Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-5093-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-5093-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A newly integrated ground temperature dataset of permafrost along the China–Russia crude oil pipeline route in Northeast China
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Wei Ma
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Fei Wang
CORRESPONDING AUTHOR
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Faculty of Civil Engineering and Mechanics, Jiangsu University,
Zhenjiang 212013, China
Huijun Jin
CORRESPONDING AUTHOR
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Civil Engineering and Permafrost Institute, Northeast
Forestry University, Harbin 150040, China
Alexander Fedorov
Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk
677010, Russia
Dun Chen
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
Gang Wu
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Yapeng Cao
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Yu Zhou
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Yanhu Mu
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Yuncheng Mao
School of Civil Engineering, Northwest Minzu University, Lanzhou
730000, China
Jun Zhang
School of Civil Engineering, Henan Polytechnic University, Jiaozuo
454000, China
Kai Gao
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
School of Engineering Science, University of Chinese Academy of
Sciences, Beijing 100049, China
Xiaoying Jin
School of Civil Engineering and Permafrost Institute, Northeast
Forestry University, Harbin 150040, China
Ruixia He
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
Xinyu Li
School of Civil Engineering, Harbin Institute of Technology, Harbin
150090, China
Yan Li
State Key Laboratory of Frozen Soil Engineering, Northwest
Institute of Eco-Environment and Resources, Chinese Academy of Sciences,
Lanzhou 730000, China
Da Xing'anling Observation and Research Station of Frozen-Ground
Engineering and Environment, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Jagdaqi, Inner Mongolia 165000,
China
Related authors
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Shuai Huang, Xiangbing Kong, Xue Yang, Xiaoying Jin, Shanzhen Li, Lin Yang, Yaodan Zhang, Kai Gao, Hongwei Wang, Xiaoying Li, Ruixia He, Lanzhi Lü, Guodong Cheng, and Huijun Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-4544, https://doi.org/10.5194/egusphere-2025-4544, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Permafrost in Northeast China is rapidly degrading due to climate warming and land use changes, threatening ecosystems and infrastructure. We developed a physics-informed machine learning framework that integrates climate and land cover data with physical models to predict permafrost evolution. Results show that up to 97 % of near-surface permafrost may disappear by 2100 under high emissions, while forests and mountains provide partial resilience.
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Raul-David Şerban, Huijun Jin, Mihaela Şerban, Giacomo Bertoldi, Dongliang Luo, Qingfeng Wang, Qiang Ma, Ruixia He, Xiaoying Jin, Xinze Li, Jianjun Tang, and Hongwei Wang
Earth Syst. Sci. Data, 16, 1425–1446, https://doi.org/10.5194/essd-16-1425-2024, https://doi.org/10.5194/essd-16-1425-2024, 2024
Short summary
Short summary
A particular observational network for ground surface temperature (GST) has been established on the northeastern Qinghai–Tibet Plateau, covering various environmental conditions and scales. This analysis revealed the substantial influences of the land cover on the spatial variability in GST over short distances (<16 m). Improving the monitoring of GST is important for the biophysical processes at the land–atmosphere boundary and for understanding the climate change impacts on cold environments.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Lihui Luo, Yanli Zhuang, Mingyi Zhang, Zhongqiong Zhang, Wei Ma, Wenzhi Zhao, Lin Zhao, Li Wang, Yanmei Shi, Ze Zhang, Quntao Duan, Deyu Tian, and Qingguo Zhou
Earth Syst. Sci. Data, 13, 4035–4052, https://doi.org/10.5194/essd-13-4035-2021, https://doi.org/10.5194/essd-13-4035-2021, 2021
Short summary
Short summary
We implement a variety of sensors to monitor the hydrological and thermal deformation between permafrost slopes and engineering projects in the hinterland of the Qinghai–Tibet Plateau. We present the integrated observation dataset from the 1950s to 2020, explaining the instrumentation, processing, data visualisation, and quality control.
