Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-865-2022
https://doi.org/10.5194/essd-14-865-2022
Data description paper
 | 
24 Feb 2022
Data description paper |  | 24 Feb 2022

New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere

Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang

Related authors

100 years of lake evolution over the Qinghai–Tibet Plateau
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021,https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau
Youhua Ran, Xin Li, and Guodong Cheng
The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018,https://doi.org/10.5194/tc-12-595-2018, 2018
Short summary

Related subject area

Permafrost
Very high resolution aerial image orthomosaics, point clouds, and elevation datasets of select permafrost landscapes in Alaska and northwestern Canada
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024,https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024,https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Multisource Synthesized Inventory of CRitical Infrastructure and HUman-Impacted Areas in AlaSka (SIRIUS)
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024,https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
The first hillslope thermokarst inventory for the permafrost region of the Qilian Mountains
Xiaoqing Peng, Guangshang Yang, Oliver W. Frauenfeld, Xuanjia Li, Weiwei Tian, Guanqun Chen, Yuan Huang, Gang Wei, Jing Luo, Cuicui Mu, and Fujun Niu
Earth Syst. Sci. Data, 16, 2033–2045, https://doi.org/10.5194/essd-16-2033-2024,https://doi.org/10.5194/essd-16-2033-2024, 2024
Short summary
An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau
Raul-David Şerban, Huijun Jin, Mihaela Şerban, Giacomo Bertoldi, Dongliang Luo, Qingfeng Wang, Qiang Ma, Ruixia He, Xiaoying Jin, Xinze Li, Jianjun Tang, and Hongwei Wang
Earth Syst. Sci. Data, 16, 1425–1446, https://doi.org/10.5194/essd-16-1425-2024,https://doi.org/10.5194/essd-16-1425-2024, 2024
Short summary

Cited articles

Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical forecasting of current and future Circum-Arctic ground temperatures and active layer thickness, Geophys. Res. Lett., 45, 4889–4898, 2018. 
Abu-Hamdeh, N. H.: Thermal properties of soils as affected by density and water content, Biosyst Eng., 86, 97–102, 2003. 
Ali, S. N., Quamar, M. F., Phartiyal, B., and Sharma, A.: Need for permafrost researches in Indian Himalaya, J. Clim. Chang., 4, 33–36, 2018. 
Allard, M., Sarrazin, D., and L'Hérault, E.: Borehole and near-surface ground temperatures in northeastern Canada, Version 1.3 (1988–2014), Nordicana D [data set], https://doi.org/10.5885/45291SL-34F28A9491014AFD, 2015. 
Awad, M. and Khanna, R.: Support Vector Regression, in: Efficient Learning Machines, Apress, Berkeley, CA, https://doi.org/10.1007/978-1-4302-5990-9_4, 2015. 
Download
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Altmetrics
Final-revised paper
Preprint