Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-865-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-865-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Xin Li
National Tibetan Plateau Data Center, State Key Laboratory of Tibetan
Plateau Earth System, Environment and Resources, Institute of Tibetan
Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Guodong Cheng
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou 730000, China
Institute of Urban Study, Shanghai Normal University, Shanghai 200234,
China
Jingxin Che
School of Science, Nanchang Institute of Technology, Nanchang 330099, China
Juha Aalto
Department of Geosciences and Geography, University of Helsinki, P.O.
Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki,
Finland
Olli Karjalainen
Geography Research Unit, University of Oulu, P.O. Box 8000, 90014,
Oulu, Finland
Jan Hjort
Geography Research Unit, University of Oulu, P.O. Box 8000, 90014,
Oulu, Finland
Miska Luoto
Department of Geosciences and Geography, University of Helsinki, P.O.
Box 64, Gustaf Hällströmin katu 2a, 00014 Helsinki, Finland
Huijun Jin
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou 730000, China
Institute of Cold Regions Science and Engineering and School of Civil
Engineering, Northeast Forestry University, Harbin 150040, China
Jaroslav Obu
Department of Geosciences, University of Oslo, Postboks 1047
Blindern, 0316 Oslo, Norway
Masahiro Hori
Earth Observation Research Center, Japan Aerospace Exploration
Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy
of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Xiaoli Chang
School of Resource and Environment and Safety Engineering, Hunan
University of Science and Technology, Xiangtan 411201, China
Related authors
Defeng Feng, Tianjie Zhao, Jingyao Zheng, Yu Bai, Youhua Ran, Xiaokang Kou, Lingmei Jiang, Ziqian Zhang, Pei Yu, Jinbiao Zhu, Jie Pan, Jiancheng Shi, and Yuei-An Liou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-62, https://doi.org/10.5194/essd-2025-62, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study introduces a downscaling approach that integrates passive microwave and optical satellite data to generate a long-term (2002–2023), high-resolution (0.05°) global near-surface FT state dataset, ensuring daily seamless continuity. The dataset achieves an overall accuracy of 83.78%, consistent with the microwave-based dataset while offering enhanced spatial detail. This record providing detailed FT information, enhancing the understanding of hydrological and ecological impacts globally.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Defeng Feng, Tianjie Zhao, Jingyao Zheng, Yu Bai, Youhua Ran, Xiaokang Kou, Lingmei Jiang, Ziqian Zhang, Pei Yu, Jinbiao Zhu, Jie Pan, Jiancheng Shi, and Yuei-An Liou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-62, https://doi.org/10.5194/essd-2025-62, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study introduces a downscaling approach that integrates passive microwave and optical satellite data to generate a long-term (2002–2023), high-resolution (0.05°) global near-surface FT state dataset, ensuring daily seamless continuity. The dataset achieves an overall accuracy of 83.78%, consistent with the microwave-based dataset while offering enhanced spatial detail. This record providing detailed FT information, enhancing the understanding of hydrological and ecological impacts globally.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
Hydrol. Earth Syst. Sci., 29, 465–483, https://doi.org/10.5194/hess-29-465-2025, https://doi.org/10.5194/hess-29-465-2025, 2025
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two endmembers of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented supersites.
Emmihenna Jääskeläinen, Miska Luoto, Pauli Putkiranta, Mika Aurela, and Tarmo Virtanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-390, https://doi.org/10.5194/hess-2024-390, 2025
Revised manuscript under review for HESS
Short summary
Short summary
The challenge with current satellite-based soil moisture products is their coarse resolution. Therefore, we used machine-learning model to improve spatial resolution of well-known SMAP soil moisture data, by using in situ soil moisture observations and additional soil and vegetation properties. Comparisons against independent data set show that the model estimated soil moisture values have better agreement with in situ observations compared to other SMAP-related soil moisture data.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Vilna Tyystjärvi, Pekka Niittynen, Julia Kemppinen, Miska Luoto, Tuuli Rissanen, and Juha Aalto
The Cryosphere, 18, 403–423, https://doi.org/10.5194/tc-18-403-2024, https://doi.org/10.5194/tc-18-403-2024, 2024
Short summary
Short summary
At high latitudes, winter ground surface temperatures are strongly controlled by seasonal snow cover and its spatial variation. Here, we measured surface temperatures and snow cover duration in 441 study sites in tundra and boreal regions. Our results show large variations in how much surface temperatures in winter vary depending on the landscape and its impact on snow cover. These results emphasise the importance of understanding microclimates and their drivers under changing winter conditions.