Cited articles
Beck, I., Ludwig, R., Bernier, M., Strozzi, T., and Boike, J.: Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry, Earth Surf. Dynam., 3, 409–421, https://doi.org/10.5194/esurf-3-409-2015, 2015.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264,
https://doi.org/10.1038/s41467-018-08240-4, 2019.
Burgess, M. M. and Smith, S. L.: 17 years of thaw penetration and surface
settlement observations in permafrost terrain along the Norman Wells
pipeline, Northwest Territories, Canada, in: Proceedings of the 8th
International Conference on Permafrost, Zurich, Switzerland, 21–25 July
2003, 107–112, 2003.
Burke, E. J., Zhang, Y., and Krinner, G.: Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change, The Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-2020, 2020.
Cheng, G. and Jin, H.: Permafrost and groundwater on the Qinghai-Tibet
Plateau and in northeast China, Hydrogeol. J., 21, 5–23,
https://doi.org/10.1007/s10040-012-0927-2, 2013.
Dahlin, T. and Zhou, B.: A numerical comparison of 2D resistivity imaging
with 10 electrode arrays, Geophys. Prospect., 52, 379–398,
https://doi.org/10.1111/j.1365-2478.2004.00423.x, 2004.
Etzelmüller, B., Guglielmin, M., Hauck, C., Hilbich, C., Hoelzle, M.,
Isaksen, K., and Ramos, M.: Twenty years of European mountain permafrost
dynamics-the PACE legacy, Environ. Res. Lett., 15, 104070,
https://doi.org/10.1088/1748-9326/abae9d, 2020.
Farzamian, M., Vieira, G., Monteiro Santos, F. A., Yaghoobi Tabar, B., Hauck, C., Paz, M. C., Bernardo, I., Ramos, M., and de Pablo, M. A.: Detailed detection of active layer freeze–thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica), The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, 2020.
Guo, D. and Li, Z.: Historical evolution and formation age of permafrost in
northeastern China since the Late Pleistocene, J. Glaciol. Geocryol., 3,
1–6, 1981. (In Chinese)
Guo, W., Liu, H., Anenkhonov, O. A., Shangguan, H., Sandanov, D. V.,
Korolyuk, A. Y., and Wu, X.: Vegetation can strongly regulate permafrost
degradation at its southern edge through changing surface freeze-thaw
processes, Agr. Forest. Meteorol., 252, 10–17,
https://doi.org/10.1016/j.agrformet.2018.01.010, 2018.
He, R., Jin, H., Luo, D., Li, X., Zhou, C., Jia, N., and Yu, S.: Permafrost
changes in the Nanwenghe Wetlands Reserve on the southern slope of the Da
Xing'anling-Yile'huli mountains, Northeast China, Adv. Clim. Change Res., 12,
696–709, https://doi.org/10.1016/j.accre.2021.06.007, 2021.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.:
Impacts of permafrost degradation on infrastructure, Nat. Rev. Earth Env.,
3, 24–38, https://doi.org/10.1038/s43017-021-00247-8, 2022.
Hu, Z. and Shan, W.: Landslide investigations in the northwest section of
the lesser Khingan range in China using combined HDR and GPR methods, B.
Eng. Geol. Environ., 75, 591–603,
https://doi.org/10.1007/s10064-015-0805-y, 2016.
Jin, H. and Ma, Q.: Impacts of permafrost degradation on carbon stocks and
emissions under a warming climate: A review, Atmosphere, 12, 1425, https://doi.org/10.3390/atmos12111425, 2021.
Jin, H., Yu, Q., Lü, L., Guo, D., He, R., Yu, S., and Li, Y.:
Degradation of permafrost in the Xing'anling Mountains, Northeastern China,
Permafrost Periglac., 18, 245–258, https://doi.org/10.1002/ppp.589, 2007.
