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Abstract. Over 90 % of the world’s rice is produced in the Asia–Pacific region. Synthetic-aperture radar (SAR)
enables all-day and all-weather observations of rice distribution in tropical and subtropical regions. The complex-
ity of rice cultivation patterns in tropical and subtropical regions makes it difficult to construct a representative
data-relevant rice crop model, increasing the difficulty in extracting rice distributions from SAR data. To address
this problem, a rice area mapping method for large regional tropical or subtropical areas based on time-series
Sentinel-1 SAR data is proposed in this study. Based on the analysis of rice backscattering characteristics in
mainland Southeast Asia, the combination of spatiotemporal statistical features with good generalization ability
was selected and then input into the U-Net semantic segmentation model, combined with WorldCover data to
reduce false alarms, finally the 20 m resolution rice area map of five countries in mainland Southeast Asia in
2019 was obtained. The proposed method achieved an accuracy of 92.20 % on the validation sample set, and the
good agreement was obtained when comparing our rice area map with statistical data and other rice area maps at
the national and provincial levels. The maximum coefficient of determination R2 was 0.93 at the national level
and 0.97 at the provincial level. These results demonstrate the advantages of the proposed method in rice area
mapping with complex cropping patterns and the reliability of the generated rice area maps. The 20 m annual
paddy rice area map for mainland Southeast Asia is available at https://doi.org/10.5281/zenodo.7315076 (Sun et
al., 2022b).

1 Introduction

Sustainable Development Goal 2, “Zero Hunger”, was set by
the United Nations in 2015 (Desa, 2016): the dual pressure
of population and environment threatens the sustainability of
global food security (Faostat, 2010; Godfray et al., 2010).
Rice feeds more than half of the world’s population as a sta-
ple food and is a major crop for world food security (Kuen-
zer and Knauer, 2012). Asia is the largest rice-producing re-
gion in the world (Chen et al., 2012), and Southeast Asia
accounts for 40 % of global rice exports (Yuan et al., 2022).

High-precision rice-planting area maps are the basis for mon-
itoring rice growth and forecasting yields, the cornerstone
for the government, planners and policymakers to formulate
reasonable policies and the guarantee of global food security
(Mosleh et al., 2015; Laborte et al., 2017; Clauss et al., 2018;
Jin et al., 2018; Yu et al., 2020; Hoang-Phi et al., 2021).

Remote-sensing technology plays a crucial role in rice
growth monitoring and distribution mapping (Weiss et al.,
2020; Zhao et al., 2021; Tsokas et al., 2022). Rice area map-
ping at the national scale usually uses medium- and low-
resolution optical remote-sensing data, such as MODIS and
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Landsat data. Some researchers used MODIS multitempo-
ral data to produce rice area maps of China with resolu-
tions of 500, 500, 250 and 500 m, respectively (Xiao et
al., 2005; Sun et al., 2009; Clauss et al., 2016; Qiu et al.,
2022). Guan et al. (2016) produced rice area maps of Viet-
nam at 500 m resolution using MODIS time-series data in
2010. The National Agricultural Statistics Service (NASS)
released the state-based Crop Data Layer (CDL), a 30 m reso-
lution crop distribution map product for the entire continental
United States, using multisource medium-resolution remote-
sensing data (Landsat, IRS-p6, DEIMOS-1, etc.) (Johnson
and Mueller, 2010). Luo et al. (2020) and Wei et al. (2022)
used Landsat time-series data to produce 1 km and 30 m res-
olution rice data sets for China, respectively. Recently the
Sentinel-2 satellite sensor opened up new possibilities for
paddy rice monitoring. Liu et al. (2022) obtained medium-
resolution rice area maps of China using Sentinel-2 time-
series data in 2020.

At the continental scale, MODIS time-series data were fre-
quently used to map the distribution of rice cultivation (Dong
et al., 2016a, b). Xiao et al. (2006), Gumma et al. (2011a, b,
2014) and Bridhikitti and Overcamp (2012) produced low-
and medium-resolution rice area maps for several South and
Southeast Asian countries using MODIS data at the 500 m
spatial resolution, respectively. Nelson and Gumma (2015)
extracted the 500 m spatial-resolution general rice extent
map in Asia from 2000 to 2012 using MODIS data. Using
MODIS time-series data, Zhang et al. (2017) generated rice
acreage maps for China and India from 2000 to 2015. Han
et al. (2022) used MODIS data to complete 500 m annual
rice maps for the Asian monsoon region from 2000 to 2020.
Satellite pour l’Observation de la Terre (SPOT) data were
also used for continent-wide rice area mapping. Manjunath
et al. (2015) used 2009–2010 multitemporal SPOT vegeta-
tion (VGT) normalized difference vegetation index (NDVI)
data to produce 1 km resolution rice area maps for South and
Southeast Asia.

Most of the rice in the world is distributed in hot and
rainy areas. Optical data are easily obscured by clouds, which
poses a challenge for rice area extraction in humid and sub-
humid climates with abundant water resources such as South-
east Asia (Liu et al., 2019; Sun et al., 2021). Compared with
traditional optical remote sensing, synthetic-aperture radar
(SAR) is an active microwave radar with the advantages of
all day and all weather, is weather-independent, can penetrate
clouds and is very sensitive to the geometric structure and di-
electric properties of crops (Huang et al., 2017; Orynbaikyzy
et al., 2019; Sun et al., 2022a). In recent years, free SAR
data represented by Sentinel-1 data have been widely used
in rice mapping over large regions. Singha et al. (2019) ob-
tained seasonal rice maps at 10 m resolution for Bangladesh
and northeastern India using time-series Sentinel-1 vertical–
horizontal polarization (VH) data for 2017. Pan et al. (2021)
used 2016–2020 Sentinel-1 VH data to produce 10 m spatial-
resolution double-season rice maps for nine provinces in

southern China. Xu et al. (2021) used time-series Sentinel-
1 VH data to obtain a 20 m rice area map for Thailand in
2019.