Anna-Maria Virkkala, Pekka Niittynen, Julia Kemppinen, Maija E. Marushchak, Carolina Voigt, Geert Hensgens, Johanna Kerttula, Konsta Happonen, Vilna Tyystjärvi, Christina Biasi, Jenni Hultman, Janne Rinne, and Miska Luoto
Biogeosciences, 21, 335–355, https://doi.org/10.5194/bg-21-335-2024, https://doi.org/10.5194/bg-21-335-2024, 2024
Short summary
Short summary
Arctic greenhouse gas (GHG) fluxes of CO2, CH4, and N2O are important for climate feedbacks. We combined extensive in situ measurements and remote sensing data to develop machine-learning models to predict GHG fluxes at a 2 m resolution across a tundra landscape. The analysis revealed that the system was a net GHG sink and showed widespread CH4 uptake in upland vegetation types, almost surpassing the high wetland CH4 emissions at the landscape scale.
Shaomin Liu, Ziwei Xu, Tao Che, Xin Li, Tongren Xu, Zhiguo Ren, Yang Zhang, Junlei Tan, Lisheng Song, Ji Zhou, Zhongli Zhu, Xiaofan Yang, Rui Liu, and Yanfei Ma
Earth Syst. Sci. Data, 15, 4959–4981, https://doi.org/10.5194/essd-15-4959-2023, https://doi.org/10.5194/essd-15-4959-2023, 2023
Short summary
Short summary
We present a suite of observational datasets from artificial and natural oases–desert systems that consist of long-term turbulent flux and auxiliary data, including hydrometeorological, vegetation, and soil parameters, from 2012 to 2021. We confirm that the 10-year, long-term dataset presented in this study is of high quality with few missing data, and we believe that the data will support ecological security and sustainable development in oasis–desert areas.
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Olli Karjalainen, Juha Aalto, Mikhail Z. Kanevskiy, Miska Luoto, and Jan Hjort
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-144, https://doi.org/10.5194/essd-2022-144, 2022
Manuscript not accepted for further review
Short summary
Short summary
The amount of underground ice in the Arctic permafrost has a central role when assessing climate change-induced changes to natural conditions and human activity in the Arctic. Here, we present compilations of field-verified ground ice observations and high-resolution estimates of Northern Hemisphere ground ice content. The data highlight the variability of ground ice contents across the Arctic and provide called-for information to be used in modelling and environmental assessment studies.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Yijie Sui, Min Feng, Chunling Wang, and Xin Li
Earth Syst. Sci. Data, 14, 3349–3363, https://doi.org/10.5194/essd-14-3349-2022, https://doi.org/10.5194/essd-14-3349-2022, 2022
Short summary
Short summary
High-latitude water bodies differ greatly in their morphological and topological characteristics related to their formation, type, and vulnerability. In this paper, we present a water body dataset for the North American high latitudes (WBD-NAHL). Nearly 6.5 million water bodies were identified, with approximately 6 million (~90 %) of them smaller than 0.1 km2.
Yanxing Hu, Tao Che, Liyun Dai, Yu Zhu, Lin Xiao, Jie Deng, and Xin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-63, https://doi.org/10.5194/essd-2022-63, 2022
Preprint withdrawn
Short summary
Short summary
We propose a data fusion framework based on the random forest regression algorithm to derive a comprehensive snow depth product for the Northern Hemisphere from 1980 to 2019. This new fused snow depth dataset not only provides information about snow depth and its variation over the Northern Hemisphere but also presents potential value for hydrological and water cycle studies related to seasonal snowpacks.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Guoqing Zhang, Youhua Ran, Wei Wan, Wei Luo, Wenfeng Chen, Fenglin Xu, and Xin Li
Earth Syst. Sci. Data, 13, 3951–3966, https://doi.org/10.5194/essd-13-3951-2021, https://doi.org/10.5194/essd-13-3951-2021, 2021
Short summary
Short summary
Lakes can be effective indicators of climate change, especially over the Qinghai–Tibet Plateau. Here, we provide the most comprehensive lake mapping covering the past 100 years. The new features of this data set are (1) its temporal length, providing the longest period of lake observations from maps, (2) the data set provides a state-of-the-art lake inventory for the Landsat era (from the 1970s to 2020), and (3) it provides the densest lake observations for lakes with areas larger than 1 km2.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Zhe Jin, Xiangjun Tian, Rui Han, Yu Fu, Xin Li, Huiqin Mao, and Cuihong Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-210, https://doi.org/10.5194/essd-2021-210, 2021
Manuscript not accepted for further review
Short summary
Short summary
Here we present a global and regional resolved terrestrial ecosystem and ocean carbon flux dataset during 2015–2019. The dataset was generated using the Tan-Tracker inversion system by absorbing satellite CO2 observations. The posterior 5-year annual mean global net carbon emissions were 5.35 PgC yr−1; the terrestrial ecosystem and ocean sinks were −4.07 and −3.33 PgC yr−1, respectively. This dataset can help understand global and regional carbon cycle, and support climate policy formulation.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
Cited articles
Aalto, J., Karjalainen, O., Hjort, J., and Luoto, M.: Statistical
forecasting of current and future Circum-Arctic ground temperatures and
active layer thickness, Geophys. Res. Lett., 45, 4889–4898, 2018.
