Rem. S., 76, 1201–1205, 2010.
Kang, J., Yang, X., Wang, Z., Huang, C., and Wang, J.: Collaborative
Extraction of Paddy Planting Areas with Multi-Source Information Based on
Google Earth Engine: A Case Study of Cambodia, Remote Sens.-Basel, 14, 1823,
https://doi.org/10.3390/rs14081823, 2022.
Kuenzer, C. and Knauer, K.: Remote sensing of rice crop areas,
Int. J. Remote Sens., 34, 2101–2139, https://doi.org/10.1080/01431161.2012.738946,
2012.
Laborte, A. G., Gutierrez, M. A., Balanza, J. G., Saito, K., Zwart, S. J.,
Boschetti, M., Murty, M. V. R., Villano, L., Aunario, J. K., Reinke, R.,
Koo, J., Hijmans, R. J., and Nelson, A.: RiceAtlas, a spatial database of
global rice calendars and production, Sci. Data, 4, 170074,
https://doi.org/10.1038/sdata.2017.74, 2017.
Li, H., Fu, D., Huang, C., Su, F., Liu, Q., Liu, G., and Wu, S.: An Approach
to High-Resolution Rice Paddy Mapping Using Time-Series Sentinel-1 SAR Data
in the Mun River Basin, Thailand, Remote Sens.-Basel, 12, 3959, https://doi.org/10.3390/rs12233959,
2020.
Lin, C., Zhong, L., Song, X.-P., Dong, J., Lobell, D. B., and Jin, Z.:
Early-and in-season crop type mapping without current-year ground truth:
Generating labels from historical information via a topology-based approach,
Remote Sens. Environ., 274, 112994,
https://doi.org/10.1016/j.rse.2022.112994, 2022.
Liu, C.-A., Chen, Z.-x., Shao, Y., Chen, J.-s., Hasi, T., and Pan, H.-z.:
Research advances of SAR remote sensing for agriculture applications: A
review, J. Integr. Agr., 18, 506–525,
https://doi.org/10.1016/s2095-3119(18)62016-7, 2019.
Liu, R., Zhang, G., Dong, J., Zhou, Y., You, N., He, Y., and Xiao, X.:
Evaluating Effects of Medium-Resolution Optical Data Availability on
Phenology-Based Rice Mapping in China, Remote Sens.-Basel, 14, 3134,
https://doi.org/10.3390/rs14133134, 2022.
Liu, Z., Hu, Q., Tan, J., and Zou, J.: Regional scale mapping of fractional
rice cropping change using a phenology-based temporal mixture analysis,
Int. J. Remote Sens., 40, 2703–2716,
https://doi.org/10.1080/01431161.2018.1530812, 2018.
Luo, Y., Zhang, Z., Li, Z., Chen, Y., Zhang, L., Cao, J., and Tao, F.:
Identifying the spatiotemporal changes of annual harvesting areas for three
staple crops in China by integrating multi-data sources,
Environ. Res. Lett., 15, 074003, https://doi.org/10.1088/1748-9326/ab80f0, 2020.
Manjunath, K., More, R. S., Jain, N., Panigrahy, S., and Parihar, J.:
Mapping of rice-cropping pattern and cultural type using remote-sensing and
ancillary data: A case study for South and Southeast Asian countries,
Int. J. Remote Sens., 36, 6008–6030,
https://doi.org/10.1080/01431161.2015.1110259, 2015.
Mansaray, L. R., Kabba, V. T. S., Zhang, L., and Bebeley, H. A.: Optimal
multi-temporal Sentinel-1A SAR imagery for paddy rice field discrimination;
a recommendation for operational mapping initiatives,
Remote Sensing Applications: Society and Environment, 22, 100533, https://doi.org/10.1016/j.rsase.2021.100533,
2021.
McHugh, M. L.: Interrater reliability: the kappa statistic,
Biochem. Medica, 22, 276–282, https://doi.org/10.11613/BM.2012.031,
2012.
Mosleh, M. K., Hassan, Q. K., and Chowdhury, E. H.: Application of remote
sensors in mapping rice area and forecasting its production: a review,
Sensors-Basel, 15, 769–791, https://doi.org/10.3390/s150100769, 2015.
Ndikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., and Hossard,
L.: Deep Recurrent Neural Network for Agricultural Classification using
multitemporal SAR Sentinel-1 for Camargue, France, Remote Sens.-Basel, 10,
1217, https://doi.org/10.3390/rs10081217, 2018.
Nelson, A. and Gumma, M. K.: A map of lowland rice extent in the major rice
growing countries of Asia, IRRI [data set], http://irri.org/our-work/research/policy-and-markets/mapping.37 (last access: 11 October 2022), 2015.
Nelson, A., Setiyono, T., Rala, A., Quicho, E., Raviz, J., Abonete, P.,
Maunahan, A., Garcia, C., Bhatti, H., Villano, L., Thongbai, P., Holecz, F.,
Barbieri, M., Collivignarelli, F., Gatti, L., Quilang, E., Mabalay, M.,
Mabalot, P., Barroga, M., Bacong, A., Detoito, N., Berja, G., Varquez, F.,
Wahyunto, Kuntjoro, D., Murdiyati, S., Pazhanivelan, S., Kannan, P., Mary,
P., Subramanian, E., Rakwatin, P., Intrman, A., Setapayak, T., Lertna, S.,
Minh, V., Tuan, V., Duong, T., Quyen, N., Van Kham, D., Hin, S., Veasna, T.,
Yadav, M., Chin, C., and Ninh, N.: Towards an Operational SAR-Based Rice
Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia
in the RIICE Project, Remote Sens.-Basel, 6, 10773–10812, https://doi.org/10.3390/rs61110773,
2014.
Nguyen, D. B. and Wagner, W.: European Rice Cropland Mapping with Sentinel-1
Data: The Mediterranean Region Case Study, Water, 9, 392, https://doi.org/10.3390/w9060392, 2017.
Ni, R., Tian, J., Li, X., Yin, D., Li, J., Gong, H., Zhang, J., Zhu, L., and
Wu, D.: An enhanced pixel-based phenological feature for accurate paddy rice
mapping with Sentinel-2 imagery in Google Earth Engine, ISPRS J.
Photogramm., 178, 282–296,
https://doi.org/10.1016/j.isprsjprs.2021.06.018, 2021.
Orynbaikyzy, A., Gessner, U., and Conrad, C.: Crop type classification using
a combination of optical and radar remote sensing data: a review,
Int. J. Remote Sens., 40, 6553–6595,
https://doi.org/10.1080/01431161.2019.1569791, 2019.
Pan, B., Zheng, Y., Shen, R., Ye, T., Zhao, W., Dong, J., Ma, H., and Yuan,
W.: High Resolution Distribution Dataset of Double-Season Paddy Rice in
China, Remote Sens.-Basel, 13, 4609, https://doi.org/10.3390/rs13224609, 2021.
Phan, D. C., Trung, T. H., Truong, V. T., Sasagawa, T., Vu, T. P. T., Bui,
D. T., Hayashi, M., Tadono, T., and Nasahara, K. N.: First comprehensive
quantification of annual land use/cover from 1990 to 2020 across mainland
Vietnam, Sci. Rep.-UK, 11, 9979, https://doi.org/10.1038/s41598-021-89034-5, 2021.
Qiu, B., Hu, X., Chen, C., Tang, Z., Yang, P., Zhu, X., Yan, C., and Jian,
Z.: Maps of cropping patterns in China during 2015–2021, Sci. Data, 9, 479,
https://doi.org/10.1038/s41597-022-01589-8, 2022.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks
for Biomedical Image Segmentation, ArXiv [preprint], abs/1505.04597,
https://doi.org/10.48550/arXiv.1505.04597, 2015.
Shew, A. M. and Ghosh, A.: Identifying Dry-Season Rice-Planting Patterns in
Bangladesh Using the Landsat Archive, Remote Sens.-Basel, 11, 1235,
https://doi.org/10.3390/rs11101235, 2019.
Singha, M., Dong, J., Zhang, G., and Xiao, X.: High resolution paddy rice
maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data,
Sci. Data, 6, 26, https://doi.org/10.1038/s41597-019-0036-3, 2019.
Soh, N. C., Shah, R. M., Giap, S. G. E., Setiawan, B. I., and Minasny, B.:
High-Resolution Mapping of Paddy Rice Extent and Growth Stages across
Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in
Google Earth Engine, Remote Sens.-Basel, 14, 1875, https://doi.org/10.3390/rs14081875, 2022.