To take full advantage of multisource remote-sensing data,
some researchers combined optical and SAR time-series data
in the large-scale rice mapping studies (Thenkabail et al.,
2009; Zhang et al., 2018; You and Dong, 2020). Phan et
al. (2021) used Sentinel-1/Sentinel-2 and Landsat data to
produce the first Vietnam land use/land cover annual data set
with 30 m resolution from 1990 to 2020. Han et al. (2021)
obtained 500 m resolution rice maps from 2017 to 2019 in
Northeast and Southeast Asia using Sentinel-1 and MODIS
time-series data.

At present, large-scale rice mapping methods based on
remote-sensing data can be divided into two categories: one
is the combination of phenological information and remote-
sensing images, and the other is the combination of time-
series data and machine learning relying on image infor-
mation. The phenology-based approach refers to the extrac-
tion of rice by defining phenological indicators or identifying
rice-growing stages by combining the time-series data cover-
ing the rice growth cycle and the analysis of the rice phe-
nological calendar (Nelson et al., 2014; Chen et al., 2016;
Nguyen and Wagner, 2017; Liu et al., 2018; Xin et al., 2020;
Ni et al., 2021). The growing stages such as transplanting,
heading and maturity are most often used to extract rice.
Shew and Ghosh (2019) combined vegetation indices ex-
tracted from Landsat time-series data with a rule-based al-
gorithm for growing stages to map a 30 m dry-season rice
map of Bangladesh from 2014 to 2018. Li et al. (2020) ex-
tracted the minimum and maximum values of permanent wa-
ter backscatter coefficients and three thresholds of phenolog-
ical characteristics, namely, the date of the beginning of the
season, date of maximum backscatter during the peak grow-
ing season and length of the vegetative stage from 402 scenes
of Sentinel-1 data in 2017 to map rice paddies in the Mun
River basin, Thailand. Kang et al. (2022) completed a 10 m
resolution rice map of Cambodia from Sentinel-1 (2015) and
Sentinel-2 (2015–2017) time-series data using three key rice
phenological periods in the dry and rainy seasons, respec-
tively.

However, the phenology-based methods rely too much
on human intervention and are not suitable for rice area
extraction with complex cropping cycles. The approaches
based on the combination of time-series data and machine-
learning method refer to the direct use of time series as
the input features for machine learning (Ndikumana et al.,
2018; Chang et al., 2020; Mansaray et al., 2021; Yang et al.,
2021). Machine-learning methods are used to extract rice in-
formation by mining fixed relationships across growth peri-
ods of rice (Yang et al., 2019; You et al., 2021). Torbick et
al. (2017) used Sentinel-1, Landsat-8 and PALSAR-2 time-
series data and a random-forest algorithm to map the rice-
planting area and planting intensity of Myanmar with 20 m
resolution in 2015. Inoue et al. (2020) developed a 30 m res-
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olution map of paddy rice in Japan for 2018 using Sentinel-1
SAR data and Sentinel-2 data with the conventional decision
tree methods. Wei et al. (2021) completed rice area map-
ping for the Arkansas River basin, USA, by entering dual-
polarized Sentinel-1 data from 2017 to 2019 into a modified
U-Net model. Soh et al. (2022) used Sentinel-1 and Sentinel-
2 time-series data and a K-means clustering method to map
rice in West Malaysia.

The climate in tropical or subtropical regions such as
Southeast Asia is suitable for rice growth throughout the
year, increasing the difficulty in extracting information on
the distribution of rice areas. First, it is difficult to obtain ac-
curate phenological information, as the climate in Southeast
Asia is hot and humid for rice growth and the timing of rice
seeding and transplanting is more flexible (Xu et al., 2021).
Thus, it is difficult to determine effective phenological in-
dicators and to accurately identify rice-growing stages. Sec-
ond, rice cultivation patterns in Southeast Asia are too com-
plex to construct a representative rice growth model (Kang et
al., 2022). This poses obstacles for rice area extraction meth-
ods that utilize time-fixed relationships in time-series data.

Current publicly downloadable remote-sensing data-based
rice products for Southeast Asia include the Asian rice map
(International Rice Research Institute – IRRI – rice data,
500 m) (Nelson and Gumma, 2015), Vietnam-wide annual
land use/land cover data sets from 1990 to 2020 (VLUCDs,
30 m) (Phan et al., 2021), annual paddy rice maps for North-
east and Southeast Asia from 2017 to 2019 (NESEA-Rice10,
10 m) (Han et al., 2021) and annual rice in the Asian mon-
soon region from 2000 to 2020 (500 m) (Han et al., 2022).
Except for Vietnam’s VLUCD, the source data for the public
rice maps in Southeast Asia were mainly MODIS. Rice area
maps using MODIS data contained a large number of mixed
pixels due to low spatial resolution (Dong et al., 2015; Shew
and Ghosh, 2019), which affected the accuracy of rice area
maps.

Therefore, in this study, to meet the requirements of high-
precision rice area mapping in Southeast Asia, the objectives
accomplished using Sentinel-1 time-series data are as fol-
lows.

A new feature-extraction method is proposed by analyzing
the time-series backscattering variation of rice in mainland
Southeast Asia. The method does not need to summarize the
general evolutionary model from rice backscatter coefficients
with diverse cultivation patterns. Using three simple but ef-
fective temporal statistical features defined in this study, it
is possible to capture features that provide key information
about the rice-growth process. This study provides a new idea
for rice area mapping methods in tropical or subtropical re-
gions.

A deep combination of the above features and the U-Net
model will be used to fully exploit the pixel-level seman-
tic features to complete the annual rice area mapping of
five Southeast Asian countries in 2019, enriching the avail-
able Southeast Asian rice area maps and providing support-

ing information for the scientific community and scientific
decision-making.