Abu-Hamdeh, N. H.: Thermal properties of soils as affected by density and
water content, Biosyst Eng., 86, 97–102, 2003.
Ali, S. N., Quamar, M. F., Phartiyal, B., and Sharma, A.: Need for
permafrost researches in Indian Himalaya, J. Clim. Chang., 4, 33–36,
2018.
Allard, M., Sarrazin, D., and L'Hérault, E.: Borehole and
near-surface ground temperatures in northeastern Canada, Version 1.3
(1988–2014), Nordicana D [data set], https://doi.org/10.5885/45291SL-34F28A9491014AFD,
2015.
Awad, M. and Khanna, R.: Support Vector Regression, in: Efficient Learning
Machines, Apress, Berkeley, CA, https://doi.org/10.1007/978-1-4302-5990-9_4, 2015.
Bergen, K. J., Johnson, P. A., Maarten, V., and Beroza, G. C.: Machine
learning for data-driven discovery in solid Earth
geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019.
Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, 2015.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., and Allard, M.: Permafrost is warming at a global
scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Blackett, R.: Utah Temperature-Depth Log Compilation, Utah Geological Survey
[data set],
http://search.geothermaldata.org/dataset/utah-temperature-depth-log-compilation (last access: 20 August 2015),
2013.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2, Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center [data set], https://doi.org/10.7265/skbg-kf16, 2002.
Brown, J., Hinkel, K. M., and Nelson, F. E.: The circumpolar active layer
monitoring (CALM) program: research designs and initial results, Polar
Geogr., 24, 166–258, 2000.
Cao, B., Gruber, S., Zhang, T., Li, L., Peng, X., Wang, K., Zheng, L., Shao,
W., and Guo, H.: Spatial variability of active layer thickness detected by
ground-penetrating radar in the Qilian Mountains, Western China, J. Geophys.
Res. Earth. Surf., 122, 574–591, 2017.
Cao, B., Zhang, T., Peng, X., Mu, C., Wang, Q., Zheng, L., and Zhong, X.:
Thermal characteristics and recent changes of permafrost in the upper
reaches of the Heihe River basin, Western China, J. Geophys. Res.-Atmos., 123, 7935–7949, 2018.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Permafrost
zonation index map and statistics over the Qinghai-Tibet Plateau based on
field evidence, Permafrost Periglac. Process., 30, 178–194, 2019.
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G.,
and Westermann, S.: An observation-based constraint on permafrost loss as a
function of global warming, Nat. Clim. Change, 7, 340–344, 2017.
Chang, X. L.: Thermal effect of vegetation and snow cover on the underlying
permafrost and soils in the active layer in the northern Da Xiang'anling
Mountains, Northeastern China, PhD thesis, Univ. Chinese Acad. Sci.,
1–138, https://d.wanfangdata.com.cn/thesis/Y2031477 (last access: 18 July 2020), 2011 (in Chinese, English abstract).
Chen, T. Q. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, New York, NY, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Cheng, G.: Problems on zonation of high-altitude permafrost, Acta. Geogr.
Sin., 39, 185–193, 1984 (in Chinese).
Cheng, G.: A roadbed cooling approach for the construction of Qinghai–Tibet
Railway, Cold Reg. Sci. Technol., 42, 169–176, 2005.
Cheng, G. and Jin, H. J.: Permafrost and groundwater on the Qinghai-Tibet
Plateau and in northeast China, Hydrogeol. J., 21, 5–23, 2013.
Cheng, G. and Wu, T.: Responses of permafrost to climate change and their
environmental significance, Qinghai-Tibet Plateau, J. Geophys. Res. Earth.
Surf., 112, 93–104, 2007.
Crow, H. L., Good, R. L., Hunter, J. A., Burns, R. A., Reman, A., and
Russell, H. A. J.: Borehole geophysical logs in unconsolidated sediments
across Canada, Geological Survey of Canada [data set], Open File 7591,
https://doi.org/10.4095/295753, 2015.
Curran, J., Rancan, H., and French, M.: New Jersey Well Logs, New
Jersey Geological and Water Survey [data set],
http://search.geothermaldata.org/dataset/new-jersey-well-logs (last access: 20 January 2016), 2013.
Czajkowski, J.: Washington Well Logs. Washington Division of Geology and
Earth Resources, Department of Natural Resources [data set],
http://search.geothermaldata.org/dataset/washington-well-logs (last access: 10 January 2016), 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach,
H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
Dvornikov, Y., Leibmann, M., Heim, B., Bartsch, A., Haas, A., Khomutov, A.,
Gubarkov, A., Mikhaylova, M., Mullanurov, D., Widhalm, B., Skorospekhova,
T., and Fedorova, I.: Geodatabase and WebGIS project for long-term
permafrost monitoring at the Vaskiny Dachi research station, Yamal,
Russia, Polarforschung, 85, 107–115, 2016.