Sun, C., Zhang, H., Xu, L., Wang, C., and Li, L.: Rice Mapping Using a
BiLSTM-Attention Model from Multitemporal Sentinel-1 Data, Agriculture, 11,
977, https://doi.org/10.3390/agriculture11100977, 2021.
Sun, C., Zhang, H., Ge, J., Wang, C., Li, L., and Xu, L.: Rice Mapping in a
Subtropical Hilly Region Based on Sentinel-1 Time Series Feature Analysis
and the Dual Branch BiLSTM Model, Remote Sens.-Basel, 14, 3213, https://doi.org/10.3390/rs14133213,
2022a.
Sun, C., Zhang, H., Xu, L., Ge, J., Jiang, J., Zuo, L., and Wang, C.: 20 m
Annual Paddy Rice Map for Mainland Southeast Asia Using Sentinel-1 SAR Data
(1), Zenodo [data set], https://doi.org/10.5281/zenodo.7315076, 2022b.
Sun, H.-S., Huang, J.-F., Huete, A. R., Peng, D.-L., and Zhang, F.: Mapping
paddy rice with multi-date moderate-resolution imaging spectroradiometer
(MODIS) data in China, J. Zhejiang Univ.-Sc. A, 10,
1509–1522, https://doi.org/10.1631/jzus.A0820536, 2009.
Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y.,
Velpuri, M., Gumma, M., Gangalakunta, O. R. P., Turral, H., and Cai, X.:
Global irrigated area map (GIAM), derived from remote sensing, for the end
of the last millennium, Int. J. Remote Sens., 30,
3679–3733, https://doi.org/10.1080/01431160802698919, 2009.
Torbick, N., Chowdhury, D., Salas, W., and Qi, J.: Monitoring Rice
Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by
Landsat-8 and PALSAR-2, Remote Sens.-Basel, 9, 119, https://doi.org/10.3390/rs9020119, 2017.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., and Brown, M.: GMES Sentinel-1 mission,
Remote Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Tsokas, A., Rysz, M., Pardalos, P. M., and Dipple, K.: SAR data applications
in earth observation: An overview, Expert Syst. Appl., 205,
117342, https://doi.org/10.1016/j.eswa.2022.117342, 2022.
Vapnik, V. N.: An overview of statistical learning theory,
IEEE T Neural Networ., 10, 988–999, https://doi.org/10.1109/72.788640, 1999.
Wei, J., Cui, Y., Luo, W., and Luo, Y.: Mapping Paddy Rice Distribution and
Cropping Intensity in China from 2014 to 2019 with Landsat Images, Effective
Flood Signals, and Google Earth Engine, Remote Sens.-Basel, 14, 759,
https://doi.org/10.3390/rs14030759, 2022.
Wei, P., Chai, D., Lin, T., Tang, C., Du, M., and Huang, J.: Large-scale
rice mapping under different years based on time-series Sentinel-1 images
using deep semantic segmentation model, ISPRS J. Photogramm., 174, 198–214, https://doi.org/10.1016/j.isprsjprs.2021.02.011, 2021.
Wei, S., Zhang, H., Wang, C., Wang, Y., and Xu, L.: Multi-Temporal SAR Data
Large-Scale Crop Mapping Based on U-Net Model, Remote Sens.-Basel, 11,
68, https://doi.org/10.3390/rs11010068, 2019.
Weiss, M., Jacob, F., and Duveiller, G.: Remote sensing for agricultural
applications: A meta-review, Remote Sens. Environ., 236,
111402, https://doi.org/10.1016/j.rse.2019.111402, 2020.
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W.,
and Moore III, B.: Mapping paddy rice agriculture in southern China using
multi-temporal MODIS images, Remote Sens. Environ., 95, 480–492,
https://doi.org/10.1016/j.rse.2004.12.009, 2005.
Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., and Moore
III, B.: Mapping paddy rice agriculture in South and Southeast Asia using
multi-temporal MODIS images, Remote Sens. Environ., 100, 95–113,
https://doi.org/10.1016/j.rse.2005.10.004, 2006.
Xin, F., Xiao, X., Dong, J., Zhang, G., Zhang, Y., Wu, X., Li, X., Zou, Z.,
Ma, J., Du, G., Doughty, R. B., Zhao, B., and Li, B.: Large increases of
paddy rice area, gross primary production, and grain production in Northeast
China during 2000–2017, Sci. Total Environ., 711, 135183,
https://doi.org/10.1016/j.scitotenv.2019.135183, 2020.