The rest of the paper is organized as follows. Section 2 de-
scribes the study area and the data information used. Sect. 3
presents the rice area mapping scheme. Sect. 4 presents the
rice area mapping results and accuracy assessment. Sect. 5
discusses the results. Sect. 6 gives the data addresses, and
Sect. 7 draws conclusions.

2 Materials

2.1 Study area

Approximately 90 % of the world’s rice is grown on 140 mil-
lion hectares of land in Asia. The rice production in mainland
Southeast Asia accounts for about 15 % of the world’s rice
production (Fao, 2020). The study area is five countries in
mainland Southeast Asia, namely, Myanmar, Thailand, Laos,
Cambodia and Vietnam, as shown in Fig. 1. These countries
have more land under rice cultivation than any other crop,
and Vietnam and Thailand are the two largest rice exporters
in the world (Yuan et al., 2022). Indeed, changes in rice pro-
duction in these countries could destabilize international rice
markets and have a clear impact on global food security.

Southeast Asia has a tropical monsoon climate with an av-
erage annual temperature of 20–27 ◦C and abundant rainfall.
Therefore, rice can be grown at any time of the year. Agri-
cultural systems in Southeast Asia are dominated by rainfed
lowland rice and irrigated lowland rice (Kuenzer and Knauer,
2012). Under suitable irrigation conditions, rice can be har-
vested two to three times per year.

2.2 Data source

2.2.1 Satellite imagery and auxiliary data

The European Space Agency (ESA) provides a free data
source for global land cover monitoring through Sentinel-
1A, launched in 2014, and Sentinel-1B, launched in 2016
(Torres et al., 2012). The Sentinel-1 satellites carry a C-
band (5.405 GHz) synthetic-aperture radar with a 12 d re-
visit period. In this study, the 2019 dual-polarized (VV/VH)
ground-range-detected (GRD) products in interferometric
wide-swath (IW) mode were downloaded from the Alaska
Satellite Facility (ASF) website. In total, 12 tracks, 90 frames
and 2665 scenes of data were acquired. Details are shown in
Table 1.

The digital elevation model (DEM) and land use/land
cover product were also collected. The Shuttle Radar To-
pography Mission (SRTM) 3 s DEM product was used for
terrain correction of SAR data. WorldCover data were used
to reduce false alarms caused by water and woodland.
WorldCover is a global land cover product produced by the
ESA and several scientific institutions using Sentinel-1 and
Sentinel-2 data (Zanaga et al., 2021). It provides information
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Figure 1. Location of the study area. The Sentinel-1 data with orbit frame 99-16 were used for the training samples, and the rice and non-rice
flags show the distribution of the validation sample set. The base map is from Esri.

on 11 land cover types for 2020 with a resolution of 10 m and
an overall accuracy of 80.7 % for the Asian region.

2.2.2 Agricultural statistics

The statistical yearbooks of each country were collected to
compile annual census data of rice-harvested areas at dif-
ferent administrative levels in these countries. The adminis-
trative levels include national and subnational levels (state,
province or regions, uniformly represented by province in
this study). The unit of area in the statistical data is uniformly
converted to hectares (ha).

2.2.3 Available rice maps based on remote-sensing
data

From the perspective of resolution and coverage area, two
publicly downloadable rice maps were selected for compari-
son.

(1) VLUCDs

Researchers from the Japan Aerospace Exploration Agency
(JAXA) produced the first 30 m resolution VLUCDs using
multiple sources of data (including Landsat and Sentinel-
1/Sentinel-2) and a random forest algorithm (Phan et al.,
2021). The VLUCDs contain annual land cover products for
1990–2020, including a primary classification (10 different
categories of primary land cover, including rice) and a sec-

ondary classification (18 different categories of secondary
primary land cover, including rice). The rice layer was ex-
tracted from the 2019 annual land cover products for com-
parison.

(3) Rice data of Asia from IRRI rice data

IRRI is an international agricultural research and training or-
ganization with its headquarters in Los Baños, Laguna, in the
Philippines, and offices in 17 countries. IRRI is 1 of 15 agri-
cultural research centers in the world that form the Consulta-
tive Group for International Agricultural Research (CGIAR),
a global partnership of organizations engaged in research on
food security. IRRI is also the largest nonprofit agricultural
research center in Asia. IRRI produced a 500 m resolution
map of the general distribution of rice in Asia from 2001 to
2012 using MODIS time-series data (Nelson and Gumma,
2015) that is freely available to the public.

Table 2 shows details of the SAR data, auxiliary data,
available rice maps, land cover data and statistics used in the
study.

3 Method

The flowchart of this study is shown in Fig. 2. First, the
Sentinel-1 time-series images were preprocessed. Then, key
features in the rice-growth process are extracted from the
time-series SAR data. To make full use of the pixel-level se-
mantics of the features, the extracted features were fed into
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Table 1. List of Sentinel-1 SAR data in 2019 used in this study.