Ednie, M., Chartrand, J., Smith, S. L., Duchesne, C., and Riseborough, D. W.:
Report on 2011 Field Activities and Collection of Ground Thermal and Active
Layer Data in the Mackenzie Corridor Completed Under Northwest Territories
Science Licence #14918, Geological Survey of Canada [data
set], Open File 7231, https://doi.org/10.4095/291982, 2012.
ESA: Land Cover CCI Product User Guide Version 2.0, http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf, (last access: 4 March 2021), 2017.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37,
4302–4315, 2017.
Friedman, J. H.: Greedy function approximation: a gradient boosting
machine, Ann. Stat., 29, 1189–1232, 2001.
Gallo, K., Hale, R., Tarpley, D., and Yu, Y.: Evaluation of the relationship
between air and land surface temperature under clear-and cloudy-sky
conditions, J. Appl. Meteorol. Climatol., 50, 767–775, 2011.
Gao, T., Zhang, T., Cao, L., Kang, S., and Sillanpää, M.: Reduced
winter runoff in a mountainous permafrost region in the northern Tibetan
Plateau, Cold Reg. Sci. Technol., 126, 36–43, 2016.
Geological Survey of Norway (NGU): Permafrost Svalbard, The NORPERM Permafrost Database [data
set], http://geo.ngu.no/kart/permafrost_svalbard (last access: 23 April 2017), 2016.
Geophysical Institute Permafrost Laboratory (GIPL): Site Information and
Historical Data Access, http://permafrost.gi.alaska.edu/sites_list (last access: 26 January 2016), 2010.
Gosnold, W.: Nebraska Temperature-Depth Data and Profiles, University of
North Dakota [data set],
http://search.geothermaldata.org/dataset/nebraska-temperature-depth-data-and-profiles (last access: 10 March 2016),
2013.
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012.
Harris, C., Haeberli, W., Vonder Mühll, D., and King, L.: Permafrost
monitoring in the high mountains of Europe: the PACE project in its global
context, Permafrost Periglac. Process., 12, 3–11, 2001.
Harrison III, W. B.: Michigan Well Log Observation Data, Western Michigan
University – Geosciences Department [data set],
http://search.geothermaldata.org/dataset/michigan-well-log-observation-data (last access: 10 March 2016),
2012.
Hastie, T. J. and Tibshirani, R. J.: Generalized additive models, Routledge, https://doi.org/10.1201/9780203753781, 2017.
He, R., Jin, H., Chang, X., Wang, Y., and Wang, L.: Freeze-thaw processes of
active-layer soils in the Nanweng'he River National Natural Reserve in the
Da Xing'anling Mountains, northern Northeast China, Sci. Cold. Arid.
Reg., 10, 104–113, 2018.
Heginbottom, J. A.: Permafrost mapping: a review, Prog. Phys. Geogr., 26,
623–642, 2002.
Heginbottom, J. A., Brown, J., Melnikov, E. S., and Ferrians Jr, O. J.:
Circumarctic map of permafrost and ground ice conditions, Proc. Int. Conf.
Permafrost. Natl. Snow Ice Data Cent./World Data Cent. Glaciol., Boulder,
CO, 2, 1132–1136, 1993.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng,
X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R.
A., Batjes, N. H., Leenaars, J. G., and Ribeiro, E., Wheeler, I., Mantel,
S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on
machine learning, PLoS One, 12, https://doi.org/10.1371/journal.pone.0169748, 2017.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147, https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K.,
Niwano, M., and Enomoto, H.: A 38-year (1978–2015) Northern Hemisphere daily
snow cover extent product derived using consistent objective criteria from
satellite-borne optical sensors, Remote Sens. Environ., 191, 402–418, 2017.
Huang, S., Pollack, H. N., and Shen, P.-Y.: Temperature trends over
the past five centuries reconstructed from borehole temperatures, Nature,
403, 756–758, 2000.
Jin, H., Lü, L., and He, R.: A new aridity-based classification of
permafrost zones on the Tibetan Plateau, J. Glaciol. Geocryol., 36,
1049–1057, 2014 (in Chinese, English abstract).
Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R.
E., Saleous, N., Roy, D. P., and Morisette, J. T.: An overview of MODIS Land
data processing and product status, Remote Sens. Environ., 83, 3–15,
2002.
Karatzoglou, A., Meyer, D., and Hornik, K.: Support vector machines in R, J.
Stat. Softw., 15, 1–28, 2006.
Karjalainen, O., Aalto, J., Luoto, M., Westermann, S., Romanovsky, V. E., Nelson, F. E., Etzelmüller, B., and Hjort, J.: Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments, Sci. Data, 6, 1–16, 2019.