Jin, H., Sun, G., Yu, S., Jin, R., and He, R.: Symbiosis of marshes and
permafrost in Da and Xiao Hinggan Mountains in northeastern China, Chinese
Geogr. Sci., 18, 62–69, https://doi.org/10.1007/s11769-008-0062-0, 2008.
Jin, H., Hao, J., Chang, X., Zhang, J., Qi, J., Lü, L., and Wang, S.:
Zonation and assessment of frozen-ground conditions for engineering geology
along the China–Russia crude oil pipeline route from Mo'he to Daqing,
Northeastern China, Cold Reg. Sci. Technol., 64, 213–225,
https://doi.org/10.1016/j.coldregions.2009.12.003, 2010.
Jin, H., Wu, Q., and Romanovsky, V. E.: Degrading permafrost and its
impacts, Adv. Clim. Change Res., 12, 1–5,
https://doi.org/10.1016/j.accre.2021.01.007, 2021.
Jin, H., Huang, Y., Bense, V. F., Ma, Q., Marchenko, S. S., Shepelev, V. V.,
and Li, X.: Permafrost degradation and its hydrogeological impacts, Water,
14, 372, https://doi.org/10.3390/w14030372, 2022.
Johnson, E. R. and Hegdal, L. A.: Permafrost-related performance of the
Trans-Alaska oil pipeline, in: Proceedings of 9th International Conference
on Permafrost, Fairbanks, USA, June 28-July 3 2008, 857–864, 2008.
Jones, B. M., Grosse, G., Farquharson, L. M., Roy-Léveillée, P.,
Veremeeva, A., Kanevskiy, M. Z., and Hinkel, K. M.: Lake and drained lake
basin systems in lowland permafrost regions, Nat. Rev. Earth Env., 3,
85–98, https://doi.org/10.1038/s43017-021-00238-9, 2022.
Juliussen, H., Christiansen, H. H., Strand, G. S., Iversen, S., Midttømme, K., and Rønning, J. S.: NORPERM, the Norwegian Permafrost Database – a TSP NORWAY IPY legacy, Earth Syst. Sci. Data, 2, 235–246, https://doi.org/10.5194/essd-2-235-2010, 2010.
Kneisel, C., Hauck, C., Fortier, R., and Moorman, B.: Advances in
geophysical methods for permafrost investigations. Permafrost Periglac., 19,
157–178, https://doi.org/10.1002/ppp.616, 2008.
Koven, C. D., Riley, W. J., and Stern, A.: Analysis of permafrost thermal
dynamics and response to climate change in the CMIP5 Earth System Models, J.
Climate, 26, 1877–1900, https://doi.org/10.1175/JCLI-D-12-00228.1, 2013.
Li, G.: Ground temperature dataset of permafrost along the China-Russia
crude oil pipeline route (2011–2021), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Cryos.tpdc.272357, 2022.
Li, G., Wang, F., Ma, W., Fortier, R., Mu, Y., Zhou, Z., and Cai, Y.: Field
observations of cooling performance of thermosyphons on permafrost under the
China-Russia Crude Oil Pipeline, Appl. Therm. Eng., 141, 688–696,
https://doi.org/10.1016/j.applthermaleng.2018.06.005, 2018.
Li, X., Jin, H., Wang, H., Marchenko, S. S., Shan, W., Luo, D., He, R.,
Spektor, V., Huang, Y., Li, X., and Jia, N.: Influences of forest fires on
the permafrost environment: A review, Adv. Clim. Change Res., 12, 48–65,
https://doi.org/10.1016/j.accre.2021.01.001, 2021a.
Li, X., Jin, X., Wang, X., Jin, H., Tang, L., Li, X., and Zhang, S.:
Investigation of permafrost engineering geological environment with
electrical resistivity tomography: A case study along the China-Russia crude
oil pipelines, Eng. Geol., 291, 106237,
https://doi.org/10.1016/j.enggeo.2021.106237, 2021b.