Country Orbit Frame Satellite Number of Country Orbit Frame Satellite Number of
images images

Experimental data

Thailand

172
17 S1A 31

Laos

99
1240 S1A 30

18 S1A 31 1245 S1A 30

135

16 S1A 23 1250 S1A 30

17 S1A 23

26

44 S1A 31

18 S1A 23 49 S1A 31

19 S1A 23 54 S1A 31

62

1 S1B 29 59 S1A 31

2 S1B 29 64 S1A 31

3 S1B 29 69 S1A 31

4 S1B 29

128

44 S1A 30

5 S1B 29 49 S1A 30

20 S1A 27 54 S1A 30

21 S1A 27 59 S1A 30

22 S1A 26 64 S1A 30

23 S1A 24

Myanmar

41

44 S1A 31

24 S1A 25 50 S1A 31

164

1 S1B 32 55 S1A 31

2 S1B 32 60 S1A 31

3 S1B 32 65 S1A 31

4 S1B 32 70 S1A 31

5 S1B 32

143

46 S1A 30

20 S1A 13 51 S1A 30

91

1 S1B 32 56 S1A 30

2 S1B 32 61 S1A 30

3 S1B 32 66 S1A 30

4 S1B 32 71 S1A 30

Cambodia

99
1220 S1A 30 76 S1A 30

1225 S1A 30

70

1217 S1A 31

31 S1B 31 1222 S1A 31

26

29 S1A 28 1227 S1A 31

32 S1B 30 1232 S1A 31

38 S1B 30 1237 S1A 31

43 S1B 30 1242 S1A 31

128
34 S1A 30 1247 S1A 31

39 S1A 30 1252 S1A 31
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Table 1. Continued.

Country Orbit Frame Satellite Number of Country Orbit Frame Satellite Number of
images images

Experimental data

Vietnam

26
23 S1A 28 1257 S1A 31

34 S1A 31 1262 S1A 31

55

31 S1A 31 1267 S1A 31

37 S1A 31

172

1248 S1A 28

42 S1A 31 1253 S1A 28

47 S1A 31 1258 S1A 28

62 S1A 31 1263 S1A 28

67 S1A 31 1268 S1A 28

72 S1A 31 1273 S1A 28

128
29 S1A 30

69 S1A 30

Training data set

Thailand 99 16 S1A 29

the U-Net model to obtain rice area extraction results with
spatial details. Finally, to reduce false alarms from water bod-
ies and non-rice vegetation, the results were postprocessed
using masks generated based on high-precision land cover
products to obtain the annual rice area map of five Southeast
Asian countries.

3.1 Preprocessing

The Sentinel-1 time-series data were preprocessed using the
Sentinel Application Platform (SNAP) software (Filipponi,
2019). SNAP is a common architecture for all Sentinel tool-
boxes. ESA and ESRIN provide the SNAP user tool free of
charge to the earth observation community.

The steps were as follows. (1) Orbit correction: this opera-
tion refines the inaccurate orbit-state vectors provided in the
metadata of a SAR product with the precise orbit files which
are available days to weeks after the generation of the prod-
uct. (2) Thermal-noise removal: because SARs are contam-
inated by additive thermal noise, this step is introduced to
mitigate thermal-noise effects. (3) Radiometric calibration:
this process provides the image in which the pixel values
can be directly related to the radar backscatter of the image.
(4) Co-registration: this step co-registers multitemporal in-
tensity images. (5) Terrain correction: this process converts
SAR data from the slant or ground-range projection to geo-
graphic coordinate projection and corrects the distortion ef-
fects that occurred during the acquisition (overlay, shading).
(6) Multitemporal speckle noise filtering: this operation re-

duces speckles, which degrade the quality of the image and
make interpretation of features more difficult. (7) Converting
values to decibels: this step converts the multitemporal in-
tensity map to sigma 0 (σ 0) on the decibel (dB) scale using
a logarithmic transformation. The final σ 0 images with 20 m
resolution in the WGS84 geographic coordinate system were
obtained.

3.2 Feature extraction

As described in many previous studies (Singha et al., 2019;
Chang et al., 2020; Crisóstomo De Castro Filho et al., 2020;
Sun et al., 2022a), VH polarization was more sensitive to
the flooding period of rice than VV polarization and has
been more widely used for rice area extraction. Therefore,
Sentinel-1 VH polarization time-series data were selected in
this study. To analyze the time-series characteristics of the
backscattering coefficients of rice and other land cover types
in the study area, representative sample plots of four typical
land cover types (rice, water bodies, buildings and non-rice
vegetation) were selected. Based on Google Earth data and
other land cover data, four rice regions that belong to differ-
ent cropping systems were chosen. The average VH polar-
ization time-series data of these land cover types were calcu-
lated, as shown in Fig. 3.

In Fig. 3, the backscattering coefficients of water bodies
were small, as they exhibited single-specular scattering, and
their return power was lower than that of other land covers. In
contrast, buildings exhibited double bounce and their return
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Figure 2. Flowchart of the proposed rice area mapping method using Sentinel-1 data.

Figure 3. The average VH polarization backscattering coefficient curve of typical land covers (the shaded areas refer to the standard deviation
calculated from the sample points).
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Table 2. Data information used in the study.

Data type Data product
or country
name

Year Resolution Description of
use

Data access Last
access

SAR imagery Sentinel-1 2019 20× 22 m
(rg × az)

The backscat-
ter characteris-
tic extraction

https://search.asf.alaska.edu/#/ 11 Octo-
ber 2022

DEM Shuttle Radar
Topogra-
phy Mission
(SRTM) 3sec

2000 90 m Terrain correc-
tion

https://search.earthdata.nasa.gov/
search?q=SRTM

11 Octo-
ber 2022

Land cover
data

WorldCover 2020 10 m Generation
of water and
woodland
mask

https://esa-worldcover.org/en 11 Octo-
ber 2022

Available rice
area map

Vietnam-wide
annual land
use/land cover
data sets
(VLUCDs)

2019 30 m Spatial con-
sistency
assessment

https://www.eorc.jaxa.jp/ALOS/en/
dataset/lulc/lulc_vnm_v2109_e.htm

11 Octo-
ber 2022

Rice data of
Asia from
IRRI (IRRI
rice data)