Kellerer-Pirklbauer, A., Bartsch, A., Gitschthaler, C., Reisenhofer, S.,
Weyss, G., Riedl, C., and Avian, M.: A national strategy for a long-term
monitoring of permafrost and periglacial processes and their relationship to
natural hazard prevention in Austria, EGUGA, 18, EPSC2016-15245, 2016.
Kelley, S.: New Mexico Temperature-Depth Logs and Graphic Profiles, New
Mexico Bureau of Geology & Mineral Resources [data set],
http://search.geothermaldata.org/dataset/new-mexico-temperature-depth-logs-and-graphic-profiles (last access: 1 April 2016),
2011.
Lehner, B. and Döll, P.: Development and validation of a global database
of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
Li, J., Sheng, Y., Chen, J., Zhang, B., Wu, J., and Zang, X.: Characteristics
of ground temperatures and influencing factors of permafrost development and
distribution in the source region of Datong River, Prog. Geogr., 30,
827–836, 2011 (in Chinese, English abstract).
Li, J., Sheng, Y., and Wu, J.: Mapping frozen soil distribution and modeling
permafrost stability in the Source Area of the Yellow River, Sci. Geogr.
Sin., 36, 588–596, 2016 (in Chinese, English abstract).
Li, X., Jin, H., He, R., Huang, Y., Wang, H., Luo, D., Jin, X., Lv, L.,
Wang, L., Li, W., Wei, C., Chang, X., Yang, S., and Yu, S.: Effects of forest
fires on the permafrost environment in the northern Da Xing'anling (Hinggan)
mountains, Northeast China, Permafrost Periglac. Process., 30, 163–177,
2019.
Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang,
M., and Bao, Q.: CASEarth Poles: Big data for the Three Poles, B. Am.
Meteorol. Soc., 101, E1475–E1491, 2020a.
Li, X., Jin, H., Wang, H., Wu, X., Huang, Y., He, R., Luo, D., and Jin, X.:
Distributive features of soil carbon and nutrients in permafrost regions
affected by forest fires in northern Da Xing'anling (Hinggan) Mountains, NE
China, Catena, 185, 104304, https://doi.org/10.1016/j.catena.2019.104304, 2020b.
Liaw, A. and Wiener, M.: Classification and regression by randomForest, R
News, 2, 18–22, 2002.
Liu, G. Y., Wang. W., Zhao, L., Chen, J., Pang, Q. Q., Wang, Z. W., and Du, E.
J.: Using transient electromagnetic method to sound permafrost depth in the
West Kunlun Mountains, J. Glaciol. Geocryol., 37, 38–48, 2015 (in
Chinese, English abstract).
Luo, D., Wu, Q., Jin, H., Marchenko, S. S., Lü, L., and Gao, S.: Recent
changes in the active layer thickness across the northern
hemisphere, Environ. Earth Sci., 75, 555, https://doi.org/10.1007/s12665-015-5229-2, 2016.
Luo, D., Jin, H., Jin, X., He, R., Li, X., Muskett, R. R., and Romanovsky, V.
E.: Elevation-dependent thermal regime and dynamics of frozen ground in the
Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest China,
Permafrost Periglac. Process., 29, 257–270, 2018a.
Luo, D., Jin, H., Wu, Q., Bense, V. F., He, R., Ma, Q., and Lü, L.:
Thermal regime of warm-dry permafrost in relation to ground surface
temperature in the Source Areas of the Yangtze and Yellow rivers on the
Qinghai-Tibet Plateau, SW China, Sci. Total Environ., 618, 1033–1045, 2018b.
Luo, D. L.: Monitoring, mapping and modeling of permafrost and active layer
processes in the Sources Areas of the Yellow River (SAYR) on Northeastern
Qinghai-Tibet Plateau, PhD thesis, Univ. Chinese Acad. Sci., 1–119, 2012
(in Chinese, English abstract).
Maine Geological Survey: Maine Well Headers, National Geothermal Data System [data set],
http://search.geothermaldata.org/dataset/maine-well-headers (last access: 16 April 2016), 2014.
Mair, V., Zischg, A., Lang, K., Tonidandel, D., Krainer, K.,
Kellerer-Pirklbauer, A., Deline, P., Schoeneich, P., Cremonese, E.,
Pogliotti, P., Gruber, S., and Böckli, L.: PermaNET-Permafrost Long-term
Monitoring Network: Synthesis report, Int. Res. Soc. INTERPRAEVENT, 2011.
Nelson, F. E.: Permafrost zonation in eastern Canada: a review of published
maps, Phys. Geogr., 10, 231–246, 1989.