Liu, G., Xie, C., Zhao, L., Xiao, Y., Wu, T., Wang, W., and Liu, W.:
Permafrost warming near the northern limit of permafrost on the
Qinghai–Tibetan Plateau during the period from 2005 to 2017: A case study
in the Xidatan area, Permafrost Periglac., 32, 323–334,
https://doi.org/10.1002/ppp.2089, 2021.
Liu, W., Fortier, R., Molson, J., and Lemieux, J. M.: Three-dimensional
numerical modeling of cryo-hydrogeological processes in a river-talik system
in a continuous permafrost environment. Water Resour. Res., 58,
e2021WR031630, https://doi.org/10.1029/2021WR031630, 2022.
Luo, L., Zhuang, Y., Zhang, M., Zhang, Z., Ma, W., Zhao, W., Zhao, L., Wang, L., Shi, Y., Zhang, Z., Duan, Q., Tian, D., and Zhou, Q.: An integrated observation dataset of the hydrological and thermal deformation in permafrost slopes and engineering infrastructure in the Qinghai–Tibet Engineering Corridor, Earth Syst. Sci. Data, 13, 4035–4052, https://doi.org/10.5194/essd-13-4035-2021, 2021.
Mao, Y., Li, G., Ma, W., Mu, Y., Wang, F., Miao, J., and Wu, D.: Field
observation of permafrost degradation under Mo'he airport, Northeastern
China from 2007 to 2016, Cold Reg. Sci. Technol., 161, 43–50,
https://doi.org/10.1016/j.coldregions.2019.03.004, 2019.
Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J.,
McGuire, A. D., Fix, A., Sweeney, C., Elder, C. D., and Miller, C. E.:
Permafrost carbon emissions in a changing Arctic, Nat. Rev. Earth Environ.,
3, 55–67, https://doi.org/10.1038/s43017-021-00230-3, 2022.
Noetzli, J., Christiansen, H. H., Hrbacek, F., Isaksen, K., Smith, S. L.,
Zhao, L., and Streletskiy, D. A.: Permafrost thermal state, in: State of the
Climate in 2020, Global Climate, edited by: Dunn, R. J. H., Aldred, F.,
Gobron, N., Miller, J. B., and Willett, K. M., B. Am. Meteorol. Soc.,
102, S42–S44, https://doi.org/10.1175/BAMS-D-21-0098.1, 2021.
O'Neill, H. B., Smith, S. L., and Duchesne, C.: Long-term permafrost degradation and thermokarst subsidence in the mackenzie delta area indicated by thaw tube measurements, in: Proceedings of 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference, Quebec, Canada, 18–22 August 2019, 643–651, https://doi.org/10.1061/9780784482599.074, 2019.
Oswell, J. M.: Pipelines in permafrost: geotechnical issues and lessons,
Can. Geotech. J., 48, 1412–1431, https://doi.org/10.1139/t11-045, 2011.
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., and Jin, R.:
Distribution of Permafrost in China: An overview of existing permafrost
maps, Permafrost Periglac., 23, 322–333, https://doi.org/10.1002/ppp.1756,
2012.
Ran, Y., Li, X., and Cheng, G.: Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau, The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018, 2018.
Romanovsky, V. E., Drozdov, D. S., Oberman, N. G., Malkova, G. V., Kholodov,
A. L., Marchenko, S. S., Moskalenko, N. G., Sergeev, D. O., Ukraintseva, N.
G., Abramov, A. A., Gilichinsky, D. A., and Vasiliev, A. A.: Thermal state
of permafrost in Russia, Permafrost Periglac., 21, 136–155,
https://doi.org/10.1002/ppp.683, 2010.
Seligman, B. J.: Long-term variability of pipeline-permafrost interactions
in north-west Siberia, Permafrost Periglac., 11, 5–22,
https://doi.org/10.1002/(sici)1099-1530(200001/03)11:1<5::aid-ppp335>3.0.co;2-c, 2000.