2000 to
2012

500 m Spatial con-
sistency
assessment

https://www.irri.org/mapping 11 Octo-
ber 2022

Statistical
yearbook

Vietnam 2019 Province scale Precision veri-
fication

https://www.gso.gov.vn/en/
homepage/

11 Octo-
ber 2022

Cambodia 2019 Province
scale

Precision veri-
fication

http://nis.gov.kh/index.php/km/ 11 Octo-
ber 2022

Laos 2019 Province scale Precision veri-
fication

https://www.lsb.gov.la/en/home/ 11 Octo-
ber 2022

Thailand 2019 Province scale Precision veri-
fication

http://www.nso.go.th/sites/2014en 11 Octo-
ber 2022

Myanmar 2019 State scale Precision veri-
fication

https://www.mopf.gov.
mm/en/page/planning/
central-statistical-organization-cso/
752

11 Octo-
ber 2022

powers were much stronger, leading to larger backscattering
coefficients. The scattering process of radar waves of non-
rice vegetation was more complicated, and the backscatter-
ing coefficients of non-rice vegetation were between build-
ings and water bodies. For different kinds of rice samples,
the curve fluctuations were significant, due to the effects of
flooding and multiseason planting patterns. However, gen-
erally, their backscattering intensities ranged between build-
ings and water bodies.

More specifically, during the observation period, two sea-
sons of rice were planted in the land parcel of Rice 1, the
first from April to July and the second from August to Oc-
tober. The land parcel of Rice 2 was planted with only one

season of rice, from April to September. The land parcel of
Rice 3 was planted with two seasons of rice: the first season
was from March to July and the second season was from July
to October. The land parcel of Rice 4 was planted with three
seasons of rice: the first season was from February to June,
the second season was from June to October and only part of
the third season (October–December) was observed. It can
be seen that the time steps of each growing season for the
selected Rice 1–Rice 4 were inconsistent. In fact, the high
heterogeneity of rice backscattering coefficients in Southeast
Asia is caused by the high heterogeneity in climate and to-
pography. This makes the backscatter coefficient curves of
the rice growth cycle more diverse and does not allow us to
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summarize a generalized model of rice evolution. Therefore,
it will be difficult to accomplish the rice field extraction task
using a direct reliance on the fixed relationship between phe-
nology and time.

Through a large number of comparative experimental
analyses and combined with our previous research work (Xu
et al., 2021), three time-series statistical features that can de-
scribe the most significant SAR characteristics during rice
growth were selected for rice area mapping in the study area,
namely, the sharpness of the change in σ 0 (σ 0

var), the mini-
mum value of the backscatter coefficients in the time series
(σ 0

min) and the maximum value of backscatter coefficients in
the time series (σ 0

max).
The interaction between the crop canopy and microwave

radiation varies with time during plant growth. In contrast,
the backscattering coefficients of non-crops, such as water
bodies, buildings and woodland, are more stable. Therefore,
the sharpness of the change in σ 0 with time will be a key
factor in distinguishing cropland from other land cover types.
σ 0

var is given by the following equation.

σ 0
var =

1
n

∑n

i

∣∣∣σ 0
i − σ

0
mean

∣∣∣2, (1)

where σ 0
mean =

1
n

n∑
i

σ 0
i n is the number of images.

During the flooding stage, the backscattering characteris-
tics of rice are significantly different from other crops that do
not require extensive irrigation and are close to that of water.
Therefore, this study identified the flooding stage by calcu-
lating the minimum value of the backscatter coefficient in the
time-series images to distinguish rice from other crops. σ 0

min
is given by Eq. (2).

σ 0
min =min

{
σ 0

1 ,σ
0
2,σ

0
3 , . . .,σ

0
n

}
(2)

The seasonal backscattering variation exhibited by water
bodies can interfere with the identification of rice. In con-
trast to the seasonal variation of water bodies, the backscat-
ter coefficient of rice shows a substantial increase during the
growth process. Therefore, false alarms generated by water
bodies can be reduced by identifying the maximum value
of backscatter coefficients in the time-series images. σ 0

max is
given by the following equation.

σ 0
max =max

{
σ 0

1 ,σ
0
2,σ

0
3 , . . .,σ

0
n

}
(3)

A pseudo-color image is synthesized in the order of R:
σ 0

max, G: σ 0
min and B: σ 0

var shown in Fig. 4. Due to the higher
σ 0

var and σ 0
max and lower σ 0

min of rice, the color of rice in
the pseudo-color composite image is mainly purplish red and
sometimes red or dark blue. Compared to other land covers,
water bodies have lower σ 0

var, σ
0
max and σ 0

min. Therefore, water
bodies are black in the pseudo-color image. Land covers with
less variation in backscatter intensity, such as settlement and
non-rice vegetation, generally have smaller σ 0

var and higher

Table 3. Information of the validation sample set.

Class Number of plots Number of pixels

Rice 1913 2 128 431
Non-rice 2032 2 188 477

σ 0
min. Therefore, the colors of these land covers are usually

yellow or green in the pseudo-color image.

3.3 Training and validation sets

The above analysis shows that the rice and non-rice land cov-
ers of these Southeast Asian countries have consistent fea-
tures in the pseudo-color image; i.e., the model trained by
one scene was applicable for all other scenes with good trans-
ferability. Therefore, a training data set generated from the
orbit-frame 99-16 images of Thailand from a previous work
(Xu et al., 2021) was used, as shown in Fig. 1. A sliding win-
dow with a pixel size of 224×224 was used to slice the train-
ing images into image patches with 50 % overlap. The train-
ing data set consisted of 15 659 image patches with a pixel
size of 224×224. A validation sample set for accuracy evalu-
ation was collected using auxiliary data such as Google Earth
optical images and other rice maps. The validation samples
were divided into two categories, rice and non-rice: the num-
ber of samples is shown in Table 3, and their distribution is
shown in Fig. 1.