Nevada Bureau of Mines and Geology: Nevada Borehole Temperatures, National Geothermal Data System
[data set],
http://search.geothermaldata.org/dataset/nevada-borehole-temperatures (last access: 20 April 2016), 2014.
Niewendorp, C. A.: Oregon Well Logs, Oregon Department of Geology and
Mineral Industries [data set],
http://search.geothermaldata.org/dataset/oregon-well-logs (last access: 11 April 2016), 2012.
Noetzli, J., Gruber, S., Kohl, T., Salzmann, N., and Haeberli, W.:
Three-dimensional distribution and evolution of permafrost temperatures in
idealized high-mountain topography, J. Geophys. Res., 112, F02S13,
https://doi.org/10.1029/2006JF000545, 2017.
NSF Arctic Data Center: Network of Permafrost Observatories in Western
Alaska, Arctic Data Center [data set], https://doi.org/10.18739/A2D934,
2014.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316, 2019.
Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G.,
Heim, B., Hugelius, G., Irrgang, A., Kääb, A. M., Kroisleitner, C.,
Matthes, H., Nitze, I., Pellet, C., Seifert, F. M., Strozzi, T.,
Wegmüller, U., Wieczorek, M., and Wiesmann, A.: ESA Permafrost Climate
Change Initiative (Permafrost_cci): Permafrost Ground
Temperature for the Northern Hemisphere, v3.0, NERC EDS Centre for
Environmental Data Analysis,
https://doi.org/10.5285/b25d4a6174de4ac78000d034f500a268, 2021.
Ødegård, R. S., Isaksen, K., Eiken, T., and Sollid, J.
L.: MAGST in Mountain Permafrost, Dovrefjell, Southern
Norway, 2001–2006, Ninth International Conference on Permafrost,
University of Alaska Fairbanks, USA, in: Proceedings Volume 2, edited by: Kane D. L. and Hinkel, K. M., Institute of Northern Engineering, University of Alaska Fairbanks, 1311–1315,
ISBN 978-0-9800179-3-9, 2008.
Paetzhold, R. F.: Monthly Summaries of Soil Temperature and Soil Moisture at
Sites in China, Boulder, Colorado USA, NSIDC: National Snow and Ice Data
Center [data set], https://doi.org/10.7265/67qf-zj58, 2003.
Pan, H. L. and Mahrt, L.: Interaction between soil hydrology and
boundary-layer development, Bound. Lay. Meteorol., 38, 185–202, 1987.
Peter, M.: Modeling of permafrost temperatures in the Lena River Delta,
Siberia, based on remote sensing products, MS thesis, University of
Leipzig, hdl: 10013/epic.45589.d001, https://epic.awi.de/id/eprint/38041/ (last
access: 28 July 2019), 2015.
Qiao, Y., Zhao, L., Pang, Q., Chen, J., Zou, D., and Gao, Z.:
Characteristics of permafrost in Gerze county on the Tibetan Plateau, J.
Glaciol. Geocryol., 37, 1453–1460, 2015 (in Chinese, English abstract).
Qin, Y., Wu, T., Zhao, L., Wu, X., Li, R., Xie, C., and Liu, G.: Numerical
modeling of the active layer thickness and permafrost thermal state across
Qinghai-Tibetan Plateau, J. Geophys. Res.-Atmos., 122, 11–604, 2017.
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R.:
Distribution of permafrost in China: an overview of existing permafrost
maps, Permafrost Periglac. Process., 23, 322–333, 2012.
Ran, Y., Li, X., and Cheng, G.: Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau, The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018, 2018.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J.,
Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: High-resolution
datasets of permafrost thermal state and hydrothermal zonation in the
Northern Hemisphere, National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Geocry.tpdc.271190, 2021a.
Ran, Y., Li, X., Cheng, G., Nan, Z., Che, J., Sheng, Y., Wu, Q., Jin, H.,
Luo, D., Tang, Z., and Wu, X.: Mapping the permafrost stability on the
Tibetan Plateau for 2005–2015, Sci. China: Earth Sci., 64, 62–79,
2021b.
Riseborough, D.: The effect of transient conditions on an equilibrium
permafrost-climate model, Permafrost Periglac. Process., 18, 21–32, 2007.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and
Marchenko, S.: Recent advances in permafrost modelling, Permafrost Periglac.
Process., 19, 137–156, 2008.
Romanovsky, V. E. and Osterkamp, T. E.: Permafrost monitoring system in
Alaska: structure and results, Kriosfera Zemli, 5, 59–68, 2001 (in Russian).
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal
state in the polar Northern Hemisphere during the international polar year
2007–2009: a synthesis, Permafrost Periglac. Process., 21, 106–116,
2010.
Schuur, E. A., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and
Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and
net carbon exchange from tundra, Nature, 459, 556–559, 2009.
Sheng, Y., Li, J., Wu, J. C., Ye, B. S., and Wang, J.: Distribution patterns
of permafrost in the upper area of Shule River with the application of GIS
technique, J. China Univ. Min. Technol., 39, 32–39, 2010.