Şerban, R. D., Şerban, M., He, R., Jin, H., Li, Y., Li, X., Wang, X., and
Li, G.: 46-year (1973–2019) permafrost landscape changes in the Hola Basin,
Northeast China using machine learning and object-oriented classification,
Remote Sensing, 13, 1910, https://doi.org/10.3390/rs13101910, 2021.
Smith, S. L. and Riseborough, D. W.: Modelling the thermal response of
permafrost terrain to right-of-way disturbance and climate warming, Cold
Reg. Sci. Technol., 60, 92–103, https://doi.org/10.1016/j.coldregions.2009.08.009, 2010.
Smith, S. L., Romanovsky, V. E., Lewkowicz, A. G., Burn, C. R., Allard, M.,
Clow, G. D., Yoshikawa, K., and Throop, J.: Thermal state of permafrost in
North America: a contribution to the international polar year, Permafrost
Periglac., 21, 117–135, https://doi.org/10.1002/ppp.690, 2010.
Smith, S. L., O'Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V.
E.: The changing thermal state of permafrost, Nat. Rev. Earth Environ., 3,
10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D.,
Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence,
D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release
through abrupt permafrost thaw, Nat. Geosci., 13, 138–143,
https://doi.org/10.1038/s41561-019-0526-0, 2020.
Wang, F., Li, G., Ma, W., Mao, Y., Mu, Y., Serban, M., and Cai, Y.:
Permafrost warming along the Mo'he-Jiagedaqi section of the China-Russia
crude oil pipeline, J. Mt. Sci-Engl., 16, 285–295,
https://doi.org/10.1007/s11629-018-5318-2, 2019a.
Wang, F., Li, G., Ma, W., Wu, Q., Serban, M., Vera, S., Alexandr, F., Jiang,
N., and Wang, B.: Pipeline–permafrost interaction monitoring system along
the China–Russia crude oil pipeline, Eng. Geol., 254, 113–125,
https://doi.org/10.1016/j.enggeo.2019.03.013, 2019b.
Wang, Y., Jin, H., Li, G., and Tong, C.: Secondary geohazards along the operating
Mohe-Jagdaqi section of China-Russia crude oil pipeline in permafrost
regions: a case study on a seasonal frost mound at the Site MDX364, J.
Glaciol. Geocryol., 37, 731–739, 2015 (in Chinese).
Wei, Z., Jin, H., Zhang, J., Yu, S., Han, X., Ji, Y., He, R., and Chang, X.:
Prediction of permafrost changes in Northeastern China under a changing
climate, Sci. China Earth Sci., 54, 924–935,
https://doi.org/10.1007/s11430-010-4109-6, 2011.
Wu, T., Xie, C., Zhu, X., Chen, J., Wang, W., Li, R., Wen, A., Wang, D., Lou, P., Shang, C., La, Y., Wei, X., Ma, X., Qiao, Y., Wu, X., Pang, Q., and Hu, G.: Permafrost, active layer, and meteorological data (2010–2020) at the Mahan Mountain relict permafrost site of northeastern Qinghai–Tibet Plateau, Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022, 2022.
Zhang, T.: Talik, in: Encyclopedia of Snow, Ice and Glaciers, edited by:
Singh, V. P., Singh, P., and Haritashya, U. K., Springer Netherlands,
Dordrecht, 1143–1144,
https://doi.org/10.1007/978-90-481-2642-2_563, 2011.
Zhang, Z., Wu, Q., Hou, M., Tai, B., and An, Y.: Permafrost change in
Northeast China in the 1950s–2010s, Adv. Clim. Change Res., 12, 18–28,
https://doi.org/10.1016/j.accre.2021.01.006, 2021.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
A permafrost monitoring network was established along the China–Russia crude oil pipeline...
Special issue
Altmetrics
Final-revised paper
Preprint