3.4 U-Net model

In this paper high-precision rice area mapping was accom-
plished using the U-Net model. U-Net is a classical semantic
segmentation model widely used in biomedical image seg-
mentation and remote sensing (Wei et al., 2019; Xu et al.,
2021; Lin et al., 2022). It outputs semantically labeled pixel-
by-pixel images corresponding to the input image while ex-
tracting high-level semantic features so that the spatial de-
tails of the input image can be maintained (Ronneberger et
al., 2015). A SAR image covers a large spatial area, which
includes multiple ground objects with complex and rich se-
mantic information; rice fields are spatially characterized by
a continuous and large distribution. Therefore, U-Net is used
to fully combine the spatial and semantic information in SAR
images to achieve high-precision rice area extraction.

The structure of the U-Net model is shown in Fig. 5. U-
Net consists of an encoder (contracting path) and a decoder
(expansive path). The encoder is used for feature extraction,
and the decoder is used to restore the size of the input im-
age. U-Net has 23 convolutional layers, including 18 3× 3
convolutional layers, 4 2×2 convolutional layers and 1 1×1
convolutional layer. The encoder part consists of five down-
sampling units, where each unit consists of two 3× 3 con-
volutional layers and a 2× 2 max-pooling layer. The output
of the downsampling unit is input to the next downsampling

https://doi.org/10.5194/essd-15-1501-2023 Earth Syst. Sci. Data, 15, 1501–1520, 2023



1510 C. Sun et al.: Twenty-meter annual paddy rice area map

Figure 4. The pseudo-color image synthesized from three SAR feature parameters (R: σ 0
max;G: σ 0

min; B: σ 0
var) and the corresponding optical

image from © Google Earth.

unit by max pooling. The decoder contains four upsampling
units, each of which consists of two 3× 3 convolutional lay-
ers and a 2×2 deconvolutional layer. In the final stage of the
decoder, the feature vector of the last upsampling unit is con-
verted into a probability mapping by the 1× 1 convolutional
layer. The dimension of the probability mapping is 2, and the
pixel value indicates the probability that the pixel belongs to
rice and non-rice.

Meanwhile, thanks to the U-shaped structure and skip
connection, each downsampling is cascaded with the corre-
sponding upsampling, and this fusion of features at different
scales is greatly helpful for upsampling in recovering pixels.
Specifically, the shallow downsampling multiplier is small
and the feature map has more detailed rice spatial distribution
features (low-level spatial features), while the deep down-

sampling multiplier is large and the information is heavily
condensed with large spatial loss. However, the high-level
semantic features obtained from deep downsampling help in
the determination of rice regions. When the high-level and
low-level features are fused, it helps to improve the segmen-
tation accuracy.

To solve the problem of uneven data distribution, we added
a batch-normalization (BN) layer (Ioffe and Szegedy, 2015)
before each convolutional layer. The BN layer allows the in-
put data to follow the same distribution to achieve regular-
ization of the model.

Earth Syst. Sci. Data, 15, 1501–1520, 2023 https://doi.org/10.5194/essd-15-1501-2023



C. Sun et al.: Twenty-meter annual paddy rice area map 1511

Figure 5. Structure of the U-Net model.

3.5 Postprocessing

In rice area mapping, water bodies (e.g., rivers and lakes) can
confuse the flooding signal of rice. In addition, non-rice veg-
etation may cause some disturbances due to weather effects.

Therefore, as drawn from many studies (Cué La Rosa et
al., 2019; Sun et al., 2021), water body masks and woodland
masks produced by WorldCover were used to reduce false
alarms of rice field extraction results to some extent.

3.6 Accuracy evaluation

In this study, several strategies were used to evaluate our rice
map product, including accuracy assessments based on val-
idation sets and comparisons with statistical data and other
rice maps at the national and provincial levels. First, com-
mon accuracy metrics based on the validation set were calcu-
lated to measure the classification effectiveness of the model,
including accuracy, precision, recall and Kappa (Congalton,
1991; Vapnik, 1999; Mchugh, 2012).

Accuracy=
TP+TN

TP+TN+FN+FP
(4)

Precision=
TP

TP+FP
(5)

Recall=
TP

TP+FN
(6)

Kappa=
accuracy − Pe

1− Pe
(7)

Pe =

(TP+FP)× (TP+FN)+ (FN+TN)
× (FP+TN)

(TP+TN+FN+FP)2 (8)

TP denotes the number of pixels correctly classified as rice,
TN denotes the number of pixels correctly classified as non-
rice, FP denotes the number of pixels misclassified as rice
among non-rice pixels, FN denotes the number of pixels mis-
classified as non-rice among rice pixels and Pe is the desired
accuracy.

Second, the spatial consistency of rice field extraction re-
sults with statistical data and other rice maps was compared
at the national and provincial levels. The coefficient of de-
termination (R2) of the rice area map with statistical data
and other rice area maps was calculated using the following
equation (Draper and Smith, 1998).

R2
=

(∑n
i=1 (xi − xi)×

(
ki − ki

))2∑n
i=1(xi − xi)2

×
∑n
i=1
(
ki − ki

)2 (9)

n is the total number of administrative units, xi is the area
of extracted rice, xi is its corresponding mean value, ki is
the area of statistical data or other rice maps and ki is its
corresponding mean value.

4 Results

The 2019 rice area map for mainland Southeast Asia using
Sentinel-1 SAR data was shown in Fig. 6. According to the
extraction result, the main rice-producing areas in Myanmar
are located in the Ayeyarwady, Bago and Yangon delta re-
gions, which are crossed by river systems. In addition, Man-
dalay, Sagaing and Magwayue in the northern arid moun-
tainous region also play an important role in rice production.
Thailand’s rice fields are concentrated in the central plains,
north and northeast. The main rice-producing areas in Laos

https://doi.org/10.5194/essd-15-1501-2023 Earth Syst. Sci. Data, 15, 1501–1520, 2023



1512 C. Sun et al.: Twenty-meter annual paddy rice area map

Figure 6. Twenty-meter resolution rice area map of five countries
in mainland Southeast Asia in 2019.

are located in the central and southern lowland areas. Many
of the major rice-producing provinces are located along the
Mekong River, such as Borikhamxay, Khammouane, Savan-
nakhet, Salavan and Champasak. Rice fields in Cambodia
are concentrated in the Tonlé Sap Lake basin and the south-
ern Mekong River basin. In Vietnam, the representative rice-
planting areas are the Mekong delta and the Red River delta.