Sherstiukov, A.: Dataset of daily soil temperature up to 320 cm depth based
on meteorological stations of Russian Federation, RIHMI-WDC, 176,
224–232, 2012.
Shur, Y. L. and Jorgenson, M. T.: Patterns of permafrost formation and
degradation in relation to climate and ecosystems, Permafrost Periglac.
Process., 18, 7–19, 2007.
Smith, S. L. and Ednie, M.: Ground thermal data collection along the Alaska
Highway easement (KP 1559-1895) Yukon, summer 2014, Geological Survey of
Canada [data set], Open File 7762, https://doi.org/10.4095/295974, 2015.
Smith, S. L., Burgess, M. M., Riseborough, D., and Mark Nixon, F.: Recent
trends from Canadian permafrost thermal monitoring network sites, Permafrost
Periglac. Process., 16, 19–30, 2005.
Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R., Allard, M.,
Clow, G. D., Yoshikawa, K., and Throop, J.: Thermal state of permafrost in
North America: a contribution to the international polar year, Permafrost
Periglac. Process., 21, 117–135, 2010.
Smith, S. L., Riseborough, D. W., Ednie, M., and Chartrand, J.: A Map and
Summary Database of Permafrost Temperatures in Nunavut, Canada, Geological
Survey of Canada [data set], Open File 7393, https://doi.org/10.4095/292615,
2013.
Streletskiy, D. A., Tananaev, N. I., Opel, T., Shiklomanov, N. I., Nyland,
K. E., Streletskaya, I. D., and Shiklomanov, A. I.: Permafrost hydrology in
changing climatic conditions: seasonal variability of stable isotope
composition in rivers in discontinuous permafrost, Environ. Res. Lett.,
10, 095003, https://doi.org/10.1088/1748-9326/10/9/095003, 2015.
Sun, Z. Z., Ma, W., Dang, H. M., Yun, H. B., and Wu, G. L.: Characteristics
and causes of embankment deformation for Qinghai-Tibet Railway in permafrost
regions, Rock Soil Mech., 34, 2667–2671, 2013 (in Chinese, English
abstract).
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2008GB003327, 2009.
Trabucco, A. and Zomer, R.: Global Aridity Index and Potential
Evapotranspiration (ET0) Climate Database v2, figshare [data set],
https://doi.org/10.6084/m9.figshare.7504448.v3, 2019.
Trenberth, K. E. and Shea, D. J.: Relationships between precipitation and
surface temperature, Geophys. Res. Lett., 32, https://doi.org/10.1029/2005GL022760, 2005.
University of North Dakota: Temperature at Depth Database, NGDS [data set],
http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm (last access: 15 May 2016), 2014.
Van Everdingen, R. O.: Multi-Language Glossary of Permafrost and Related
Ground-Ice Terms, International Permafrost Association, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (last access: 2 April 2019), 2005.
Vapnik, V.: The Nature of Statistical Learning Theory, https://doi.org/10.1007/978-1-4757-2440-0, Springer, NY,
1995.
Virginia Division of Geology and Mineral Resources: Georgia Well Logs, NGDS [data
set], http://search.geothermaldata.org/dataset/georgia-well-logs (last access: 11 May 2016), 2012a.
Virginia Division of Geology and Mineral Resources: Virginia Well Logs, NGDS [data
set], http://search.geothermaldata.org/dataset/virginia-well-logs (last access: 11 May 2016), 2012b.
Wang, Q., Zhang, T., Wu, J., Peng, X., Zhong, X., Mu, C., and Cheng, G.:
Investigation on permafrost distribution over the upper reaches of the Heihe
River in the Qilian Mountains, J. Glaciol. Geocryol., 35, 19–25, 2013
(in Chinese, English abstract).
Wani, J. M., Thayyen, R. J., Gruber, S., Ojha, C. S. P., and Stumm, D.:
Single-year thermal regime and inferred permafrost occurrence in the upper
Ganglass catchment of the cold-arid Himalaya, Ladakh, India, Sci. Total
Environ., 703, 134631, https://doi.org/10.1016/j.scitotenv.2019.134631, 2020.
Wolfe, S. A., Smith, S. L., Chartrand, J., Kokelj, S., Palmer, M., and
Stevens, C. W.: Geotechnical Database and Descriptions of
Permafrost Monitoring Sites Established 2006–10 in the Northern Mackenzie
Corridor, Northwest Territories, Geological Survey of Canada
[data set], Open File 6677, https://doi.org/10.4095/287167, 2010.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of semiparametric generalized linear models, J. R.
Stat. Soc. Ser. B, 73, 3–36, 2011.