Xu, L., Zhang, H., Wang, C., Wei, S., Zhang, B., Wu, F., and Tang, Y.: Paddy
Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning
Model, Remote Sens.-Basel, 13, 3994, https://doi.org/10.3390/rs13193994, 2021.
Yang, L., Wang, L., Huang, J., Mansaray, L. R., and Mijiti, R.: Monitoring
policy-driven crop area adjustments in northeast China using Landsat-8
imagery, Int. J. Appl. Earth Obs., 82, 101892, https://doi.org/10.1016/j.jag.2019.06.002, 2019.
Yang, L., Huang, R., Huang, J., Lin, T., Wang, L., Mijiti, R., Wei, P.,
Tang, C., Shao, J., Li, Q., and Du, X.: Semantic Segmentation Based on
Temporal Features: Learning of Temporal-Spatial Information From Time-Series
SAR Images for Paddy Rice Mapping, IEEE T. Geosci.
Remote, 60, 4403216, https://doi.org/10.1109/tgrs.2021.3099522, 2021.
You, N. and Dong, J.: Examining earliest identifiable timing of crops using
all available Sentinel 1/2 imagery and Google Earth Engine, ISPRS J.
Photogramm., 161, 109–123,
https://doi.org/10.1016/j.isprsjprs.2020.01.001, 2020.
You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y.,
and Xiao, X.: The 10 m crop type maps in Northeast China during 2017–2019,
Sci. Data, 8, 41, https://doi.org/10.1038/s41597-021-00827-9, 2021.
Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K. B., Fritz, S., Xiong, W., Lu, M., Wu, W., and Yang, P.: A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps, Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, 2020.
Yuan, S., Stuart, A. M., Laborte, A. G., Rattalino Edreira, J. I.,
Dobermann, A., Kien, L. V. N., Thúy, L. T., Paothong, K., Traesang, P.,
Tint, K. M., San, S. S., Villafuerte, M. Q., Quicho, E. D., Pame, A. R. P.,
Then, R., Flor, R. J., Thon, N., Agus, F., Agustiani, N., Deng, N., Li, T.,
and Grassini, P.: Southeast Asia must narrow down the yield gap to continue
to be a major rice bowl, Nature Food, 3, 217–226,
https://doi.org/10.1038/s43016-022-00477-z, 2022.
Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N.,
Brockmann, C., Quast, R., Wevers, J., Grosu, A., Paccini, A., and Vergnaud,
S.: ESA WorldCover 10 m 2020 v100, Zenodo,
https://doi.org/10.5281/zenodo.5571936, 2021.
Zhang, G., Xiao, X., Biradar, C. M., Dong, J., Qin, Y., Menarguez, M. A.,
Zhou, Y., Zhang, Y., Jin, C., Wang, J., Doughty, R. B., Ding, M., and Moore,
B., 3rd: Spatiotemporal patterns of paddy rice croplands in China and India
from 2000 to 2015, Sci. Total Environ., 579, 82–92,
https://doi.org/10.1016/j.scitotenv.2016.10.223, 2017.
Zhang, X., Wu, B., Ponce-Campos, G., Zhang, M., Chang, S., and Tian, F.:
Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the
Integration of Optical and Synthetic Aperture Radar Images, Remote Sens.-Basel,
10, 1200, https://doi.org/10.3390/rs10081200, 2018.
Zhao, R., Li, Y., and Ma, M.: Mapping Paddy Rice with Satellite Remote
Sensing: A Review, Sustainability, 13, 503, https://doi.org/10.3390/su13020503, 2021.
Short summary
Over 90 % of the world’s rice is produced in the Asia–Pacific region. In this study, a rice-mapping method based on Sentinel-1 data for mainland Southeast Asia is proposed. A combination of spatiotemporal features with strong generalization is selected and input into the U-Net model to obtain a 20 m resolution rice area map of mainland Southeast Asia in 2019. The accuracy of the proposed method is 92.20 %. The rice area map is concordant with statistics and other rice area maps.
Over 90 % of the world’s rice is produced in the Asia–Pacific region. In this study, a...
Altmetrics
Final-revised paper
Preprint