Next, the rice area map was evaluated as comprehensively
as possible from three different scales. First, the validation
sample set introduced in the previous section was used to
evaluate the accuracy of rice area mapping from the method-
ological level. Second, at the national level, the rice area
maps were compared with statistical data on rice-harvested
area and other available rice area maps, respectively. Finally,
at the provincial level, more detailed comparisons were made
with statistical data and other provincial rice area maps to
measure the spatial consistency between the extracted rice
distribution and these data.

Table 4. Accuracy of the rice area map based on the validation set.

Class Accuracy Precision Recall Kappa

Rice 92.20 % 92.45 % 90.26 % 0.8425

Figure 7. Comparison of the extracted rice area with the statistical
rice-harvested area and IRRI data set at a national-level scale. M is
the number of countries.

4.1 Accuracy based on the validation set

The accuracies of the rice area map based on the validation
sample set are shown in Table 4. Among them, the accuracy
was as high as 92.20 %, and the Kappa was 0.8425, which
proved that the proposed method had a good classification
performance. The precision was 92.45 %, indicating that the
method could effectively reduce the false alarms in the rice
area extraction results. Therefore, these precision metrics il-
lustrated that the rice mapping results were in good agree-
ment with the validation samples. This also further demon-
strated the capability of the proposed method for rice area
mapping in large tropical regions.

4.2 Comparison with statistical data and other rice area
maps at the national scale

Figure 7 showed the comparison of the extracted rice area
with statistical data and the IRRI rice data at the national-
level scale for five Southeast Asian countries. As seen from
the figure, the extraction results were consistent with both
statistical data and IRRI rice data. Most points were dis-
tributed in the vicinity of the 1 : 1 line. In contrast, the ex-
traction result was more consistent with IRRI,R2 could reach
0.93 and R2 with statistical data was 0.78.

Table 5 showed the statistical area of rice, the area of other
rice area maps and the area of rice extraction for five South-

Earth Syst. Sci. Data, 15, 1501–1520, 2023 https://doi.org/10.5194/essd-15-1501-2023



C. Sun et al.: Twenty-meter annual paddy rice area map 1513

Table 5. Statistics, other rice area maps and the extracted rice area for five Southeast Asian countries.

Country Statistics of rice IRRI rice Paddy land area VLUCDs Extracted rice
cultivation area (×106 ha) (×106 ha) (×106 ha) cultivation area

(×106 ha) (×106 ha)

Thailand 10.9442 12.7198 – – 12.8508
Cambodia 3.2638 3.0740 – – 2.8215
Myanmar 6.9209 6.4575 – – 5.5390
Laos 0.8435 0.9856 – – 0.8468
Vietnam 7.4695 6.1527 4.1205 3.8210 3.3270

east Asian countries. As shown in Fig. 7 and Table 5, com-
pared with IRRI rice data, the extraction area of Cambodia,
Laos and Thailand was close to that of IRRI, while that of
Myanmar and Vietnam was slightly lower. Compared with
the statistical data, the extraction areas of Cambodia and
Laos were in good agreement with the statistical data. The
extraction areas of rice in Myanmar and Vietnam were lower,
while those in Thailand were slightly higher.

It could be seen that the statistics of rice-harvested area
were much higher than the area of rice extracted from Viet-
nam. The statistical data were the total rice harvest areas in
different growing seasons each year, but the extracted rice
area was the land area where rice was planted. In Vietnam,
there are three seasons of rice, namely, spring rice, fall rice
and winter rice, while the harvested areas of spring rice and
fall rice are comparable, and the harvested area of winter rice
is smaller. In this way, part of the statistical data of rice har-
vest area is repeated and accounts for a large proportion of
the area, resulting in a larger rice-statistical area than the ex-
tracted rice area. Although other countries also have multiple
rice seasons, the areas of rice in the main season are large,
while that in the other seasons is small, so the area propor-
tion calculated repeatedly is small. The extracted rice area
was closer to the paddy land area in the statistical yearbook
of Vietnam and the VLUCD, indicating that the extraction
result was reliable.

4.3 Comparison with statistical data and other rice area
maps at the provincial scale

Figure 8 shows the comparison of the extracted rice area with
the statistical data of rice-harvested area and IRRI rice data
at the provincial scale for five Southeast Asian countries. The
available rice maps contain a 500 m resolution rice map of
mainland Southeast Asia (IRRI rice data) and a 30 m resolu-
tion rice map of Vietnam (VLUCD) (see Sect. 2.2.3 for de-
tails). In general, the rice area extraction results were in good
agreement with the statistical area, IRRI data and VLUCDs.
Among them, theR2 ranged from 0.82 to 0.88 with statistical
data and from 0.83 to 0.97 with IRRI, as shown in Fig. 8.

As shown in Fig. 8a and b, the rice-planting areas in Thai-
land and Cambodia extracted by our method had a good cor-
relation with the statistical data and IRRI data at the provin-

cial scale. The R2 was distributed in the range of 0.83–0.88.
There were no provinces with large deviations.

In Fig. 8c, in Myanmar, the R2 between the extracted area
of rice and the statistical data and IRRI rice data was 0.83
and 0.84, respectively. However, the extracted rice area of
Ayeyarwady province was significantly lower than that of
the statistical data and IRRI data. The extraction results of
Ayeyarwady were compared with the IRRI data, as shown in
Fig. 9. As reported by Han et al. (2021), due to the influence
of mixed pixels, the IRRI data divide too many rivers and too
much non-rice vegetation into rice. The extracted rice area
map retains the details of rivers and roads.