Wu, J., Yu, S., Yu, H., and Li, J.: Permafrost in the middleeast section of
Qilian Mountains (II): Characters of permafrost, J. Glaciol. Geocryol., 29,
426–432, 2007 (in Chinese with English abstract).
Wu, Q., Zhu, Y., and Liu, Y.: Application of the permafrost table
temperature and thermal offset forecast model in the Tibetan Plateau, J.
Glaciol. Geocryol., 24, 614–617, 2002 (in Chinese with English abstract).
Wu, Q., Hou, Y., Yun, H., and Liu, Y.: Changes in active-layer thickness and
near-surface permafrost between 2002 and 2012 in alpine ecosystems,
Qinghai–Xizang (Tibet) Plateau, China, Glob. Planet. Change, 124, 149–155,
2015.
Xiang, Y., Xiao, Z. Q., Ling, S. L., Wang, J. D., and Song, J. L.:
Validation of Global LAnd Surface Satellite (GLASS) leaf area index product,
Int. J. Remote Sens., 18, 573–584, 2014.
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., and Song, J.:
Use of general regression neural networks for generating the GLASS leaf area
index product from time-series MODIS surface reflectance, IEEE T.
Geosci. Remote, 52, 209–223, 2014.
Xie, Y. L., Yu, Q. H., You, Y. H., Zhang, Z. Q., and Gou, T. T.: The changing process
and trend of ground temperature around tower foundations of Qinghai-Tibet
Power Transmission line, Sci. Cold Arid Reg., 11,
13–20, 2019.
Yoshikawa, K. and Hinzman, L. D.: Shrinking thermokarst ponds and
groundwater dynamics in discontinuous permafrost near Council, Alaska,
Permafrost Periglac. Process., 14, 151–160, 2003.
Yu, H., Wu, Q. B., and Liu, Y. Z.: The long-term monitoring system on
permafrost regions along the Qinghai-Tibet Railway, J. Glaciol. Geocryol.,
30, 475–481, 2008 (in Chinese, English abstract).
Yu, Q., You, Y., Yan, H., and Liu X.: Distribution and characteristics of
permafrost in Nalati Mountain, western Tianshan Mountains in China, J.
Glaciol. Geocryol., 35, 10–18, 2013 (in Chinese, English abstract).
Zhang, T., Heginbottom, J. A., Barry, R. G., and Brown, J.: Further
statistics on the distribution of permafrost and ground ice in the Northern
Hemisphere, Polar Geogr., 24, 126–131, 2000.
Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.:
Statistics and characteristics of permafrost and ground-ice distribution in
the Northern Hemisphere, Polar Geogr., 31, 47–68, 2008.
Zhang, X. M., Nan, Z. T., Wu, J. C., Du, E. J., Wang, T., and You, Y. H.:
Modeling permafrost distribution in Wenquan Area over Qinghai-Tibet Plateau
by using multivariate adaptive regression splines, J. Glaciol. Geocryol.,
33, 1088–1097, 2011 (in Chinese, English abstract).
Zhao, J., Luo, T., Li, R., Wei, H., Li, X., Du, M., and Tang, Y.:
Precipitation alters temperature effects on ecosystem respiration in Tibetan
alpine meadows, Agric. For. Meteorol., 252, 121–129, 2018.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Zhao, L., Liu, G. Y., Jiao, K. Q., Li, R., Qiao, Y. P., and Ping, C. L.:
Variation of the permafrost in the Headwaters of the Urumqi River in the
Tianshan Mountains since 1991, J. Glaciol. Geocryol., 32, 223–230, 2010a.
Zhao, L., Wu, Q., Marchenko, S. S., and Sharkhuu, N.: Thermal state of
permafrost and active layer in Central Asia during the International Polar
Year, Permafrost Periglac. Process., 21, 198–207, 2010b.
Zhao, S. P., Nan, Z. T., Huang, Y. B., and Zhao, L.: The application and
evaluation of simple permafrost distribution models on the Qinghai–Tibet
Plateau, Permafrost Periglac. Process., 28, 391–404, 2017.
Zhao, X., Liang, S., Liu, S., Yuan, W., Xiao, Z., Liu, Q., Cheng, J., Zhang,
X., Tang, H., Zhang, X., Liu, Q., Zhou, G., Xu, S., and Yu, K.: The Global
Land Surface Satellite (GLASS) remote sensing data processing system and
products, Remote Sens., 5, 2436–2450, 2013.
Short summary
Datasets including ground temperature, active layer thickness, the probability of permafrost occurrence, and the zonation of hydrothermal condition with a 1 km resolution were released by integrating unprecedentedly large amounts of field data and multisource remote sensing data using multi-statistical\machine-learning models. It updates the understanding of the current thermal state and distribution for permafrost in the Northern Hemisphere.
Datasets including ground temperature, active layer thickness, the probability of permafrost...
Special issue
Altmetrics
Final-revised paper
Preprint