The R2 of the extracted rice area in Laos with statis-
tical data was 0.82, and the highest agreement with IRRI
data was 0.97, as shown in Fig. 8d. For the same reason
as Ayeyarwady province, the rice-extraction area in Savan-
nakhet province was lower than the IRRI data because the
details of rivers and roads were preserved in the extraction
results.

Different from the other subfigures, Vietnam added data-
comparison results with 30 m VLUCDs. The extraction re-
sults in Vietnam correlated well with the statistical data,
VLUCDs and IRRI data, with allR2 values greater than 0.80,
as shown in Fig. 8e. The area of rice extraction in Vietnam
was in higher agreement with the VLUCD (R2 of 0.87) than
with statistics (R2 of 0.86) and IRRI rice data (R2 of 0.83).
Most of the points of VLUCDs were distributed on the 1 : 1
line.

5 Discussion

In this study, annual rice area maps for five Southeast Asian
countries in 2019 were generated using temporal features ex-
tracted based on Sentinel-1 SAR time series and an improved
U-Net model. Accuracy, precision and recall based on the
validation set exceeded 90 %, with a Kappa of 0.8425. Accu-
racy evaluation of rice mapping showed that the proposed
temporal features were able to portray the unique growth
characteristics of rice, and the improved U-Net model was
able to suppress the false alarms of sporadic distribution
caused by complex topography. The proposed method has
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Figure 8. Comparison of the extracted rice area with the statistical rice-harvested area and IRRI data set at the provincial scale. N is the
number of provinces in each country.
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Figure 9. Comparison of our extracted rice area map of Ayeyarwady Province with IRRI data: (a) our rice area extraction result; (b) the
enlarged view of the red box in panel (a); (c) the pseudo-color image of SAR features corresponding to panel (b); (d) IRRI rice data; (e) the
enlarged view of the red box in panel (d); (f) the optical image (© Google Earth) corresponding to panel (e).

superior capability in mapping rice distribution in large trop-
ical regions.

The rice area extraction results were compared with statis-
tical data from the national and provincial levels in Sect. 4.2
and 4.3. The results of multiple comparisons show that our
rice area extraction results are in high agreement with the sta-
tistical data. However, there were also minor inconsistencies.
A possible reason is that the statistical cycle is not strictly
aligned with the SAR data collection cycle. The rice area ex-
tracted in this study is the total area of all fields that have been
planted with rice in a year. Most agricultural statistics record
the total area of rice planted in different growing seasons on
an annual basis or even from one month of one year to the
next. In addition, the statistical methods may cause errors in
the statistics. The well-organized rice-growing seasons were
mainly considered in all statistics, and the random and irreg-
ular planting behavior of individual farmers was inevitably
ignored. Considering the data collection conditions and sta-
tistical errors, it is understandable that the extracted rice map
differs from the official statistics.

The comparison results between rice area products ex-
tracted based on different remote-sensing data showed that
our rice area extraction results were in good agreement with
the available rice products at the national and provincial lev-
els. To fully demonstrate the reliability of the rice extraction
results, three subregions from the rice map were selected for
comparison in Thailand and Vietnam, as shown in Fig. 10.
As mentioned in other literature (Dong et al., 2015; Han et
al., 2021), the MODIS-based IRRI rice map with 500 m reso-
lution contains a large number of mixed image elements, and
thus misclassification exists in rice area maps. The spatial
distribution characteristics of our rice area map were gen-
erally consistent with those of the IRRI data, and our rice
area map retained more details with fewer mixed pixels. In
addition, our rice area map also had better agreement with
the spatial distribution and detailed information of rice from
VLUCDs. Overall, comparisons based on the validation set,
statistical data and other rice area map products confirmed
the reliability of our rice area map.

In the study, the temporal features along rivers and wet-
lands are more similar to paddy rice and have similar col-
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Figure 10. Comparison of our rice area map with available rice area products in typical regions. Our extraction results (a1–c1, a2–c2, a3–
c3); VLUCD rice map (d1–f1, d2–f2); IRRI rice data (d3–f3). The figures in the second column show the enlarged views of the red boxes
in the figures of the first column, and the figures in the third column show the enlarged views of the red boxes in the figures of the second
column.
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ors in the feature pseudo-color image, which can easily be
misclassified as rice. The backscattered information of scat-
tered rice fields is subject to interference from topography
and surrounding non-rice land cover, resulting in missed de-
tection. Improvements can be made in future studies using
water masks extracted from higher-precision land cover data
or by adding more negative samples.

6 Data availability

The 20 m annual paddy rice area map for mainland Southeast
Asia can be accessed in the Zenodo data set from the fol-
lowing DOI: https://doi.org/10.5281/zenodo.7315076 (Sun
et al., 2022b). The spatial reference system of the data set
is EPSG:4326(WGS84).

7 Conclusions

Ending hunger and malnutrition is essential, and rice plays
a critical role. Satellite-based remote sensing offers the most
practical means of monitoring rice cultivation in mainland
Southeast Asia. Questions remain, however, as to appropriate
timing, number of satellite observations, spatial resolution of
satellite imagery and effective data-processing methods for
rice distribution and production information.

To perform large-scale rice area mapping in tropical and
subtropical regions, an efficient rice area mapping method
based on time-series SAR features and a deep-learning model
is proposed. A 20 m spatial-resolution rice area map of main-
land Southeast Asia was produced using the 2019 Sentinel-1
time-series data and the proposed rice area mapping method.
The accuracy of the proposed method in the validation sam-
ple set was 92.20 %. Our rice area map correlated signifi-
cantly with statistical data and was consistent with other rice
area maps. These results demonstrate the advantages of the
proposed method for rice area mapping with complex crop-
ping patterns. The rice area map we produced will provide
data support for agricultural resource studies, such as yield
prediction and agricultural management.
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